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Abstract 

Niche construction theory regards organisms not only as the object of natural selection but also an active 

subject that can change their own selective pressure through eco-evolutionary feedbacks. Through reviewing 

the existing works on the theoretical models of niche construction, here we present the progress made on how 

niche construction influences genetic structure of spatially structured populations and the spatial-temporal 

dynamics of metapopulations, with special focuses on mathematical models and simulation methods. The 

majority of results confirmed that niche construction can significantly alter the evolutionary trajectories of 

structured populations. Organism–environmental interactions induced by niche construction can have profound 

influence on the dynamics, competition and diversity of metapopulations. It can affect fine-scale spatially 

distribution of species and spatial heterogeneity of the environment. We further propose a few research 

directions with potentials, such as applying adaptive dynamics or spatial game theory to explore the effect of 

niche construction on phenotypic evolution and diversification. 
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1 Introduction 

The basic premise of niche construction theory (NCT) is that organism can be described as potent agents of 

natural selection by modifying their biotic or abiotic environments (Odling-Smee et al., 2013; Matthews et al., 

2014). Researches on niche construction have extensively shown how living organisms can alter their 

surrounding environment through their metabolism, activities, and choices, and by doing so influence their 

own or others selection pressure (e.g. Jones et al.,1994, 1997; Odling-Smee, et al., 2003; Beerling, 2005; 

Donohue et al., 2005; Flack et al., 2006; Hoover and Robinson, 2007; Hoover et al., 2011). The new concept 

proposed in NCT is ecological inheritance, which refers to a process of organism-induced environmental 
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modification that can persist for future generations. By doing so, organisms can generate feedbacks with their 

environment that could potentially alter their evolutionary trajectories (Odling-Smee et al., 2013). This 

organism-environment feedback is a key factor to decide the spatial structure of species and the system 

dynamics of communities. To date, NCT has captured the attention from a wide range of evolutionary 

biologists and ecologists. Matthews et al. (2014) surveyed a large amount of literatures that related to the 

multiple facets of niche construction, including the NCT itself, a series of studies on evolutionary (e.g. 

coevolution and speciation) and ecological interactions (especially how ecosystem engineering affects species 

distribution and turnover). There is, however, a lack of review on the mathematical models for studying the 

effect of niche construction. 

The two-locus population genetic model by Laland is the first theoretical model for exploring the 

evolutionary consequences of niche construction (Laland et al., 1996, 1999). The analysis confirms that niche 

construction can be a potent evolutionary agent by generating selection that leads to the fixation of otherwise 

deleterious alleles, supporting stable polymorphisms, eliminating stable polymorphisms, and generating 

unusual evolutionary dynamics (Laland et al., 1999).Based on the two-locus population genetic model, some 

extensive researches were developed. Silver and Di Paolo (2006) presented an individual-based model (IBM) 

of an extension to the two-locus population genetic model and revealed the importance of spatiality. Niche-

construction traits can drive themselves to fixation by simultaneously generating selection that favors 

‘recipient’ trait alleles and linkage disequilibrium between niche-construction and recipient trait alleles. Spatial 

clustering effects is considered a possible mechanism, by which a niche-constructing are trait could establish in 

an otherwise hostile environment (Silver and Di Paolo, 2006), coincided with the work by Han et al. (2006) 

who have also incorporated spatial structure into the two-locus genetic model. Taylor (2007) also used an 

individual-based model to demonstrate that the process of niche construction can indeed introduce an active 

drive for organisms to possess more genes. This is the first explicit example of a model which demonstrating 

an intrinsic drive for the evolution of complexity. 

Although niche construction has emerged as a central driver of a variety of phenomena that operate over 

evolutionary time scales, its importance over ecological time scales cannot be denied. Nonetheless, there is 

insufficient attention to the development of ecological models in enriching the theory of niche construction 

(Vandermeer, 2004). The flourish of NCT is constrained not only by the progress in its lacking of ecological 

models, but also by a more intensive exploration of the kind of effects and patterns it can generate. Using the 

concepts of sufficient viable populations, Vandermeer (2008) developed a framework of differential-equation-

based dynamic systems consisting of organisms and their environments and identified that there was a balance 

between the need for a certain population to maintain the altered/constructed niche and the size of the 

population that can be sustained by such niche. 

The process of niche construction can be evolutionarily and ecologically important to its agents (Kylafis 

and Loreau, 2008, 2011). In a simple ecosystem of plant-soil nutrient feedbacks, where plants have the ability 

to increase the input of inorganic nutrient through positive niche construction, plants can foster their own 

persistence at an ecological time scale; on an evolutionary time scale, niche construction can affect the 

evolutionary dynamics of the plant and the adaptive regulation of local soil nutrient pool (Kylafis and Loreau, 

2008). Moreover, plant’s ability for niche proliferating could interact with its ability for niche deteriorating in 

modifying the response to environment pressure (Kylafis and Loreau, 2011). In a model of two consumers that 

compete for one limiting resource but consumed by one predator, niche construction can either generate net 

interspecific facilitation or strengthen interspecific competition by altering the balance between intraspecific 

and interspecific competitive effects (Kylafis and Loreau, 2011). 

