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Abstract 

Phylogenetic systematics seeks to describe and reconstruct the evolutionary relationships among and between 

organisms making use of molecular data. This field has become immensely popular in recent years, with the 

associated computational demands growing in leaps and bounds. Here, we review the progress made in 

statistical phylogenetics, compare the various methods and highlight the recent trends and pitfalls. Furthermore, 

we delve into the mathematical models associated with these methods to understand the underlying 

assumptions, while tracking the improvements made. Lastly, we look at the impact and use of phylogenetics in 

ecology.   
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1 Introduction 

Phylogenetics seeks to understand the evolutionary relationships among organisms making use of an array of 

data types, such as morphological traits or molecular sequence data (Hastings and Gross, 2012; Holland, 2013). 

Historically, morphological traits were commonly used to explain these relationships, but with the dawn of 

molecular sequencing techniques in the 1970’s, DNA phylogenies became commonplace (Morrison, 2012). 

Homologous traits, i.e. traits that have a common origin but have been modified by decent, are the 

fundamental units of phylogenetic data, though these are easier to acquire for molecular data as each base pair 

is considered a homologous character (Holland, 2013). Initially, mitochondrial DNA (mtDNA) was used to 

infer relationships among taxa, using parsimony based methods and analyses. Gene histories, however, are 

strongly influenced by chance events, enhancing the probable inference error when looking at a single locus 

(Knowles and Maddison, 2002; Ronquist and Sanmartín, 2011). Furthermore, as the mitochondrial and nuclear 

genomes are independent from one another and thus, evolve independently, the notion to use only mtDNA 

quickly became obsolete. Hence, incorporating multiple loci spanning both the mitochondrial and nuclear 
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genomes has become the method of choice, supplanting the parsimony-based methods with likelihood-based 

statistical approaches and Bayesian inference techniques (Cutter, 2013; Morrison, 2012). 

1.1 Parsimony 

Parsimony-based approaches use the ‘path of least resistance’ when searching for the most probable tree 

(Hastings and Gross, 2012; Ronquist and Sanmartín, 2011), while maximum parsimony (MP) is the optimality 

criterion associated with selecting the tree that requires the least number of mutations to explain the observed 

sequence data (Holland, 2013). Even though it has been shown that likelihood-based methods are more reliable 

than those obtained through the parsimony-based approach (Sorhannus, 2003), it is still common to 

incorporate parsimony-based methods to validate likelihood results (Robinson et al., 2014). Recently, Ronquist 

and Sanmartín (2011) even argued that “the power of the parsimony approach still has not been fully explored”. 

Furthermore, haplotype networks are often used to infer relationships at population level, indicating the 

number of base pair changes between individuals (Teacher and Griffiths, 2011), however, the most widely 

used haplotype network program, TCS (Clement et al., 2000), still uses a parsimony-based approach (Table 1). 

Hence, parsimony-based approaches may remain viable alternatives to maximum likelihood and Bayesian 

approaches, as predicted by Ronquist and Sanmartín (2011).  

 

 
Table 1 The most common Parsimony, Likelihood and Bayesian methods and programs currently used in phylogenetic studies. 

All citation values are based on Google Scholar information available January 2015. 

Inference 

method 

Program Author Used for Output Release 

date 

Citations

Parsimony PAUP* Swofford Phylogenetic Analysis Trees 2002 9168 

 TCS Clement et al. 

 

Estimating gene 

genealogies 

Haplotype 

network 

2000 5472 

Likelihood MEGA5 Tamura et al. Inferring evolutionary 

trees etc. 

Trees 2011 18259 

 RAxML-

VI-HPC 

Stamatakis Inference of large 

phylogenies 

Trees 2006 6086 

 PhyML 3.0 Guindon et al. Estimating 

phylogenies 

Trees 2010 1012 

Bayesian 

Inference 

MrBayes Huelsenbeck & 

Ronquist 

Phylogeny inference Trees 2001 14063 

 BEAST Drummond & 

Rambaut 

Dated phylogeny Trees 2007 6003 

 

 
1.2 Likelihood 
The maximum likelihood (ML) concept was first developed by Fisher in the early 1900’s (Morrison, 2012), 

and refers to the maximum likelihood of producing the observed data (Nielsen and Beaumont, 2009; Ronquist 

and Sanmartín, 2011). Likelihood-based methods employ an explicit model of evolution, selecting the model 

parameters and the phylogenetic tree (topology with branch length) that maximize the possibility of obtaining 

the observed data (Hastings and Gross, 2012). Indeed, the likelihood of a tree is the probability of observing 
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the given n data sequences (Si) placed at the tips of the tree T, given the tree structure and its branch lengths 

and parameters of the evolutionary model (θ): P(S1,…,Sn|T,θ). These models can have the same parameters 

across sites or be allowed to differ across sites, i.e. codon positions, taxa or loci (Hastings and Gross, 2012), 

with recent publications following the latter trend (Diedericks and Daniels, 2014). This is most often due to the 

fact that different codon positions evolve at different rates, incorporating more biological ‘realism’ into the 

model, as different parts of the genome will evolve at different rates due to selection (Hastings and Gross, 

2012; Kumar et al., 2011). Although ML is considered the most challenging inference method, it has been 

shown to have the most robust confidence intervals (Ronquist and Sanmartín, 2011), employing nonparametric 

bootstrapping to evaluate the congruence between the data and the resulting tree (Holland, 2013). 

1.3 Bayesian approach 

Currently Bayesian inference (BI) is the most popular approach for analysing phylogenetic data. Although 

both likelihood and Bayesian approaches use the same set of models, the Bayesian approach, contrastingly, 

seeks to render the tree with the highest posterior probability (Pp) rather than find a tree that maximizes the 

data’s probability (Hastings and Gross, 2012). To calculate this, the Markov chain Monte Carlo (MCMC) 

algorithm is used, which maximizes P(T|S) given by the Bayes’ rule: 
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1
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Though ML and BI are quite similar in practice, ML is currently computationally more demanding, making it 

slower and technically more challenging than BI (Ronquist and Sanmartín, 2011). Furthermore, most studies 

incorporating both ML and BI analyses have found that the BI P(T|S) supersedes the ML bootstrapping values 

(Kumar et al., 2011), rendering more support to the same branch (e.g. Diedericks and Daniels, 2014). This is 

due to the fact that they are measuring different things. The BI approach seeks to estimate the P(T|S) of all the 

generated trees, while the ML bootstrapping is measuring the point estimate sensitivity (Hastings and Gross, 

2012). Furthermore, P(T|S) is more sensitive to model violation, leading to inflated values, while bootstrap 

values are thought to be over sensitive, rendering conservative results (Kumar et al., 2011). 

1.4 Models 

Deciding on which model to use depends on the questions being asked, as each model has its own assumptions. 

Generally, ML and BI methods employ an Akaike Information Criterion (AIC) (Akaike, 1973) to select an 

appropriate model, however, an AIC corrected for small sample sizes (AICc), or Bayesian Information 

Criterion (BIC) (Schwarz, 1978) may also be used. The simplest DNA model, namely the Jukes-Cantor (JC) 

model, assumes that DNA substitutions are equally likely to occur across pyrimidines (C and T) and purines 

(A and G) and that all base pairs occur in equal frequencies. More complex models, such as the general time 

reversible (GTR) model, are more realistic and include six rate parameters describing the relative substitution 

rates between nucleotide pairs, and three nucleotide frequency parameters describing the base pair (A, T, G, C) 

proportions (Holland, 2013). However, an array of models varying in transition and transversion rates, shapes 

and distributions, span the continuum (Posada, 2006), with model selection usually being calculated via the 

goodness-of-fit test (Hastings and Gross, 2012), as implemented in programs such as MODELTEST (Posada 

and Crandall, 1998) and jModelTest (Posada, 2006). 

 
2 Modelling Techniques in Phylogenetics 
Models of evolution in phylogenetics differ depending on the methods and algorithms that are used for tree 

inference. Depending on the type of available data, models of evolution can be classified into two categories: 

distance matrix based models such as models used in UPGMA (Unweighted Pair Group Method with 

Arithmetic Mean) (Sokal and Michener, 1958) or NJ (Neighbour Joining) methods (Saitou and Nei, 1987), and 
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substitution models such as those used in ML and BI. 
2.1 Distance matrix based models 
In molecular genetics, a distance between a pair of sequences can be viewed as a measurement of their 

dissimilarity. It expresses the expected number of substitutions per site that have occurred between the pair of 

sequences and their common ancestor, and are often used as the length of the branches in phylogenetic trees. 

There are several ways to derive a distance matrix. It can directly be derived from the alignment of multiple 

sequences (Durbin et al., 1999). Other sources of genetic distance include the measurement of similarity 

between immunological data or a DNA-DNA hybridation method (Sibley and Ahlquist, 1984). The basic 

pairwise distance between two sequences (also called the p-distance) is the proportion of site that differs 

among them (fig 1).  However, the p-distance often underestimates the real genetic distance because some of 

the characters in the sequence may have undergone multiple substitutions. Consequently, some models of 

molecular evolution (see section 2.2) offer a way to correct the p-distance. For example, the oldest attempt for 

an adjustment of the p-distance was made by Jukes and Cantor in 1969 (Jukes and Cantor, 1969). They defined 

the phylogenetic distance to be d = –3ln(1–4p/3)/4 in order to model an increase of the effect of the correction 

as the p-distance is increasing and a saturation effect above a certain p-distance (Fig 1). Later on, more 

complicated molecular models of evolution have also proposed their own adjustment to the p-distance. 

 
Fig. 1 Simple example of distance matrices computed from the sequence alignment of four species. (b) Standard p-distance or the 

proportion of dissimilarity between the sequences; (c) Jukes-Cantor distance matrix. 

 

2.2 Substitution matrix based models  

Phylogenetic tree inference methods that are frequently used nowadays, such as ML and BI make use of a 

substitution matrix offered by molecular evolution models. A molecular evolution model describes 

probabilistically the process at which a sequence of characters (DNA or protein) is substituted into another 

sequence of characters within a certain amount of time. The substitution process is usually modelled by a 

continuous time Markov process (Liò and Goldman, 1998), in which the probability of a character to be 

substituted into another character depends on the rate at which the substitution takes place and the time needed 

for substitution. Generally, the absolute time is not used and is in practice scaled by the expected number of 

substitutions per site. The rate at which a character is substituted into another one is stored in a substitution 
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matrix which characterizes the evolutionary model. 

A substitution matrix can be empirical or parametric. On the one hand, empirical substitution matrices have 

been mainly used for amino acid sequences. They are built by direct statistical analysis on the observed 

frequency of each character substitution in an empirical sequence dataset. Common examples of empirical 

substitution matrices for amino acid sequences are the BLOSUM (Block Substitution Matrix) or the PAM 

(Point Accepted Mutation) matrices. 

On the other hand, parametric substitution matrices are commonly used for DNA sequences. Parametric 

substitution matrices usually present two different types of key parameters. First, the equilibrium frequencies 

(πA, πC, πG and πT) describe the probability of having each of the nucleotide character when the Markov 

process is at equilibrium (Liò and Goldman, 1998). For them to be elements of a probability, the four 

equilibrium frequencies should sum up to one. Secondly, a set of rate parameters control the rate of 

substitution. The simplest substitution model is called JC69 and was developed by Jukes and Cantor in 1969 

(Jukes and Cantor, 1969). Their model is simple in the sense that it only has one rate parameter because it 

assumes equal substitution rate for all nucleotides and has equal equilibrium frequency (πA = πC = πG = πT 

=1/4). Hence, the Jukes-Cantor substitution matrix is given by:  
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       (1) 

 

in which α is the rate parameter. 

Later on, since it was observed that transitions (substitutions between nucleotides A – G and C – T) occur 

more frequently than transversions (substitutions between nucleotides A – T, C – G, A – C and G – T), the 

assumption of equal substitution rate was found to be too simplistic. Thus, the Kimura model, also called K80, 

(Kimura, 1980) with one transition and one transversion rate parameters was proposed. Like the JC69 model, 

this model assumes equal frequencies of the nucleotide bases. The substitution rate matrix of the Kimura 

model has the form: 
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in which α is the transition rate parameter and β the transversion rate parameter. 

Even more complicated parametric substitution models were proposed later on. For instance, the F81 

model (Felsenstein, 1981) was inspired by the Jukes-Cantor model with only one rate parameter, but the 

equilibrium frequencies are not assumed to be equal. In the HKY85 model (Hasegawa et al., 1985), the 

principles of the F81 and the K80 models were combined: the rate of transversion and the rate of transition are 
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distinct and equilibrium frequencies are not assumed to be equal. 

Hence, depending on the level of parameterization of the substitution matrix, one can have a substantial 

number and type of evolutionary models, the majority of which are not named. The GTR (general time 

reversible) model (Tavaré et al., 1986) generalizes all the models by assuming different rates and different 

frequencies for all nucleotides. Its substitution rate matrix is then given by: 
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in which α, β, γ, δ, ε and θ are all rate parameters. The diagonal elements of the matrix are set such that each 

row sums to zero. 

