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Abstract 

This paper deals with the quantitative assessment of the unreliability of migration between habitat patches in 

terms of ecological corridor unreliabilities that are known only with uncertainty. The corridor unreliabilities 

are treated herein as log-normally distributed random variables, and hence the assessment becomes a doubly-

stochastic one. The paper utilizes the multi-affine nature of the reliability function in deriving exact formulas 

for the mean and variance of the system unreliability, as well as accurate formulas for its third and fourth 

central moments. These formulas involve the nominal values of certain partial derivatives. The multi-affine 

nature is also beneficial in the development of an alternative method that involves powers rather than 

derivatives. These two analytical methods of moments agree reasonably with one another and with the results 

of Monte Carlo simulations. Several test cases are considered for typical ecology problems with corridor 

unreliabilities that have a significant variation in their error (range) factor. Numerical plots obtained yield 

plausible observations and useful insights.  

 

Keywords habitat patch; ecological corridor; unreliability; uncertainty; methods of moments; derivatives and 

powers; Monte Carlo simulation.   

 

 

 

 

 

 

 

 

1 Introduction 

An issue of crucial importance in the study of reliability of migration between ecological habitat patches is that 

any predictions of corridor unreliabilities will certainly involve relatively high uncertainties, which inflicts a 

significant uncertainty in the overall system unreliability (Rushdi and Hassan, 2015; 2016). This issue is 

handled in reliability engineering either by dealing with fuzzy rather than crisp probabilities (Tanaka et al., 

1983; Weber, 1994) or by considering the pertinent probabilities as random variables (Rushdi, 1985). In this 

latter approach, the problem of uncertainty analysis is said to be doubly stochastic. In fact, the problem of 

uncertainty quantification of unreliability via the doubly stochastic approach has a very long history span 
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(Colombo and Jaarsma, 1980; Colombo, 1980; Ahmed et al., 1981; Jackson et al., 1982; Ahmed et al., 1982; 

Takaragi et al., 1982; Cox, 1982; Jackson, 1982; Keey and Smith, 1985; Chang et al., 1985; Laviron and 

Heising, 1985; Masera, 1987; Bobbio, 1990;Berleant, 1993;Soman, and Misra, 1994, 1996; Cho and Yum, 

1997; Zhang and Schoenly, 1999; Zhang and Qi, 2004; Rao et al., 2007; Fisher et al., 2008; Cheng, 2009; 

Karanki et al., 2010; Ulmeanu, 2012; Pedroni and Zio, 2013; Zhang, 2012, 2016; Paul and Vignon-Davillier, 

2014; Zhang et al., 2014; Paul and Rioux, 2015). However, we will restrict our attention herein to two methods 

which we call the Method of Moments via Derivatives (Rushdi, 1985; Rushdi and Kafrawi, 1988; Kafrawi and 

Rushdi, 1990; Rushdi and Ba-Rukab, 2005a, 2005b; Bamasak and Rushdi, 2016; Rushdi and Al-Qwasmi, 

2017), henceforth referred to as MoM_D, and the Method of Moments via Powers (Soman and Misra, 1996), 

henceforth referred to as MoM_P. Both methods rely heavily on an insight from Rushdi (1983b) that a 

reliability/unreliability/availability/unavailability function is a multi-affine function, i.e., it is a straight-line 

relation in each of its arguments. This insight is, in essence, an expression of a basic feature of what is now 

known as the real or probability transform of a Boolean function (Papaioannou and Barrett, 1975; Kumar and 

Breuer, 1981; Rushdi, 1987a, 1987b; Heidtmann,1991;Jain, 1996; Rushdi and Ghaleb, 2015). 

This paper deals with a model of landscape connectivity (Baranyi et al., 2011; Goodwin and Fahrig, 2002; 

Jordán et al., 2003; Jordán, 2003; Kindlmann and Burel, 2008; Naeem, 1998; Taylor et al., 1993; With and 

King, 1997; Vasas, et al., 2009) that includes the following elements 

1. Habitat patches: Places where the local population of the pertinent species may reproduce and 

survive for a long term. A habitat patch is called a critical one if its conditions for survival of the 

species deteriorate significantly. To avoid local extinction in a critical habitat patch, the species is 

forced to migrate to more suitable habitat patches, called destination habitat patches. 

2. Stepping stone: Relatively small places that help the migration of the local population of the pertinent 

species, but are not suitable for its long-term survival.  

3. Ecological corridor: Physical areas which connect patches (habitats and stepping stones) and make 

migration possible for a given species between these patches. However, corridors are not expected to 

support long-term survival for the species. 

The model is based on a few assumptions extracted from Jordán (2000) and Rushdi and Hassan (2015), 

namely 

1. The analysis concerns one particular species, called the pertinent or concerned species. The analysis 

does not take into account any characteristic of the species. 

2. The pertinent species is in danger of local extinction in a critical habitat patch. It escapes such 

extinction by migrating to a new habitat patch (one out of a few destination habitat patches) through 

imperfect corridors and perfect stepping stones.  

3. Each of the corridors is in one of two states, either good (permeable)or failed (deleted or destroyed). 

4. The migration system is also in one of two states, either successful or unsuccessful. 

5. Destination habitat patches and stepping stones are not susceptible to failure. 

6. Corridor states are statistically independent. 

These assumptions are augmented herein by the “uncertainty” or “doubly stochastic” assumptions: 

7. Corridor unreliabilities are random variables characterized by their probabilistic distributions or 

moments, and hence the probability of successful migration is also a random variable. 

8. The unreliabilities of different corridors are statistically independent.  

We added these last two assumptions, since we noted that uncertainty issues are frequently addressed and 

play an essential role in ecological studies and modelling, albeit in subareas other than that of unreliability 

(Bradshaw and Borchers, 2000; Williams, 2001; Regan, et al., 2002; Arbia et al., 2003; Heuvelink, 2003; Qin, 
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et al., 2009; Lele and Taper, 2011; Chen, et al., 2013). The probability distribution to be employed herein will 

be the lognormal distribution. Though the lognormal distribution is not appropriate for certain ecological 

applications such as mean estimation and testing (Schmoyeri et al., 1996) or hypothesis testing (Williamson 

and Gaston, 2005), it is mainly the distribution of choice in quantifying uncertainty of reliability (Kafka and 

Polke, 1986; Masera, 1987; Rushdi and Kafrawy, 1988; Matsuoka and Kobayashi, 1997; Allella, 2001; Rushdi 

and Ba-Rukab, 2005b; Halpren et al., 2006). 

The output of the current model is to quantify the probability of successful migration. This quantification 

can be a full one in terms of the entire probability distribution, but we will settle for a simple, albeit 

appropriate,quantification in terms of lower-order probabilistic moments. These moments include the first 

moment (the mean ߤଵ), the second moment (the variance ߤଶ), the third and fourth central moments ߤଷ andߤସ, 

and are typically expressed in terms of the dimensionless coefficients of variation (ߩ ൌ ଶߤ 
ଵ/ଶ/ ߤଵ), skewness 

ଵߛ) ൌ ଶߤ/ଷߤ 
ଷ/ଶሻ and excess (kurtosis) (ߛଶ ൌ ଶߤ/ସߤ 

ଶ  െ  3 ሻ (Forbes et al., 2011). Table 1 lists the notation 

used throughout this paper. 

 

Table 1 List of notation. 

ܰ = number of ecological corridors, n   0. 

T = Number of additive terms in the expression ofU(p) 

௜ܺ 

= success of corridor i = indicator that the concerned species successfully migrates through 

corridori=  a switching random variable that takes only one of the two discrete values 0 and 1; 

(Xi = 1 iff corridor i is permeable, while Xi  =  0 iff corridor i is failed). 
തܺ௜   = failure or deletion of corridor i = indicator variable for unsuccessful migration of the pertinent 

species through i, where തܺ௜ = 0 iffcorridor i is good, while തܺ௜  = 1 iff corridor i is 

deleted/destroyed. 

The success Xiand the failure തܺ௜  are complementary variables. 

 ࢄ
= a vector of n elements representing the successful species migration through corridor i,  

X = [ X1X2 ...  Xn]
T. 

ܵሺࢄሻ 
= indicator variable for the successful operation of the system (successful migration of the 

pertinent species), called system success. 

ܵҧሺࢄሻ = indicator variable for system failure (unsuccessful migration of the pertinent species) 

Pr[...] = probability of the event […]. 

E[...] = expectation of the random variable [...]. 

 ௜݌ ,௜ݍ

= reliability and unreliability of corridor i; Both qi and pi are real values in the closed real interval 

[0.0,1.0]. Here we follow the variable definition of Jordán (2000) and Rushdi and Hassan (2015; 

2016) which is the opposite of the common practice in the reliability community. 

 .௜ = Pr[ Xi  =  1 ]  =  E[ Xi ]  = 1.0 –  piݍ

a vector of n elements representing the corridor reliabilities, q= [q1 q2... qm-1 qm qm+1... qn] = ࢗ
T. 

 ࢖
= a vector of n elements representing the corridor unreliabilities = 1.0 – q, where 1.0 is an n-tuple 

of real ones. 

 ௠ݍ|ࢗ
= a vector of (n-1) elements obtained by omitting the mth element of vector q,  

q|qm=[q1 q2... qm-1  qm+1... qn]
T. 

 ௠݆|ࢗ
= a vector of n elements obtained by setting themth element of q to j, where j is either 0 or 1, 

q|jm=[q1 q2... qm-1  j qm+1... qn]
T. 

ܴሺࢗሻ,ܷሺࢗሻ = reliability and unreliability of the system. Both R(q) and U(q) are real values in the closed real 
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interval [0.0,1.0]. 

ܴሺࢗሻ = Pr[S(X)  = 1]  =  E[ S(X )]. 

ܷሺࢗሻ = Pr[ܵҧሺࢄሻ  = 1] = E[ܵҧሺࢄሻ] = 1.0 –R(q).  

ν1 
= mean value of p:ν1 = [ν11, ν21, …., νn1]

T 

νij = central moment j of pi:νij= E[(pi — vi1)
j], j = 2, 3, 4 

µ1 = mean value of U:                                µ1 = E[U] 

µj = central moment j of U:                            µj = E[(U — µ1)
j] , j = 2, 3, 4  

ߪ                           :standard deviation of U = ߪ ൌ ଶߤ
ଵ/ଶ 

ߩ                    :coefficient of variation of U = ߩ ൌ ଶߤ
ଵ/ଶ/  ଵߤ /ߪ =  ଵߤ

ଵߛ                      :ଵ = coefficient of skewness of Uߛ ൌ ଶߤ/ଷߤ
ଷ/ଶ 

ଶߛ       :ଶ = coefficient of excess (kurtosis) of Uߛ ൌ ଶߤ/ସߤ
ଶ െ 3  

 ܯ
= median (50th percentile) of a log-normally distributed variable, replaces the nominal value of a 

deterministic variable. 

 ܨ
= error factor (range factor) of a log-normally distributed variable: 

F = 95th percentile/ 50th percentile = 50th percentile/ 5th percentile 

λ, ξ 

= λ and ξ are mean and standard deviation of the natural logarithm of a log-normally distributed 

variable respectively.  

λ =E[ln(X)] = ln(m); ξ2 = VAR[ln(X)], ξ = ln(F)/1.645. 

௑݂ሺݔሻ 

= the probability density function (pdf) of the lognormal distribution  

௑݂ሺݔሻ ൌ ቐexp ሺെሺቆ
lnሺxሻ െ λ

ξ
ቇ
ଶ

ሻ/2ሻ/ሺ√2ߨξ xሻ      ݂ݔ ݎ݋ ൒ 0

0 ݔ ݎ݋݂     ൏ 0

 

ν1, ν2, ν3, ν4 

 

= mean, variance, third central moment and fourth central moment of the log-normally distributed 

variable:  

ν1 = m * exp(ξ2/ 2);  

ν2 = ν1
2 * (exp(ξ2) െ 1); 

ν3 = ν2
3/2 * (exp(ξ2) െ 1)1/2 (exp(ξ2) + 2); 

ν4 = ν2
2 * (exp(4ξ2) + 2exp(3ξ2) + 3exp(2ξ2) െ 3); 

For a deterministic variable F = 1, ξ = 0, ν1 = m, and ν2, ν3, ν4 = 0. 

 

 

The organization of the remainder of this paper is as follows. Section 2 outlines methods for analyzing the 

unreliability of migration between habitat patches. Section 3 presents two analytical methods of moments for 

uncertainty analysis of unreliability, namely the Method of Moments via Derivatives (MoM_D), and the 

Method of Moments via Powers (MoM_P). Several improvements and enhancements are added to the 

exposition of these methods. Section 4 presents three demonstrative examples that serve as test cases for 

typical ecology problems. The two analytical methods of moments agree exactly with one-another and agree 

well with Monte Carlo simulation. Section 5 concludes the paper. 

 

2 Analysis of Ecological Reliability 

This section outlines methods for the reliability analysis of the failure of migration of a specific species from a 

critical habitat patch to certain destination habitat patches via imperfect corridors and perfect stepping stones 

(Rushdi and Hassan, 2015). The analysis starts by producing a switching or Boolean function for the indicator 
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variable of migration failure in terms of the indicator variables of corridor failures. It is now necessary to move 

from Boolean domain to the probability domain so as to obtain the probability of unsuccessful migration as a 

function of corridor unreliabilities. Many algorithms are used for converting the switching (Boolean) 

expression for the indicator variable of migration failure into a Probability-Ready Expression (PRE), i.e., into 

an expression that is directly convertible, on a one-to-one basis, to a probability expression. It should be noted 

that, in a PRE, all ORed terms/(products) are disjoint, and all ANDed terms (sums) are statistically 

independent. The conversion from a PRE to a probability expression is trivially achieved by replacing Boolean 

variables by their expectations, AND operations by multiplications and OR operations by additions (Bennetts, 

1975; 1982; Rushdi and Al-Khateeb, 1983; Rushdi and Abdulghani, 1993; Rushdi and Alturki, 2015). The 

algorithms for converting a general switching expression into a PRE can be classified as  

a) Disjointness algorithms (Abraham, 1979; Dotson and Gobien, 1979; Rushdi, 1983a). 

b) Algorithms based primarily on statistical independence (Rushdi and Goda, 1985; Rushdi and 

Abdulghani, 1993). 

c) Boole-Shannon expansion or factoring algorithm (Rushdi, 1983a; Rushdi and Goda, 1985). 

 

3 Uncertainty Analysis of Unreliability 

In system reliability analysis, models such as reliability block diagrams, fault tree analysis, Markov chains and 

stochastic petri nets are built to predict the reliability of the system (Trivedi, 2002). The parameters in these 

models are usually obtained from the field data, data from systems with similar functionality, and even by 

expert guessing, and hence are bound to suffer from considerable uncertainty (Yin et al., 2001). The 

uncertainty problem pertaining to system unreliability has an analytic doubly-stochastic treatment via the 

method of moments. This method of moments utilizes the multi-affine nature (Rushdi, 1983b) of system 

unreliability as a function of the corridor unreliabilities. The method of moments has been extensively verified 

through comparison with results obtained via other methods including Monte Carlo simulations. 

A. METHOD OF MOMENTS VIA DERIVATIVES (MOM_D) 

When the corridor unreliabilities (elements of p) are statistically independent, the basic results of the method 

of moments can summarized by the following closed- form formulas. The mean or expected value of system 

unreliability ܷ is  

 

ଵߤ ൌ ܷሺߥଵሻ ൌ ܷሺ࢖ሻሿ࢖ୀ࣏૚,     (1) 

 

which is simply obtained by substituting the mean values ߥଵ of corridor unreliabilities in the symbolic 

expression of system unreliability. The variance (measure of uncertainty) and the third and fourth central 

moments of corridor unreliability are given exactly by the finite series in un-truncated form as 

 

ଶߤ ൌ  ∑ ௜ܥ
ଶߥ௜ଶଵஸ௜ஸ௡ ൅ ∑∑ ௜௝ܥ

ଶߥ௜ଶߥ௝ଶଵஸ௜ழ௝ஸ௡ ൅ ∑∑∑ ௜௝௞ܥ
ଶ ௞ଶߥ௝ଶߥ௜ଶߥ ൅ ൅ڮ ଵଶ…௡ܥ

ଶ ଶଶߥଵଶߥ … ௡ଶଵஸ௜ழ௝ழ௞ஸ௡ߥ , 

        (2) 

 

ଷߤ ൌ  ∑ ௜ܥ
ଷߥ௜ଷଵஸ௜ஸ௡ ൅ ∑∑ ሾ6ܥ௜ܥ௝ܥ௜௝ߥ௜ଶߥ௝ଶ ൅ ௜௝ܥ௜ܥ3 

ଶߥ௜ଷߥ௝ଶ  ൅ ௜௝ܥ௝ܥ3 
ଶߥ௜ଶߥ௝ଷ  ൅ ௜௝ܥ 

ଷߥ௜ଷߥ௝ଷሿଵஸ௜ழ௝ஸ௡ ൅

 ∑∑∑ ൣ6൛ܥ௜௝ܥ௜௞ܥ௝௞ ൅ ൫ܥ௜ܥ௝௞ ൅ ܥ௝ܥ௜௞ ൅ ܥ௞ܥ௜௝൯ܥ௜௝௞ൟߥ௜ଶߥ௝ଶߥ௞ଶ ൅ ڮ ൧ ൅ܥڮଵଶ…௡
ଷ ଶଷߥଵଷߥ … ௡ଷଵஸ௜ழ௝ழ௞ஸ௡ߥ ,  

     (3) 

 

ସߤ ൌ  ∑ ௜ܥ
ସߥ௜ସଵஸ௜ஸ௡ ൅ ∑∑ ሾ6ܥ௜

ଶܥ௝
ଶߥ௜ଶߥ௝ଶ ൅ ௜ܥ 12

ଶܥ௝ܥ௜௝ߥ௜ଷߥ௝ଶ  ൅ ௝ܥ௜ܥ 12
ଶܥ௜௝ߥ௜ଶߥ௝ଷ ൅ ௜ܥ6

ଶܥ௜௝
ଶߥ௜ସߥ௝ଶ ൅ଵஸ௜ழ௝ஸ௡

௝ܥ6
ଶܥ௜௝

ଶߥ௜ଶߥ௝ସ  ൅ ௜௝ܥ௝ܥ௜ܥ12 
ଶߥ௜ଷߥ௝ଷ ൅ ڮ ሿ ൅

70



Computational Ecology and Software, 2016, 6(3): 66-82 

 IAEES                                                                                     www.iaees.org

∑∑∑ ൣ൛6൫ܥ௜
ଶܥ௝௞

ଶ ൅ ௝ܥ
ଶܥ௜௞

ଶ ൅ ௞ܥ
ଶܥ௜௝

ଶ൯ ൅ ௞ଶߥ௝ଶߥ௜ଶߥ௜௝௞ൟܥ௞ܥ௝ܥ௜ܥ24  ൅ ڮ ൧ ൅ڮ൅ܥଵଶ…௡
ସ ଶସߥଵସߥ … ௡ସଵஸ௜ழ௝ழ௞ஸ௡ߥ .  

 (4) 

 

The coefficients that appear in (1-4) are those in the finite Taylor expansion of the multi-affine function ܷሺ࢖ሻ, 

namely 

 

ܷሺ࢖ሻ ൌ ܷሺࣇ૚ሻ ൅ ∑ ௜݌௜ሺܥ െ ௜ଵሻଵஸ௜ஸ௡ߥ ൅ ∑∑ ௜݌௜௝ሺܥ െ ௝݌௜ଵሻሺߥ െ ௝ଵሻଵஸ௜ழ௝ஸ௡ߥ ൅ ∑∑∑ ௜݌௜௝௞ሺܥ െଵஸ௜ழ௝ழ௞ஸ௡

௝݌௜ଵሻ൫ߥ െ ௞݌௝ଵ൯ሺߥ െ ௞ଵሻߥ ൅ ଵଶ…௡ܥ ൅ڮ ∏ ሺ݌௜ െ ௜ଵሻଵஸ௜ஸ௡ߥ ,     (5) 

 

and are expressed by the partial derivatives 

 

௜ܥ      ൌ ሺ߲ܷ/߲݌௜ሻ࢖ୀࣇభ  

௜௝ܥ     ൌ ሺ߲ଶܷ/߲݌௜߲݌௝ሻ࢖ୀࣇభ  

௜௝௞ܥ    ൌ ሺ߲ଷܷ/߲݌௜߲݌௝߲݌௞ሻ࢖ୀࣇభ  

       . . . . . . 

ଵଶ…௡ܥ  ൌ ሺ߲௡ܷ/߲݌ଵ߲݌ଶ  …  భ       (6)ࣇୀ࢖௡ሻ݌߲ 

 

Thanks to the multi-affine nature of ܷሺ࢖ሻ, these partial derivatives reduce to differences of unreliabilities, 

namely  

௜ܥ    ൌ ܷሺࣇ૚|1௜ሻ െ  ܷሺࣇ૚|0௜ሻ  

 

௜௝ܥ   ൌ ܷሺࣇ૚|1௜, 1௝ሻ െ  ܷሺࣇ૚|0௜, 1௝ሻ െ ܷሺࣇ૚|1௜, 0௝ሻ ൅ ܷሺࣇ૚|0௜, 0௝ሻ  

 

௜௝௞ܥ  ൌ ܷ൫ࣇ૚ห1௜, 1௝, 1௞൯ െ ܷ൫ࣇ૚ห0௜, 1௝, 1௞൯ െ ܷ൫ࣇ૚ห1௜, 0௝, 1௞൯ ൅ ܷ൫ࣇ૚ห0௜, 0௝, 1௞൯ െ  ܷ൫ࣇ૚ห1௜, 1௝, 0௞൯ ൅
           ܷሺࣇ૚|0௜, 1௝, 0௞ሻ ൅ ܷሺࣇ૚|1௜, 0௝, 0௞ሻ െ ܷሺࣇ૚|0௜, 0௝, 0௞ሻ    (7) 

 

Since the above coefficients are differences of unreliabilities that take real values in [0.0, 1.0], they are 

bounded as follows (for all values of their subscripts) 

 

െ1.0 ൑ ௜ܥ ൑ 1.0 

െ2.0 ൑ ௜௝ܥ ൑ 2.0 

െ4.0 ൑ ௜௝௞ܥ ൑ 4.0 

െ8.0 ൑ ௜௝௞ܥ ൑ 8.0 

……. 

  െ2௡ିଵ ൑ ଵଶ…௡ܥ ൑ 2௡ିଵ     (8) 

 

The above results mean that for all values of the subscripts ܥ௜
ଶ ൑ ௜௝ܥ ,1

ଶ ൑ ௜௝௞ܥ ,4
ଶ ൑ ௜௝௞௟ܥ,16

ଶ ൑ ଵଶ…௡ܥ,64
ଶ ൑

2ଶ௡ିଶ. Therefore, an upper bound on the variance ߤଶ is 

 

ଶߤ ൑
 ∑ ௜ଶଵஸ௜ஸ௡ߥ ൅  4∑∑ ௝ଶଵஸ௜ழ௝ஸ௡ߥ௜ଶߥ ൅

 16∑∑∑ ௞ଶߥ௝ଶߥ௜ଶߥ ൅                 64∑∑∑∑ ௟ଶߥ௞ଶߥ௝ଶߥ௜ଶߥ ൅ ൅ 2ଶ௡ିଶڮ ∏ ௜ଶଵஸ௜ஸ௡ଵஸ௜ழ௝ழ௞ழ௟ஸ௡ଵஸ௜ழ௝ழ௞ஸ௡ߥ .  (9) 

 

If all corridors have the same value of their unreliability variances (ߥ௜ଶ ൌ   ݅ ଶ forߥ ൌ 1, 2, … , ݊), then the 
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above upper bound on ߤଶ reduces to 

 
ଶߤ ൑   ൫

௡
ଵ൯ߥଶ ൅  4൫௡ଶ൯ߥଶ

ଶ ൅  16൫௡ଷ൯ߥଶ
ଷ ൅  64൫௡ସ൯ߥଶ

ସ ൅ ൅ڮ 2ଶ௡ିଶ൫௡௡൯ߥଶ
௡,    (10a) 

 

ଶߤ ൑ ଶߥ݊ ൅ 2݊ሺ݊ െ 1ሻߥଶ
ଶ ൅

଼

ଷ
݊ሺ݊ െ 1ሻሺ݊ െ 2ሻߥଶ

ଷ ൅
଼

ଷ
݊ሺ݊ െ 1ሻሺ݊ െ 2ሻሺ݊ െ 3ሻߥଶ

ସ ൅ ൅ڮ 2ଶ௡ିଶߥଶ
௡. (10b) 

 

For n = 5 

ଶߤ ൑ ଶߥ5 ൅ ଶߥ40
ଶ ൅ ଶߥ160

ଷ ൅ ଶߥ320
ସ ൅ ଶߥ256

ହ.     (11) 

 

B. METHOD OF MOMENTS VIA POWERS (MOM_P) 

Using the mean value of ܷሺ࢖ሻ 

ଵߤ ൌ  ሻሿ,      (12)࢖ሾܷሺܧ

 

Soman and Misra (1996), and Ulmeanu (2012) utilized the multi-affine nature of ܷሺ࢖ሻ in a direct way for 

expressing the variance of system unreliability 

 

ଶߤ ൌ ሻ࢖ሾሺܷሺܧ െ ߤଵሻଶሿ ൌ ሻሿ࢖ሾܷଶሺܧ െ ߤଵ
ଶ,    (13) 

 

This method can be generalized to the third and fourth moment as follows 

 

ଷߤ ൌ ሻ࢖ሾሺܷሺܧ െ ߤଵሻଷሿ ൌ ሻሿ࢖ሾܷଷሺܧ െ ଶߤଵߤ3 െ ߤଵ
ଷ,   (14) 

 

ସߤ ൌ ሻ࢖ሾሺܷሺܧ െ ߤଵሻସሿ ൌ ሻሿ࢖ሾܷସሺܧ െ ଷߤଵߤ4 െ ଵߤ6
ଶߤଶ െ ଵߤ

ସ,  (15) 

 

The above formulas require the raising of the symbolic expression of ܷሺ࢖ሻ to powers 2, 3, and 4 via the well-

known identities 

 

ܷଶሺ࢖ሻ ൌ ሺ∑ ௜ܶ
௠
௜ୀଵ ሻଶ ൌ ∑ ௜ܶ

ଶ௠
௜ୀଵ ൅ 2∑∑ ௜ܶ ௝ܶଵஸ௜ழ௝ஸ௠ ,    (16) 

 

ܷଷሺ࢖ሻ ൌ ሺ∑ ௜ܶ
௠
௜ୀଵ ሻଷ ൌ ∑ ௜ܶ

ଷ௠
௜ୀଵ ൅ 3∑∑ ௜ܶ

ଶ
௝ܶଵஸ௜ஷ௝ஸ௠ ൅  6∑∑∑ ௜ܶ ௝ܶ ௞ܶଵஸ௜ழ௝ழ௞ஸ௠ , (17) 

 

ܷସሺ࢖ሻ ൌ ሺ∑ ௜ܶ
௠
௜ୀଵ ሻସ ൌ ∑ ௜ܶ

ସ௠
௜ୀଵ ൅ 4∑∑ ௜ܶ

ଷ
௝ܶଵஸ௜ஷ௝ஸ௠ ൅  6∑∑∑ ௜ܶ

ଶ
௝ܶ
ଶ

ଵஸ௜ழ௝ஸ௠ ൅

12∑∑∑ ௜ܶ
ଶ
௝ܶ ௞ܶଵஸ௜ழ௝ழ௞ஸ௠ ൅ 24∑∑∑∑ ௜ܶ ௝ܶ ௞ܶ ௟ܶଵஸ௜ழ௝ழ௞ழ௟ஸ௠ . (18) 

 

Here, m is the number of additive terms in the expression of ܷሺ࢖ሻ, ௜ܶ stands for one of the additive terms in 

the expression of ܷሺ࢖ሻ, which is a product of certain unreliabilities ݌௥ and reliabilities ݍ௥. The evaluation of 

 .ሻሿ depends heavily on our assumption that the corridor unreliabilities are statistically independent࢖ሾܷଶሺܧ

However, one should note that the unreliability ݌௥ and reliability ݍ௥of the same corridor are not statistically 

independent since ݍ௥ ൌ 1 െ ሻ by substituting (1࢖formula for ܷଶሺ ݌-௥. Therefore, we produce an all݌ െ  (௥݌

for each ݍ௥ . Now, the evaluation of ܧሾܷଶሺ࢖ሻሿ  in (12), ሻሿ࢖ሾܷଷሺܧ   in (13), and ܧሾܷସሺ࢖ሻሿ  in (14) is 

straightforward, thanks to the statistical independence of corridor unreliabilities, and the fact that  

 

௥ሿ݌ሾܧ ൌ    ௥ଵ,        (19)ߥ
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௥ଶሿ݌ሾܧ ൌ   ௥ଶߥ ൅ ߥ௥ଵ
ଶ ,       (20) 

 

௥ଷሿ݌ሾܧ ൌ   ௥ଷߥ ൅ ௥ଶߥ௥ଵߥ3 ൅ ߥ௥ଵ
ଷ ,     (21) 

 

௥ସሿ݌ሾܧ ൌ   ௥ସߥ ൅ ௥ଷߥ௥ଵߥ4 ൅ ௥ଵߥ6
ଶ ௥ଶߥ ൅ ߥ௥ଵ

ସ .    (22) 

 

Fig. 1 presents the scheme of going from the central moments of p to those of U via the moments about the 

mean of p and those of U. The figure also shows the numbers of the equations involved in each step. 

 

4 Demonstrative Examples 

This section presents three demonstrative examples involving two small networks (Fig. 2). Both networks 

initially appeared in Jordán (2000), and were later analyzed for non-identical corridors by Rushdi and Hassan 

(2015). Note that the two networks share the same construction and corridors 1-4 and 9, but network (b) is 

augmented by corridors 5-8.   

 

EXAMPLE 1 

The unreliability ܷሺ࢖ሻ of the network in Fig. 2 (a) is given in Rushdi and Hassan (2015) as. 

 

ܷሺ࢖ሻ ൌ ଵ݌ଷሾ݌   ൅ ସ݌ଶሺ݌ଵݍ ൅  ଽሻሿ.     (23)݌ସݍ

 

We assume that the corridor unreliabilities ݌௜, ݅ ൌ 1 െ 4 and 9, are identically and log-normally distributed 

with F= 3 and m = 1.00E-02 (and hence with λ = 4.6051, ξ = 0.6678, ν1 = 0.0125, ν2 = 8.78E-05, ν3 = 2.61E-

06, ν4 = 1.67E-07). We quantified the moments of the system unreliability as a random variable via (a) 

Method of Moments via Derivatives (MoM_D), (b) Method of Moments via Powers (MoM_P), and (c) Monte 

Carlo Simulations (106 samples). The results of the first four moments µ1, µ2, µ3, µ4 are shown for each of 

the aforementioned methods in Table 2, together with corresponding values of dimensionless coefficients ߛ,ߩଵ, 

and ߛଶ. Table 2 shows that the results obtained for µ1, µ2 and ߩ are in exact agreement (apart from minor 

rounding differences) for the two methods of moments, and these results are almost replicated by Monte Carlo 

simulation. Results for µ3, µ4,ߛଵ, and ߛଶ are somewhat similar among the three methods. The results obtained by 

the Method of Moments via Powers seemmore reliable, while those obtained by the Method of Moments via 

Derivatives suffer from some truncations in (3) and (4), and while those obtained by the Monte Carlo simulation 

are limited by the quality and sample size of the simulation.  
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Fig. 1 Scheme of going from central moments of p to central moments of U. 

 

 

Fig. 3 is a probability plot for the (supposedly) log-normally distributed pseudo-random number generated 

by our simulation. The figure is a log-log plot of the probability of the pseudo-random number versus the 

actual value of this number, and shows a minimal scattering of blue points around the exact black-dash zero-

thickness straight line corresponding to a true lognormal distribution. The plot in Fig. 3 clearly indicates that 

the quality of the pseudo-random samples generated for use in the simulation is good, albeit of limited 

precision. Fig. 4 is a histogram for the 106 log-normally generated samples. This histogram gives an excellent 

approximation of the lognormal probability density function (pdf). This pdf is indistinguishable from zero at a 

value as low as 10-3 which is 1ا. In fact, out of 106 samples, not a single sample exceeded (or even 

approached) the value of 1.0 (the maximum number generated was 0.012246). This means that the tail of the 

log-normal distribution over the support (1.0, ∞) is definitely negligible. 

 

 

Fig. 2 Two small networks each representing migration from a critical habitat patch (*) to two destination patches I and J via  

imperfect corridors labelled by their successes Xi, i=1,2,3,4,5,6,7,8,9. 
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We pursue this example further to study the effect of varying the median m or the range factor F for each 

of the identical corridors on the second, third and fourth central moments µ2, µ3, µ4 obtained by the two 

methods of moments MoM_D and MoM_P. Fig. 5(a) plots the variance µ2 obtained via MoM_D and MoM_P 

versus the range or error factor F, and Fig. 5(b) reports similar plots albeit versus the median m. The two 

figures show indistinguishable plots indicating exact agreement between MoM_D and MoM_P when 

calculating µ2. Figs 5(c)-(f) report similar plots for µ3 and µ4 obtained by MoM_D and MoM_P versus F and 

m. The agreement between MoM_D and MoM_P is still good for µ3 but decreases for µ4, especially for larger 

values of F. 

 

Table 2 Quantitative Assessment of system unreliabilities as a random variable by three methods. 

 µ1 µ2  µ3 µ4 ࢽ ࣋૚ ࢽ૛ 

Method of Moments 

via Derivative 

(MoM_D) 

1.6004e-

04 

3.5831e-

08 

5.5760e-

11 

6.2155e-

14 

1.1828 8.2211 45.4120 

Method of Moments 

via Powers (MoM_P) 

1.6004e-

04 

3.5838e-

08 

4.2156e-

11 

1.3425e-

13 

1.1829 6.2137 101.5308

Monte Carlo 

Simulation (106 

samples) 

1.6002e-

04 

3.5771e-

08 

3.5247e-

11 

9.5546e-

14 

1.1819 5.2098 71.6692 

 

 

 

Pseudo-random number 

Fig. 3 Probability plot for the (supposedly) lognormal distribution used in the simulation. 
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EXAMPLE 2 

We reconsider the unreliability (23) in Example1 with non-identicalcorridor unreliabilities, still log-normally 

distributed, but with medians mi and Error Factors Fi as shown in Table 3. For convenience, the first four 

moments of each piare also shown in Table 3. 

 

Table 3 Median mi and Error factors Fi for corridor unreliabilities in Example 2. 

Corridor No. i Median mi Error Factor Fi νi1 νi2 νi3 νi4 

1 2.00E-02 2 0.0219 9.2814e-05 2.2590e-06 1.1514e-07 

2 1.00E-02 3 0.0125 8.7803e-05 2.6090e-06 1.6729e-07 

3 8.00E-03 4 0.0114 1.3468e-04 6.3599e-06 6.9909e-07 

4 6.00E-03 5 0.0097 1.5044e-04 9.7775e-06 1.6808e-06 

9 4.00E-03 6 0.0072 1.1923e-04 9.0358e-06 2.1520e-06 

 

 

Table 4 reports computational results similar to those in Table 2 obtained by MoM_D and MoM_P. Again, 

the results of the two MoM methods agree exactly for µ2 and approximately for µ3 and µ4. 

 

Table 4 Quantitative Assessment of system unreliabilities as a random variable for non-identical corridors by three methods. 

 µ1 µ2  µ3 µ4 ࢽ ࣋૚ ࢽ૛ 

Method of Moments 

via Derivative 

(MoM_D) 

2.5175e-

04 

9.0154e-

08 

1.5439e-

10 

2.2218e-

13 

1.1927 5.7034 24.3364 

Method of Moments 

via Powers (MoM_P) 

2.5175e-

04 

9.0154e-

08 

1.5440e-

10 

7.2044e-

13 

1.1927 5.7040 85.6399 

Monte Carlo 

Simulation (106 

samples) 

2.5172e-

04 

9.0118e-

08 

1.4033e-

10 

5.7610e-

13 

1.1926 5.1873 67.9381 

 

 

EXAMPLE 3 

The unreliability ܷሺ࢖ሻ of the network in Fig. 2(b) is given by Rushdi and Hassan (2015) 

 

ܷሺ࢖ሻ ൌ    ସ݌ଶ݌଻ሾ݌ଷ݌ ