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Abstract 

To date, corridors for species dispersals have been thought as deterministic outputs emerging from some kind 

of model. Uncertainty about the individuation of biotic corridors has never been considered. Flow connectivity 

(FC) is a methodology first introduced in 2013 to forecast biotic flows over real landscapes, alternative to both 

circuit theory and least-cost modelling. Its name is due to the fact that it resembles in some way the motion 

characteristic of fluids over a surface. FC predicts species dispersal by minimizing at each time step the 

potential energy due to fictional gravity force over a frictional 3D landscape built upon the real landscape. In 

this work, FC is further developed to find a solution to the problem of calculating the uncertainty associated to 

the forecast of species dispersals. The output of this method is an “uncertainty polygon” (e.g., 5% or 10% 

uncertainty) around the predicted biotic flow. The importance of this new variant of FC is clear: when planning 

greenways for biodiversity, uncertainty about biotic flows prediction must be taken into account and the 

planned corridors must encompass the “uncertainty polygon” as well, otherwise they are at serious risk to 

underestimate the necessary space required by animal species to flow over landscape. 

 

Keywords biotic flows; dynamical GIS; flow connectivity; gene flow; landscape connectivity; species 
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1 Introduction 

Flow connectivity (FC hereafter) is a methodology first introduced in 2013 (Ferrarini, 2013) to forecast biotic 

flows over real landscapes, alternative to circuit theory (McRae, 2006; McRae and Beier, 2007; McRae et al., 

2008) and least-cost modelling (Dijkstra, 1959). Its name is due to the fact that it resembles in some way the 

motion characteristic of fluids over a surface. In fact, FC predicts species dispersal by minimizing at each time 

step the potential energy due to fictional gravity force over a frictional 3D landscape built upon the real 

landscape. FC considers connectivity to be a function of a continuous gradient of permeability values rather 
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than attempting to distinguish discrete patches based on subjective thresholds of habitat area, quality, or 

ownership. A comparison with circuit theory and least-cost modelling are discussed in Ferrarini (2013) and 

Ferrarini (2014e). 

At present FC presents many variants (Table 1), each devoted to a particular topic of species dispersals 

over landscape. In this paper, I introduce a new variant called Stochastic FC, aimed to calculate uncertainty 

associated to the individuation of biotic corridors of species dispersals. The output of this method is an 

“uncertainty polygon” (e.g., 5% or 10% uncertainty) around the predicted biotic flow.  The importance of this 

new variant to FC is clear: when planning greenways for biodiversity, uncertainty about biotic flows prediction 

must be taken into account and the planned corridors must encompass the “uncertainty polygon” as well, 

otherwise they are at serious risk to underestimate the necessary space required by animal species to flow over 

landscape. 

 

 

Table 1  Flow Connectivity and its developed variants, each with a particular purpose. 

Name Purpose Year Reference 

Flow Connectivity Predicting biotic flows over landscape 2013 Ferrarini A. 2013 

Reverse Flow Connectivity  Assigning true-to-life friction values to biotic flows 2014 Ferrarini A. 2014 

Backward Flow Connectivity  Tracing biotic dispersals back in time 2014 Ferrarini A. 2014b

Sloping Flow Connectivity Detecting barriers and facilities to species dispersal 2014 Ferrarini A. 2014c

Bottleneck Flow Connectivity Detecting landscape bottlenecks of species dispersal 2015 Ferrarini A. 2015 

Climatic Flow Connectivity Incorporating climatic change into biotic connectivity 2015 Ferrarini A. 2015b

What-if  Flow Connectivity Integrating landscape changes into biotic connectivity 2015 Ferrarini A. 2015c

Momentum Flow Connectivity Mapping landscape impulses to species dispersal 2015 Ferrarini A. 2015d

Stochastic Flow Connectivity Associating uncertainty to biotic flows prediction 2016 this work 

 

 

2 Stochastic Flow Connectivity: Mathematical Formulation 

Let ( , , , )L x y z t  be a real 3D landscape at generic time t, where [1,..., ]L n . In other words, L is a generic 

(categorical) landcover (or land-use) map with n classes.  

At time T0,  

0 0( , , , )L L x y z t           (1) 

Let ( )L  be the landscape friction (i.e. how much each land parcel is unfavorable) to the species under study. 

In other words, ( )L is a function that associates a friction value to each pixel of L.  Landscape friction has 2 

components (structural and functional) and the overall friction should be equal to their product since they’re 

interactive: 

( ) ( )* ( )STR FUNCL L L           (2) 

At time T0,  

0 0( )L            (3) 
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Let ( , , ( ))sL x y L be a landscape where, for each pixel, the z-value is equal to the friction for the species 

under study. In other words, Ls is a 3D fictional landscape with the same coordinates and geographic 

projection as L, but with pixel-by-pixel friction values in place of real z-values. Higher elevations represents 

areas with elevated friction to the species due to whatever reason (unsuitable landcover, human disturbance 

etc), while lower altitudes represent the opposite. At time T0, 

0 0( , , ( ))s sL L x y L
        (4) 

Let ( , , )S x y t  be a binary landscape (of which Sxyt represents the value of the generic pixel at time t) with 

the same coordinates and geographic projection as Ls and L, but with binary values at each pixel representing 

species presence/absence at generic time t. At time T0,  

0 0( , , )S S x y t          (5) 

FC simulates biotic flows over the frictional landscape Ls as follows (Ferrarini 2013) 

 

( , , )
div 

S x y t S S
S S

t x y

  
  

             (6) 

with initial conditions 0S  at time T0. The symbol δ is a notation for a differential (i.e.  ) or a difference (i.e. 

Δ) partial equation depending on the kind of landscape under study. For a high-resolution frictional landscape 

it represents a differential operator that simulates almost continuous movements over such landscape, 

conversely for a low resolution landscape it describes discrete movements both in space and time.  

As showed in Ferrarini (2013), the equation of resulting biotic flow can be solved as follows: 
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      (7) 

FC assumes that the species dispersal ends at a stability point, if exists, where: 

( , , )
0

S x y t
S

t




            (8) 

Thus, a stability point exists when one species finds itself in a portion of the frictional landscape where all the 

surrounding pixels have equal o higher frictional values. When this happens, FC assumes that the study species 

has no reasons to move further.  
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True-to-life coefficients for ( )L can be calculated in flow connectivity as depicted in Ferrarini (2014), where 

I defined P as the predicted path for the species over the fictional landscape Ls, and P* the real path followed 

by the species (as detected by GPS data-loggers or in situ observations). The bias B between P and P* is hence 

calculated as 

*mod( )B Pdx P dx            (9) 

where the function mod indicates the module of the difference. Hence: 

* *

* *

        where >
 

        where >

Pdx P dx P P
B

P dx Pdx P P

  


 
 

      (10) 

True-to-life coefficients for landscape friction can now be calculated by optimizing B, as follows: 

set B to 0           (11) 

or, at least, 

minimize B          (12) 

In other words, FC assigns realistic resistance values to each land cover type by making null the bias B 

between the predicted dispersal and the detected one. To do this, it builds up the optimized fictional 

landscape ( , , ( ))sL x y L  so that the predicted biotic flow P corresponds to the one (i.e. P*) detected in situ. 

The optimization of ( )L can be properly achieved using genetic algorithms (GAs; Holland, 1975). GAs are 

powerful evolutionary models with wide potential applications in ecology and biology, such as optimization of 

protected areas (Parolo et al., 2009), optimal sampling (Ferrarini, 2012a; Ferrarini, 2012b), optimal detection 

of landscape units (Rossi et al., 2014) and networks control (Ferrarini, 2011; Ferrarini, 2013b; Ferrarini, 2013c; 

Ferrarini, 2013d; Ferrarini, 2013e; Ferrarini, 2014d). 

Alternatively, a simpler solution used by FC to the assessment of realistic friction coefficients is the 

application of suitability modelling to the detected points of species presence over the landscape. In particular, 

MAXENT methodology (Phillips et al., 2006) is particularly well suited to determine suitability maps starting 

from points of species presence. MAXENT computes the suitability scores ( ) L for each portion of the 

landscape in the 0-100 range. Thus, friction coefficients can be properly calculated as complementary to 100 of 

suitability:   

( ) 100 ( )  L L          (13)  

Although the achieved frictional coefficients should be considered reliable (as they’re based on in situ 

experiments), uncertainty about the achieved optimized coefficients can be simulated by FC as follows 

         (14) 

where   

 ~
iS  represents the simulation of the i-th biotic flow over and where  
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     (15) 

or alternatively  

      (16) 

In other words, represents a 5% (or 10%) uncertainty about φ(L) for each generic k-th landscape pixel. 

If we stochastically vary n times (e.g. 10,000 times) φ(L) for each generic k-th landscape pixel, we can 

compute n predicted biotic flows around the predicted (deterministic) one. The minimum circumscribed 

polygon around such n paths hence represents the 5% (or 10%) uncertainty boundary due to our uncertainty 

about the landscape friction at each k-th landscape pixel.  

 

3 An Applicative Example 

The Ceno valley is a 35,038 ha wide valley situated in the Province of Parma, Northern Italy. It has been 

mapped at 1:25,000 scale (Ferrarini, 2005; Ferrarini et al., 2010) using the CORINE Biotopes classification 

system. The landscape structure of the Ceno Valley has been widely analyzed (Ferrarini and Tomaselli, 2010; 

Ferrarini, 2011b; Ferrarini, 2012c; Ferrarini, 2012d). Several wolf populations have been recently observed in 

situ by life-watchers, environmental associations and local administrations. I have applied stochastic FC to a 

portion of the Ceno valley above 1000 m a.s.l. close to the municipality of Bardi (Fig. 1).  

 
 

 
Fig. 1 The frictional landscape Ls has been built for wolf upon a portion (20 km * 20 km) of the Ceno valley (province of Parma, 
Italy) that represents here the real landscape L(x,y,z,t). The elevation represents for each pixel the landscape friction to the species 
under study: the higher the elevation, the higher the friction to the species. Black points represent the simulated presence of wolf 
specimens. Red lines represent the predicted biotic flows from such points. Flows end where FC detects a stability point, i.e. a 
portion of the frictional landscape where all the surrounding pixels have equal or higher frictional values. 
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The area is a square of about 20 km * 20 km. Optimized friction values to wolf presence are borrowed 

from Ferrarini (2012e).  Stochastic FC applied to the predicted dispersal routes of Fig 1 provides the results 

depicted in Fig. 2 and Fig 3. Red lines represent the predicted biotic flows, while blue polygons depict the 10% 

uncertainty polygons about the predicted dispersal routes. For each pixel of the frictional landscape, a 10% 

uncertainty has been simulated and 1000 random values in the 10% uncertainty interval have been simulated. 

This mean, for instance, that during simulations a pixel with a friction value equal to 5 can get any values in 

the range [4.5, 5.5]. This has been realized 1000 times for each pixel, and each time the resulting biotic flow 

has been recalculated. The resulting uncertainty polygons (in blue in Figs. 2 and 3) depict safety corridors that 

take into account not only the supposed ecological requirements of the study species while shifting over the 

landscape, but also the uncertainty of our knowledge about its requirements. 

 

 

 

Fig. 2 Application of stochastic Flow Connectivity to one of the two predicted dispersal routes of Fig. 1. For each pixel of the 
frictional landscape, a 10% uncertainty has been simulated using 1000 random values in a 10% uncertainty interval, and each 
time the resulting biotic flow has been recalculated. Last, the minimum circumscribed polygon around path simulations has been 
detected using the ad hoc software Connectivity Lab (Ferrarini, 2013f). 
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The minimum width around the predicted flows is 15.78 m in Fig. 2 and 16.78 m in Fig. 3 respectively, 

while the maximum width of the uncertainty boundary is 78.45 m in Fig. 2 and 82.87 m in Fig. 3. 

 

 

Fig. 3 Application of stochastic Flow Connectivity to one of the two predicted dispersal routes of Fig. 1. For each pixel of the 
frictional landscape, a 10% uncertainty has been simulated using 1000 random values in a 10% uncertainty interval and each time 
the resulting biotic flow has been recalculated. 

 

 

An important result emerges from previous simulations: all other things being equal, the uncertainty about 

how species dispersals happen is much higher when the surrounding frictional landscape is homogeneous, i.e. 

landscape friction varies slowly. In  Figs. 2 and 3 it can be seen that at the beginning of the dispersal paths the 

landscape friction varies quickly and the uncertainty polygon is narrow. Instead, in the middle and ending parts 

of the paths, friction varies little and slowly and the uncertainty boundary becomes much larger. This suggests 

that Stochastic Flow Connectivity is particularly useful for hilly and mountain landscapes where the land cover 

is very homogeneous, and the uncertainty about biotic corridors increases.  

In order to apply stochastic FC modelling to real landscapes, I wrote the ad hoc software Connectivity 

Lab (Ferrarini, 2013f). 

 

4 Conclusions 

To date, corridors to biotic flows have been thought as deterministic outputs emerging from some kind of 

model. Uncertainty about the individuation of biotic corridors has never been considered. 
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In this work, Flow Connectivity has been extended to find a solution to the problem of calculating the 

uncertainty associated to the prediction of biotic flows. The output of this method is an “uncertainty polygon” 

(e.g., 5% or 10% uncertainty) around the predicted biotic flow.  

Together with previous variants, stochastic Flow Connectivity represents a further contribution to the 

realistic forecast of biotic and gene flows over real landscapes with application to landscape genetics, 

landscape ecology and species conservation. 
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