Standard Markov process (Liò and Goldman, 1998) assumes independence of the evolution of each site in 

the sequence data. Consequently, the probability of a DNA sequence to evolve into another one would just be 

the product over all sites of the probability of substituting a character into another one. However, a significant 

improvement on phylogenetic reconstruction methods was the consideration of heterogeneity of evolutionary 

rates among different sites in the sequence. Due to different amount of selection imposed on the different sites, 

this approach was considered more realistic (Hasting and Gross, 2012). Evolutionary rate heterogeneity is 

implemented in most current phylogenetic software. The simplest of this approach considers that a proportion 

of sites are invariable while others evolve at a constant rate (e.g., Rannala and Yang, 1995). In this case, the 

Markov process is applied only to the sites that are evolving. It can also happen that the sequence data is 

partitioned into sets of sites (according to each gene for instance) so that different evolutionary model is 

applied to each of the set of sites. The most common approach nowadays is the use of a discrete gamma 

distribution to model rates of substitution across sites. Hence, the discrete gamma distribution adds one more 

parameter to the considered evolutionary model. Sometimes, the model can present both a discrete gamma 

distribution of evolutionary rates and a proportion of invariant sites. The most complex evolutionary model is 

then the GTR+I+G (GTR model with a proportion of invariant sites and gamma distributed rates).   

In the context of studying the evolutionary history of a set of organisms, having the right estimates of 

parameters governing the evolutionary history can be as interesting as getting the right phylogenetic tree. 

These parameters, such as the rate of substitution or the time of divergence (given by the tree branch length) 

are usually incorporated into the considered evolutionary model. Hence, they are estimated together with the 

phylogenetic tree topology in the ML inference or the BI. However, in some cases when the phylogenetic tree 

is given, one can be interested in knowing the rate and number of evolutionary changes that have occurred 

from the most common ancestor to the studied organisms. In these cases, the maximum likelihood approach 

can also be used. 

2.3 Model selection methods and support for the phylogenetic tree 

Since a large number of evolutionary models exist, selecting the most appropriate one has become a central 

task. Most available model selection methods are based on the likelihood of using the model. A popular 

statistical method for model selection in phylogenetics is the likelihood ratio test (LRT) (Felsenstein, 1981; 

Swofford et al., 1996). We notice that some evolutionary models are nested, in the sense that a model is a 

constrained version of another one. For example, if the transition rate parameter in the K80 model is fixed 
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equal to the transversion rate parameter, then the K80 model will not differ from the JC69 model. LRT can 

only be applied to such nested models. Since the model with more parameter will always have a higher 

likelihood score compared to the simpler one, LRT aims at choosing whether the more complex model is 

significantly better than the simpler model. The LRT test statistic, giving the level of significance of using the 

more complex model, is δ = 2(lnL1–lnL0) in which L1 is the maximized value of the likelihood for the complex 

model and L0 the maximized value of the likelihood for the simpler model. LRT statistics approximately 

follow a chi-square distribution. Unfortunately, using LRT requires a subsequent amount of computation as it 

compares the model two by two. 

Recently, the Akaike Information Criteria (AIC) test has become the most common method for model 

selection in phylogenetics. Pioneered by Akaike (1973), the AIC test has been used first in phylogenetics by 

Hasegawa (1990). Like LRT, AIC is also based on comparing likelihoods for each model. However, it has the 

advantage of being suitable for both nested and non-nested models and of considering all the models 

simultaneously so as to make it computationally less intensive than LRT. The basic idea of AIC test is a 

likelihood comparison between models with a penalization for over-parameterization. The AIC score is given 

by: 2k–2lnL in which k is the number of parameters in the model and L denotes the maximized value of the 

likelihood for the model. The model having the smallest AIC score is selected to be the best model. Some 

phylogenetic studies make use of a corrected version of AIC (the AICc, Brunham and Anderson, 2004) which 

takes into account the bias caused by sample size.  

For phylogenetic inference using Bayesian method, the Bayesian information criteria (BIC) can also be 

used for model selection. BIC has been developed first by Schwarz (1978) in order to overcome computational 

difficulties offered by previous model selection methods used in Bayesian inference, such as the use of Bayes 

factors (Kass and Raftery, 1995) or the use of the P(T|S) (see section1.3). As the AIC test, BIC rewards models 

with high likelihood and penalizes models with high number of parameters. The BIC score is given by –

2lnL+klnn in which k is the number of parameters in the model, L denotes the maximized value of the model 

likelihood and n is the number of sites in the sequence data.  

Once the evolutionary model has been selected and the phylogenetic tree obtained, one can still assess the 

confidence of the resulting tree. Two approaches are commonly used for this end. On the one hand, the 

nonparametric bootstrapping method was first proposed by Felsenstein (1985), and is still very common 

nowadays. It consists of rearranging the order of characters in the sequence many times and inferring a tree 

from each rearrangement. Then, phylogenetic trees obtained from the bootstrapping process are compared with 

the one previously inferred from the data sequence. This process will give a support value assigned to each 

node of the phylogenetic tree. The support value represents how frequently the clade under the node is 

represented in the replicate trees.  

On the other hand, when using a Bayesian inference for tree construction, one can also use a Bayesian 

approach to assess the reliability of the selected tree in representing the sequence data (Rannala and Yang, 

1995; Huelsenbeck et al., 2001). As in the case of the nonparametric bootstrapping approach, the Bayesian 

approach also assigns a support value to each node in the selected tree. This value represents the percentage of 

observation of that clade within the set of trees sampled from the posterior probability distribution. Generally, 

a support value of more than 70% is considered acceptable (considered as well resolved) for a clade, for both 

of the two approaches. 

2.4 Phylogenetic modelling in ecology 

As phylogenetics aims at providing information on the past evolutionary history of organisms, phylogenetic 

models and methods are sometimes used by ecologists. With the rapid increase of the availability of 

phylogenetic data and computation power, the study of the importance of evolution in ecological assemblages 
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has been boosted. It is important to notice that most ecological studies using phylogenetics make use of species 

level phylogeny and chronological time branch length often estimated from fossil records of know ancestors 

(Morlon et al., 2011).  

In community ecology or the study of interactions between species and their environment, phylogenetic 

techniques are generally used to explore phylogenetic relatedness of species that are ecologically close to each 

other (i.e. ecologically interacting). Indeed, species phenotypes which reflect the evolutionary history of 

species drive the way species interact. For example, Rezende et al (2007a, 2007b) were among the first to 

explore the role of phylogenetic history in the structure of mutualistic interaction networks. They showed the 

substantial importance of phylogeny in explaining some patterns observed in mutualistic networks with 

statistical support from empirical dataset of pollination and frugivory communities. A study by Minoarivelo et 

al. (2014) suggested a model to quantify the importance of evolutionary history in shaping mutualistic 

interactions. Not only did they analyse the phylogenetic trees which assembled species involved in the 

interactions, but they also made use of a modelling approach similar to evolutionary models (section 2.2) (i.e. 

using a Markov process) in their approach. Their model simulates the possible evolution of species interactions 

along the branches of the phylogenetic trees, and estimates the rate at which ecological interactions are 

changing (Fig. 2). 

 

 

 

Fig. 2 Case example of the inference of the evolution of ecological interactions based on the phylogenetic history of species, as 

obtained from the model of Minoarivelo et al. 2014. (a) Model inputs: binary matrix of interaction between the two sets of 

species and phylogenetic trees of the two sets; (b) Model outputs: probable interactions between ancestors and inferred amount of 

interaction state changes.  

 

 

Conservation ecologists have also taken advantage of phylogenetics in exploring conservation 

prioritization based on phylogenetic relatedness of species (Rolland et al., 2012; Winter et al., 2013). Indeed, 

communities with high phylogenetic diversity (Cardotte et al., 2008) should be given conservation priority as 

they enhance ecosystem stability (Cardotte et al., 2008; Gravel et al., 2011). Phylogenetics is also widely used 

by evolutionary ecologists. A common focus of their study is to explain the emergence and maintenance of 

335



Computational Ecology and Software, 2015, 5(4): 328-339 

 IAEES                                                                                    www.iaees.org  

diversity (Richardson et al., 2011, 2014; Hui et al., 2013; Morlon, 2014), estimating the rate and time of 

phenotypic diversification (Ackerly, 2009; Tringali et al., 1999), or the rate of speciation or extinction within a 

set of species (Hey, 1992; Pyron and Burbrink, 2013; Rolland et al., 2014). 

 

3 Conclusion 

Reconstructing the phylogenetic history shared by a group of organisms mainly consists of building a 

phylogenetic tree and inferring an appropriate model of evolution on which the phylogenetic tree 

reconstruction is based. From simple insightful methods such as the parsimony algorithm or other methods 

based on phylogenetic distances, phylogenetic reconstruction techniques have evolved to complex probabilistic 

methods based on substitution models such as maximum likelihood and Bayesian inference. With an increase 

in the size of datasets to be analysed, probabilistic methods have incorporated complex statistical techniques to 

validate the resulting inferences. While the computational and statistical advances in the phylogenetic field 

continue to escalate, we can safely assume that the field will continue its upward trajectory, boosting its appeal 

to an even broader audience. 
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