In view of the NCT, organisms are both the object and subject of evolution while adapting to their own 

287



Computational Ecology and Software, 2015, 5(4): 286-298 

 
 

IAEES                                                                                     www.iaees.org

environment. The eco-evolutionary feedback that organisms induced during niche construction appears to be 

an intrinsic property for altruism. Van Dykenand Wade (2012) used the idea of niche construction and 

constructed a two-trait, co-evolutionary model for social evolution in a structured population and analyzed the 

long-term phenotypic evolution of the altruistic strategy and their evolutionarily stable strategy (ESS). This 

model can be further applied to discuss the origins and evolution of eusociality, division of labor, and the 

interaction between technology and demography in human evolution.  

Besides above research progress on theoretical models concerning niche construction, we have also 

contributed to the field by a set of works. In next section, we summarize our works on how niche construction 

influences genetic structure of spatially structured populations and the spatio-temporal dynamics of 

metapopulations affected by niche construction, especially focusing on the aspects of mathematical models and 

simulation methods. The majority of these theoretical models confirm that niche construction can significantly 

alter evolutionary trajectories (Hui and Yue, 2005; Han et al., 2006; Han et al., 2009; Han and Hui, 2014), and 

the organism–environmental relationships induced by niche construction can profoundly influence the 

dynamics, competition, and diversity of metapopulations (Hui et al., 2004; Yue et al., 2004). In the last section, 

we propose some thoughts on potential further research, such as applying adaptive dynamics and spatial game 

theory for studying phenotypic evolution and speciation. 

 

2 Models and Results 

The main shortage of two-locus population genetic model is that it neglects the population structure in real-

world systems, especially the spatial dimension. Since the spatial structure of populations can influence not 

only the population dynamics but also the genetic dynamics (e.g. Hanski, 1999; Kritzer and Davies, 2005), we 

extended the two-locus model onto spatially structured populations and metapopulations. 

2.1 Niche construction in spatially structured population  

First, we implement a simulation method of a spatially-explicit individual-based cellular automaton (CA) on 

200×200 lattices to examine the spatial distribution of genotypes in structured populations, especially along an 

environmental gradient. The core part of the model is that niche construction of organisms changes the local 

fitness of all organisms and thereby selects an optimal offspring to keep its genotype. Because different 

genotypes have different fitness values, the model can be used to study the function of niche construction in 

polymorphism maintenance (Han et al., 2006). Detailed program is described as follows (see also Han and Hui, 

2014). 

Let us denote each grid position byሺ݅, ݆ሻwith Neumann neighborhood, containing an isolated population 

with randomly mating and diploid individuals, and let E (with alleles E and e) and A (with alleles A and a) be 

two gene loci of interest. We assume that the frequency of allele E at generation t affects the individual’s 

capacity of niche construction, and the niche construction can affect the within-cell environmental resource 

positively or negatively by either producing or consuming the resource. Specifically, in each generation, the 

amount of resource (R) in a specific cell is governed by three processes (independent depletion, renewal and 

niche construction): 

ܴ௧ሺ݅, ݆ሻ ൌ ,ଵܴ௧ିଵሺ݅ߣ ݆ሻሺ1 െ ߛ ாܲ௧ሺ݅, ݆ሻሻ  ଶߣ ாܲ௧ሺ݅, ݆ሻ   ଷ (1)ߣ

where  λଵand  λଷ are coefficients of independent resource depletion and renewal; λଶ  and γ are coefficients of 

positive and negative niche construction. If there is no niche construction (i.e. λଶ ൌ 0 and γ ൌ 0), the resource 

will converge to a stable level (R ൌ  λଷ ሺ1 െ λଵሻ⁄ ). In the following, we ignore negative niche construction 

(i.e. γ ൌ 0). Specifically, if the coefficient of independent resource renewal (λଷ) is not a constant but a linear 

function of the vertical coordinates (y), a linear environmental gradientcan be introduced along the y-direction. 
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Generally, we assume  λଷ ൌ  where kis an indicator of the gradient of the environmental resource (Han and ,ݕ݇

Hui, 2014). The fitness of organismsof various genotypes is given as below (Table 1; Laland et al., 1999). 

 

Table 1 Genotypic fitness (from Laland et al., 1999; Note the Copyright). 

locus EE Ee ee 

AA α1α2+ܴߝ α2+ܴߝ β1α2+ܴߝ 

Aa α1+ ߝඥܴሺ1 െ ܴሻ 1+ ඥܴሺ1ߝ െ ܴሻ β1+ ߝඥܴሺ1 െ ܴሻ 

aa α1β2+ߝሺ1 െ ܴሻ β2+ߝሺ1 െ ܴሻ β1β2+ߝሺ1 െ ܴሻ 

 

 

We chose periodic boundaries for the left and right edges to diminish the boundary effect and reflective 

boundaries for the top and bottom edges. Each cell of the lattices was initially randomly assigned one of the 

nine genotypes. During each time step, the individual in a focal cell chose to mate with the individual having 

the highest fitness in four nearest neighboring cells, and then the individual was replaced by its one offspring 

randomly chosen according to the following fitness-dependent probability  ܲ:  

ܲ ൌ
ఠ

∑ ఠאΩ
    (2) 

where Ω is the set of all possible genotypes that the parent can produce;߱is the fitness of the i-th genotype. 

The resource level (R) of this cell was then updated according to Eq. (1). 

The simulation of CA model was shown in Fig. 1. When there was no environmental gradient, no clear 

patterns emerged (Fig. 1a), contrasting to the clear patterns of triple-band (Fig. 1b&c) and double-band 

distributions of genotypes (Fig. 1d) along the environmental gradient. With the increase of positive niche 

construction intensity (λଶ), this step-wise form further shifted towards the direction of lower resources and the 

genotypic distribution was transferred from a double-band to a triple-band pattern. Note that, even without 

niche construction (λଶ ൌ 0), the environmental gradient can still stratify the genotypic distributions. The step-

wise form of genotypic diversity suggests that the genotypic diversity reached its peak at an intermediate 

resource level along the environmental gradient. When further examining the average fitness of the individuals 

on each row, we found that the fitness landscape along the environmental gradient formed a valley at the 

intermediate resource level where the transition of genetic composition occurred (Han and Hui, 2014). 

2.2 Niche construction in metapopulation 

The patch occupant model of metapopulation is a fundamental framework of spatial ecology and is a potent 

metaphor for population dynamics in patchy environments (Tilman and Kareiva, 1997; Hui and Li, 2003, 2004; 

Chen and Hui, 2009): 

ௗ

ௗ௧
ൌ ሺ1ܿ െ ሻ െ  (3) ݁

where  is the fraction of patches occupied by the species, c and ݁ are the colonization and extinction rate, 

respectively. The nontrivial equilibrium ҧ ൌ 1 െ ݁ ܿ⁄  is globally stable as long as ݁ ൏ ܿ. Hui and Yue (2005) 

used this classical Levins’ patch occupant model to probe the effects of niche construction on spatial 

distribution of metapopulation (see also Hui et al., 2004; Han et al., 2009; Zhang et al., 2012). 
Considering a habitat subdivided into discrete patches, each of which can support a local population, 

assume the metapopulation of diploid individuals and random mating within local populations, defined at one 

diallelic locus, A, with alleles A (dominant) and a (recessive). Analogous to Laland’s assumption (Laland et al., 

1999), let us assume that the capacity of niche construction of a local population is influenced by the frequency 
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of genotype aa, Faa. The capacity for niche construction affects the dynamics of a key environmental resource, 

ܴሺݐሻ ൌ ߙ  ሺ1 െ ݐሻܴሺߚ െ 1ሻ  ,ሺ݅ܨߛ ݐ െ 1ሻ   (4) 

where ߙ and ߚare coefficients of independent resource renewal and depletion, ߛ is the coefficient of niche 

construction. 

Furthermore, let us assume that the amount of resource in patch i can influence the fitness of individuals 

of different genotypes in the patch. Here, we introduce the concept of niche fitness, which is defined as the 

degree of closeness between the optimum niche point in hyper-volume and the actual resource state. Using the 

simplest form of resource utilization spectrum (single-humped cure; May, 1981), let the niche fitness of 

genotype ++ (++ is AA, Aa, or aa) in patch i be defined as:  

,ାାሺ݅ܨܰ ሻݐ ൌ exp ሺെߜሺܴሺݐሻ െ ܴାାሻଶሻ    (5) 

where 1 ⁄ߜ  is the coefficient of niche breadth, and ܴାାis the optimum niche point of genotype ++. We 

generally adopt this definition of niche fitness to evaluate the influences of niche construction.  

In simulations, we utilize Eq. 4 to decide the stochastic dynamics of local extinction and recolonization. 

At each time step, each local population may go extinct with probability e and the empty patch may be 

recolonized by its neighboring local populations with probability ܿ݊/ܰ(where n and N are the numbers of 

neighboring populations and neighboring patches, respectively). If there is a local population in patch 

ሺ݅,  ሻ(either from non-extinction or recolonization events), the frequency of genotype ++ (AA, Aa, orݐ

aa), ܨାାሺ݅,  :ሻ, will satisfy the following transition ruleݐ

Wൈ ,ାାሺ݅ܨ ሻݐ ൌ ሺ1 െ ܿሻܨାାሺ݅, ݐ െ 1ሻܰܨାାሺ݅, ݐ െ 1ሻ 


ே
∑ ,ାାሺ݆ܨ ݐ െ 1ሻܰܨାାሺ݆, ݐ െ 1ሻאΩ       (6) 

where Ω is the set of neighboring serial numbers of patch i, and W is given by the sum of the right-hand sides 

of Eq. 4 for all the genotypes (Hui and Yue, 2005). 

 

 

Fig. 1 The distribution of genotypes on environmental gradients under three selection regimes. No environmental gradient in (A), 

where λଷ ൌ 0.3; linear gradient in (B), (C) and (D), with λଷ ൌ ݇ where ,ݕ݇ ൌ 0.003 along y axis that having 100 coordinated 

points. Heterozygote superiority is assumed in (A) and (B), withαଵ ൌ αଶ ൌ 0.99,βଵ ൌ βଶ ൌ 0.9; (C) selection only acts on locus 

A, with αଵ ൌ βଵ ൌ 1, αଶ ൌ 0.8,βଶ ൌ 0.9; (D) selection only acts on locus E, with αଵ ൌ 0.8,βଵ ൌ 0.9 αଶ ൌ βଶ ൌ 1. Other 

parameters are:λଵ ൌ 0.64,λଶ ൌ 0.05,ε ൌ 0.3. 

 

 

By constructing the one- and two-dimensional spatial lattice models according to the above rules, the 
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evolutionary dynamics and spatial structure of genotype frequencies can be displayed (Fig.2). Due to gene 

flow and selection, polymorphism can hardly be maintained without niche construction. However, with niche 

construction polymorphism, even a recessive homozygote can persist in an initially homogeneous patchy 

habitat. The one-dimensional metapopulation generates a dendritic structure in the temporal-spatial diagram 

(Fig. 2a–c). Niche construction first filtrates local populations and produces high-degree pure local populations 

which gradually coalesce and form a distinctive and segregated distribution of pure-line genotype AA and aa. 

This phenomenon is also obvious in the two-dimensional structures of metapopulations (Fig. 2d–f). The 

distribution of genotype frequencies forms an archipelago-like spatial structure. The recessive genotype aa 

forms many islands beset with genotype AA, with hybrids circling these islands. Therefore, niche construction 

can segregate the distribution of different genotypes and maintain polymorphism in space. 

 

 

 
Fig. 2 Dynamics and spatial structures of different genotypes. Different colors in plots represent the frequency of the 

genotype:(a), (b) and (c) are the evolutionary dynamics and spatial structures of genotypes AA, Aa, and aa , respectively, in a 

one-dimensional habitat (two nearest neighbors and periodic boundary) with the parameter values: ܿ ൌ 0.3, ݁ ൌ 0.1, ܽ ൌ 0.05,
b ൌ 0.1, γ ൌ 0.01, δ ൌ 4, R ൌ ܴ  0.1. The horizontal axes represent the spatial dimension (100 patches). The vertical axes 

represent time (200 generations). (d), (e) and (f) are the spatial structures of genotypes AA, Aa, and aa , respectively, in a two-

dimensional habitat (100 ൈ 100patches, four nearest neighbors and periodic boundary) at 200 generations with the parameter 

values: ܿ ൌ 0.4, ݁ ൌ 0, ܽ ൌ 0.05, b ൌ 0.1, γ ൌ 0.01, δ ൌ 5, R ൌ ܴ  0.05.  

 

2.3 Time-lagged niche construction in metapopulation 

Laland et al. (1996) proposed a time-lagged niche construction and analyzed its influences on evolutionary 

consequences of population. Here, we use cellular automata to examine the effect of time-lagged niche 

construction on the spatial pattern of metapopulations. Han et al. (2009) has demonstrated that the time-lag, 

particularly the primacy effect of time-lag, has a profound effect on the dynamics of niche-constructing 

metapopulations. Accordingly, the primacy effect was focused in the following. 

In the framework of patch occupant model (Eq. 4), we set up grid lattices in a heterogeneous landscape 

(n ൈ n patches) with synchronized updating, von Neumann neighborhood, and periodic boundaries. Let 

௧ܲሺ݅, ݆ሻ indicate the probability that patch ሺ݅, ݆ሻis occupied by a local population at timeݐ.Following Laland et 

al. (1996), if earlier generations have greater impact on the resource than recent generations (i.e. the primacy 

effect), the dynamics of resource at time ݐcan be depicted as below: 
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ܴ௧ ൌ ଵܴ௧ିଵሺ1ߣ െ ߛ ௧ܲሻ  ଶߣ
ଵିఓ

ଵିఓ
∑ ିଵߤ ௧ܲିା

ୀଵ   ଷ (7)ߣ

where ߤ is a constant. Obviously, the dynamics of resources becomes Eq. (1) when n = 1. The resource level 

decides the niche fitness of populations. We still use the concept of niche fitness above and denoted as: 

ω ൌ ߱௫exp ሺെߜሺR െ ܴሻଶሻ(8) 

where ߱௫ is the maximum niche fitness without external noise; ߜ is same meaning in Eq. 6. Research on 

metapopulation theories has suggested that reduced fitness will increase the extinction risk of local populations 

but decrease the colonization rate,sowe assume that the colonization and extinction rates are, respectively, an 

increasing and a decreasing function of niche fitness; that is c ൌ ܿᇱω  and e ൌ ݁ᇱ/ω, where ܿᇱ and ݁ᇱare 

constants. 

According to above assumptions, the probability of patch, ௧ܲሺ݅, ݆ሻ, will follow the following iteration 

formula: 

௧ܲାଵሺ݅, ݆ሻ ൌ ௧ܲሺ݅, ݆ሻ  ቂܿᇱ߱௧ሺi, jሻ
∑ Ωሺ,ሻΩ

ସ
൫1 െ ௧ܲሺ݅, ݆ሻ൯ െ

ᇱ

ఠሺ୧,୨ሻ
௧ܲሺ݅, ݆ሻቃ(9) 

where ∑ Ωܲ௧ሺ݅, ݆ሻΩ  is the sum of probability values in neighboring set Ω. Using this probability transition 

model, the distribution patterns of niche-constructing metapopulation can be explicitly revealed.  

 

 

Fig. 3 Three typical spatial patterns of metapopulations: (a) spiral wave, ܿ ൌ 0.6; (b) spiral-broken wave, ܿ ൌ 0.9; (c) circular 

wave, ܿ ൌ 0.4;Other parameters are:ߣଵ ൌ 0.4, ଶߣ  ൌ 0.6, ଷߣ  ൌ 0.05. 

 

 

 
Fig. 4 Snapshots of the dynamics of spatial patterns of the metapopulation (a) and the spatial structure of resource content (b). 

Parameters are:ൌ 0.6, ݁ ൌ 0.1, ଵߣ ൌ 0.4, ଶߣ  ൌ 0.55, ଷߣ  ൌ 0.05, ߛ ൌ 0.1, ߤ ൌ 0.1, ߜ ൌ 5. 
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Three typical spatial patterns emerged in simulation, namely spiral wave (Fig. 3a), spiral-broken wave 

(Fig. 3b) and circular wave (Fig. 3c). Specially, the spiral waves appeared at moderate colonization rate. When 

the dispersal capacity of local populations increased to allow accessing the entire habitat, the spiral wave broke 

into many arms. Moreover, the spatial wave did not travel once stabilized (Fig. 4a). During the initial transition 

phase (t< 500), the spatial structure was changing fast, indicating chaos and turbulence with short-lived spirals. 

The spiral then gradually formed with many arms, and became stabilized in the habitat. Although the oscillator 

(due to the time-lag) was still acting on the metapopulation, a fixed spatial structure of the metapopulation was 

formed. The resource content still exhibited a stable distribution pattern (Fig. 4b). This spatial heterogeneity of 

environmental resource arose from the niche construction, an ecological imprint of organisms on their 

environment. It suggests that the environmental heterogeneity and fixed species distribution can be a necessary 

consequence of this self-organized process of ecological imprint (Han et al., 2009). 

2.4 Niche construction in competitive metapopulations 

One of the most important results obtained from metapopulation models is the mechanism of competitive 

coexistence in homogeneous habitat. In this part, we use Tilman’s model for simulating the spatial competition 

of metapopulations (Tilman et al., 1994): 

ௗభ
ௗ௧

ൌ ܿଵଵሺ1 െ ଵሻ െ ݁ଵଵ    (10A) 

ௗమ
ௗ௧

ൌ ܿଶଶሺ1 െ ଵ െ ଶሻ െ ݁ଶଶ െ ܿଵଵଶ    (10B) 

Here , c and ݁ have the same meaning as in Eq. (4). Species 1 and 2 are the superior and inferior competitors. 

Tilman’s model describes that two competing metapopulation can stably coexist in a spatially implicit 

homogeneous environment, which requires both an interspecific trade-off in competitive ability versus 

dispersal ability and a limit to similarity of these traits (Tilman and Kareiva, 1997). 

If niche construction can have an impact on interspecific interactions, the dynamics and consequences of 

competing system will be profoundly affected. Because the superior competitor cannot perceive the inferior 

one, we only consider the niche construction from inferior species, which can affect the resource content and 

further determine the fitness of species 1 in patches. Therefore, the dynamics of resource has the following 

form, 

ௗோ

ௗ௧
ൌ ଶߙ െ ܴߚ   (11)    ߛ

where ߙ is the intensity of niche construction, ߚ and ߛ are coefficients representing the independent resource 

depletion and renewal.  

Assume that the resource constructed by species 2 can affect the niche fitness of species 1, by which the 

colonization rate of species 1 is determined. Let the equilibrium of resource content without niche 

construction,ܴ, as the optimum resource content of species 1, hence the colonization rate of species 1 has the 

following form: 

cଵ ൌ ܿ exp ሺെߜሺR െ ܴሻଶሻ  (12) 

Here the various parameters have the same meaning as in Eq. 9. Furthermore, there is always a limited amount 

of time, energy, and other resources to spend on growth, maintenance and reproduction, so an organism must 

allocate its resources among these alternative demands (Silvertown and Doust, 1993). For metapopulation, 

conflicting demands lead to trade-off between abilities of niche construction and colonization. So 

assume   cଶ  ߙߤ ൌ 1, here ߤ is a proportional coefficient. 

A lattice model with Neumann neighborhood and absorptive boundary was applied to the study of the 

effect of niche construction on competitive patterns in space (Fig. 5). Through the comparison of spatial 
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patterns with and without niche construction, two results can be obtained. First, the distribution of two species 

with niche construction was more segregated than the one without niche construction. Resource level in the 

distribution region of the inferior competitor has been altered by niche construction, which then reduced the 

colonization rate of the superior competitor into this region and led to the segregation of distributions. Second, 

the distribution of species with niche construction was more immovable than the one without niche 

construction. Hence, ecological imprint can segregate and fix the distributions of two species. It implies that 

we cannot predict species’ potential distributions simply according to suitable environmental conditions 

because such conditions could be a result of niche construction where species’ distribution limit can self-

emerge through the seemingly cooperative interactions between organisms and their environments (Hui et al., 

2004). 

 

 

Fig. 5 Distribution of metapopulations with and without niche construction. Blue patches in (a), (b), and (c) depict species 2, and 

purple patches depict species 1. Blueness in (d) represents the ecological imprint. Lattice model is calculated in two-dimensional 

space of 100 ൈ 100patches with 400 randomly located initial local populations for each species. (a) Distribution after 100 

generations without niche construction (ߙ ൌ 0); (b) distribution after 50 generations from (a) without niche construction (ߙ ൌ 0); 

(c) distribution after 50 generations from (a) with niche construction (ߙ ൌ 0.2), and (d) is the spatial distribution of resource 

content of (c). Parameter values:ߚ ൌ 0.2, ߛ ൌ 0.1, ܿ ൌ 0.31, ߜ ൌ 3, ݁ଵ ൌ ݁ଶ ൌ 0.2, andܿଶ ൌ 0.4. 

 

 

3 Discussions 

Simulation methods adopted in our works are individual-based models (IBMs),or more specific cellular 

automata (CAs), which are spatially explicit simulations. Individual-based models (IBMs) are mathematical 

models in which individual organisms or groups of individuals with the same characteristics are explicitly 

studied. Over recent years there has been an increasing focus on the use of IBMs and CAs in ecology 

(Lomnicki, 1998; Hogeweg and Hesper, 1990; McGlade, 1999; Hui and McGeoch, 2006; Roura-Pascual et al., 

2009; Hui, 2011; Hui et al., 2011; Ramanantoanina et al., 2011, 2014; Caplat et al., 2014; Donaldson et al., 

2014; Su et al., 2008, 2009, 2015). The key motivating force behind the development of IBMs comes from the 

need to understand the dynamics of spatial systems and the nature of complex behaviors (Bullock, 

(a) (b)

(c) (d)
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1994).Wehere showed that the explicit patterns of spatial structure and dynamics, induced by niche 

construction, can be intriguing and important for polymorphism and diversity maintenance.   

Studies on niche construction, particularly using theoretical models, are recently growing in numbers. 

Besides those have been mentioned in the Introduction section, many others also focus on questions in 

anthropology, sociology and animal behavior. We here concentrated on the ecological and evolutionary 

consequences of niche construction, with most involving single or multiple species in the systems (Han et al., 

2004; Yue et al., 2004; Hui et al., 2004, 2005; Hui and Yue, 2005; Han et al., 2009; Han and Hui, 2014).Some 

conclusions are laid on the concept of niche fitness(Li and Lin, 1997). Within the framework of 

metapopulations, most results came from developing the organism-environment feedbacks in Tilman’s 

competition model (Tilman et al., 1994), which indicates that niche construction can lead to alternative 

competitive consequences and facilitate coexistence through the trade-off between competition, colonization 

and niche construction (Hui et al., 2004). The time-lag of niche construction can form a phase-locked 

oscillation, which then dictates the spatial structure of metapopulations and the environmental heterogeneity 

that arising from the ecological imprinting process (Han et al., 2009). 

In a metacommunity, niche construction could incur oscillations and push some species towards 

extinction, suggesting a profound influence of niche construction on community structure and assembly rules 

(Hui et al., 2004). Furthermore, through the coupling relationship between genotypes and key resources, 

polymorphism can be maintained in a metapopulation even without heterozygote superiority (Hui and Yue, 

2005). This result is in agreement with those for spatially structured populations (Han et al., 2006). In 

particular along the environmental gradient, niche construction can stratify genetic diversity and promote 

reproduction isolation by forming a fitness valley, which depends on heterogeneous environments, resource-

dependent fitness and the selection force acting on the niche-constructing gene loci (Han and Hui, 2014). The 

above research suggests that the niche-constructing feedback between an organism and its environment is an 

active force to change the environments and hence the direction of natural selection. 

The new term of ‘ecological imprint’ has been proposed based on our studies. In metapopulation, lattice 

models suggest that ‘ecological imprint’ of organisms on environments is formed by reinforcing niche 

construction, consequently forming fine-scale spatial heterogeneity of environmental resources (Hui et al., 

2004; Han et al., 2009). The distribution of metapopulation is closely matched with this ecological imprint. It 

leads to the self-organized spatial heterogeneity of environment and species’ distribution limits (Han et al., 

2009). In competitive systems, ecological imprint can weaken the intensity of spatial competition and 

segregates species distributions (Hui et al., 2004). Traditionally, spatial heterogeneity arises from geographical 

and geological interactions. However, our results imply that spatial heterogeneity and species’ distribution 

limit may be, at least at the local scale, the byproducts of ecological imprint. Consequently, niche construction 

can connect spatial heterogeneity and biotic interactions and may be an important factor leading to the 

distribution limit of species. 

Although there area large number of literatures on niche construction, they mainly involve single- or 

multi-species, with simple abiotic or biotic interactions. For instance, we only considered niche construction 

behaviorto contribute to the fitness of particular organisms or genotypes and adopt a Gaussian function of 

fitness to measure the magnitude of feedback between organisms (and genotypes) and their environments. We 

may, in the future, make progress by building new modeling systems of eco-evolutionary dynamics (Matthews 

et al., 2014). This could be done by using the following candidate methods. First, adaptive dynamics is a 

mathematical approach for studying evolutionary changes when fitness is density or frequency dependent, 

where ecological interactions can drive evolutionary dynamics of a system (Metz et al., 1992; Doebeli and 

Dieckmann, 2000). It was frequently used to discuss core problems in evolutionary biology, especial 
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polymorphism and diversification through evolutionary branching (e.g., Zhang et al., 2013; Landi et al., 2015). 

Adaptive dynamics describes evolution as a process of small successive steps of mutation and invasions of rare 

mutant traits, using the concept of invasion fitness (Metz et al., 1992). Kylafis and Loreau (2008) have 

followed this approach to verify that the adaptive response of niche-constructing plants in external 

environments can result in the emergence of a regulatory process at the evolutionary time scale. The 

methodology of adaptive dynamics could hold the key for further breakthroughs in studying the function of 

niche construction on evolution. Another approach can be used for studying the evolutionary consequence of 

niche construction is the game theory, which is an approach for identifying the best strategy under certain 

conditions. Each player in the game tends to choose the strategy that can maximize its payoff which is also 

dependent on the strategies of the co-players (e.g. Hui, 2008; Hui and McGeoch, 2007; Zhang and Hui, 2011). 

Organisms with various phenotypes for niche construction can be viewed as different players, and they are 

engaging with each other in a multi-player game to pursuit their own optimal payoffs. 

 

 

Acknowledgements 

This work was supported by the National Natural Science Foundation of China to XH (No.31100308and 

11401115) and the South African National Research Foundation (No. 76912 and 89967) to CH. We are 

grateful to Beverley Laniewski for her constructive comments on this manuscript. 

 

 

References 

Beerling D. 2005. Leaf evolution: gases, genes and geochemistry.Annals of Botany, 96: 345-352 

Bullock J. 1994.Correspondence: individual-based models. Trends in Ecology and Evolution, 9: 299 

Caplat P, Hui C, Maxwell BD, Peltzer DA. 2014. Cross-scale management strategies for optimal control of 

trees invading from source plantations. Biological Invasions, 16: 677-690 

Chen LL, Hui C. 2009. Habitat destruction and the extinction debt revisited: the Allee effect. Mathematical 

Biosciences, 221: 26-32 

Doebeli M, Dieckmann U. 2000. Evolutionary branching and sympatric speciation caused by different types of 

ecological interaction. The American Naturalist, 156: S77-S101 

Donaldson JE, Hui C, Richardson DM, Robertson MP, Webber BL, Wilson JRU. 2014. Invasion trajectory of 

alien trees: the role of introduction pathway and planting history. Global Change Biology, 20: 1527-1537 

Donohue K. 2005. Niche construction through phonological plasticity: life history dynamics and ecological 

consequences. New Phytologist, 166: 83-92 

Flack JC, Girvan M, de Waal FBM, et al. 2006. Policing stabilizes construction of socialniches in primates. 

Nature, 439: 426-429 

Han X, Hui C, Zhang Y. 2009. Effects of time-lagged niche construction on metapopulation dynamics and 

environmental heterogeneity. Applied Mathematics andComputation, 215: 449-458 

Han X, Hui C. 2014. Niche construction on environmental gradients: the formation of fitness valley and 

stratified genotypic distribution. PLoS ONE, 9(6): e99775 

Han X, Li Z, Hui C, et al. 2006. Polymorphism maintenance in a spatially structured population: a two-locus 

genetic model of niche construction. Ecological Modelling, 192: 160-174 

Hanski I. 1999. Metapopulation ecology. Oxford University Press, Oxford, UK 

Hogeweg P, Hesper B. 1990. Individual-oriented modeling in ecology. Mathematical and Computer Modelling, 

13: 83-90 

296



Computational Ecology and Software, 2015, 5(4): 286-298 

 
 

IAEES                                                                                     www.iaees.org

HooverJP, Robinson SK. 2007.Retaliatory mafiabehavior by a parasitic cowbird favors host acceptance 

ofparasitic eggs. Proceedings of the National Academy ofSciences USA, 104: 4479-4483 

Hoover K, Grove M, Gardner M, et al. 2011. A gene for an extended phenotype. Science, 333: 1401 

Hui C, Krug RM, Richardson DM. 2011. Modelling spread in invasion ecology: a synthesis. In: Fifty Years of 

Invasion Ecology: The Legacy of Charles Elton (Richardson DM, ed). 329-343, Wiley-Blackwell, Oxford, 

UK 

Hui C, Li ZZ, Yue DX. 2004. Metapopulation dynamics and distribution, and environmental heterogeneity 

induced by niche construction. Ecological Modelling, 177: 107-118 

Hui C, Li ZZ. 2003. Dynamical complexity and metapopulation persistence. Ecological Modelling, 164: 201-

209 

Hui C, Li ZZ. 2004. Distribution patterns of metapopulation determined by Allee effects. Population Ecology, 

46: 55-63 

Hui C, McGeoch MA. 2006. Evolution of body size, range size and food composition in a predator-prey 

metapopulation. Ecological Complexity, 3: 148-159 

Hui C, McGeoch MA. 2007. Spatial patterns of prisoner’s dilemma game in metapopulations. Bulletin of 

Mathematical Biology, 69: 659-676 

Hui C, Yue D. 2005. Niche construction and polymorphism maintenance in metapopulation. Ecological 

Research, 20: 115-119 

Hui C. 2008. Biological complexity by natural selection and self-organization: A game of survival. In: Wilson 

BL. (ed.) Mathematical Biology Research Trends, pp. 3-6. Nova Science Publishers, New York, USA 

Hui C. 2011. Forecasting population trend from the scaling pattern of occupancy. Ecological Modelling, 222: 

442-446 

Jones CG, Lawton JH, Shachak M. 1994. Organismsas ecosystem engineers. Oikos, 69: 373-386 

JonesCG, Lawton JH, Shachak M. 1997. Positiveand negative effects of organisms as physical 

ecosystemengineers. Ecology, 78: 1946-1957 

Kritzer JB, Davies CR. 2005. Demographic variation within spatially structured reef fishpopulations: when are 

larger-bodied subpopulationsmore important? Ecological Modelling, 182: 49-65 

Kylafis G, Loreau M. 2008. Ecological and evolutionary consequences of niche construction for its agent. 

Ecology Letters, 11: 1072-1081 

Kylafis G, Loreau M. 2011. Niche construction in the light of niche theory. Ecology Letters, 14: 82-90 

Laland KN, Odling-Smee FJ, Feldman MW. 1996. The evolutionaryconsequences of niche construction: A 

theoretical investigation using two-locustheory. Journal of Evolutionary Biology. 9: 293-316 

Laland KN, Odling-Smee FJ, Feldman MW. 1999. Evolutionary consequences of niche construction and their 

implications for ecology. Proceedings of the National Academy of Sciences USA, 96: 10242-10247 

Landi P, Hui C, Dieckmann U. 2015. Fisheries-induced disruptive selection. Journal of Theoretical Biology, 

365: 204-216 

Li Z, Lin H. 1997. The niche-fitness model of crop population and its application. Ecological Modelling, 104: 

199-203 

Lomnicki A. 1998. Population Ecology of Individuals. PrincetonUniversity Press, Princeton, USA 

Matthews BM, Meester LD, Jones CG, et al. 2014. Under niche construction: an operational bridge between 

ecology, evolution, and ecosystem science. Ecological Monographs, 84(2): 245-263 

May RM. 1981. Theoretical ecology: principles and applications. Blackwell, Oxford, UK 

McGlade JM. 1999. Advanced ecological theory: principles and applications. Blackwell, Oxford, UK 

297



Computational Ecology and Software, 2015, 5(4): 286-298 

 
 

IAEES                                                                                     www.iaees.org

Metz JAJ, Nisbet RM, Geritz SAH. 1992. How should we define fitness for general ecological scenarios? 

Trends in Ecology and Evolution, 7: 198-202 

Odling-Smee J, Erwin DH, Palcovacs EP, et al. 2013. Niche construction theory: a practical guide for 

ecologists. Quarterly Review of Biology, 88: 4-28 

Ramanantoanina A, Hui C, Ouhinou A. 2011. Effects of density-dependent dispersal behaviours on the speed 

and spatial patterns of range expansion in predator-prey metapopulations. Ecological Modelling, 222: 

3524-3530 

Ramanantoanina A, Ouhinou A, Hui C. 2014. Spatial assortment of mixed propagules explains the 

acceleration of range expansion. PLoS ONE, 9: e103409 

Roura-Pascual N, Bas JM, Thuiller W, et al. 2009. From introduction to equilibrium: reconstructing the 

invasive pathways of the Argentine ant in a Mediterranean region. Global Change Biology, 15: 2101-2115 

SilverM, Di PaoloE. 2006. Spatial effects favor the evolution of niche construction. Theoretical Population 

Biology, 70: 387-400 

Silvertown JW, Doust JL. 1993. Introduction to plant population biology. Blackwell, Oxford, UK 

Su M, Hui C, Lin ZS. 2015. Effects of the transmissibility and virulence of pathogens on intraguild predation 

in fragmented landscapes. BioSystems, 129: 44-49 

Su M, Hui C, Zhang YY, Li ZZ. 2008. Spatiotemporal dynamics of the epidemic transmission in a predator-

prey system. Bulletin of Mathematical Biology, 70: 2195-2210 

Su M, Li WL, Li ZZ, et al. 2009. The effect of spatial heterogeneity in landscape on the host-parasite dynamics. 

Ecological Research, 24: 889-896 

TaylorT. 2004. Niche construction and the evolution of complexity. In: Proceedings of Artificial Life IX.  

375-380 

Tilman D, Kareiva P. 1997. Spatial ecology: the role of space in population dynamics and interspecific 

interactions. Princeton University Press, Princeton, USA 

Tilman D, May RM, Lehman CL, et al. 1994. Habitat destruction and the extinction debt. Nature, 371: 65-66 

Van Dyken JD, Wade MJ. 2012. Origins of altruism diversity II: runaway coevolution of altruistic strategies 

via ‘‘reciprocal niche construction’’. Evolution, 66: 2498-2513 

Vandermeer J. 2004. The importance of a constructivist view. Science, 303: 472-474 

Vandermeer J. 2008. The niche construction paradigm in ecological time. Ecological Modelling, 214: 385-390 

Yue D X. Hui C. Li Z. 2004. Niche Construction for Desert Plants in Individual and PopulationScales: 

Theoretical Analysis and Evidences from Saksaul (Haloxylon ammodendron)Forests. Israel journal of 

plant sciences, 52: 235-244 

Zhang F, Hui C, Pauw A. 2013. Adaptive divergence in Darwin’s race: how coevolution can generate trait 

diversity in a pollination system. Evolution, 67: 548-560 

Zhang F, Hui C. 2011. Eco-evolutionary feedback and the invasion of cooperation in prisoner’s dilemma 

games. PLoS ONE, 6: e27523 

Zhang F, Tao Y, Hui C. 2012. Organism-induced habitat restoration leads to bi-stability in metapopulations. 

Mathematical Biosciences, 240: 260-266 

298




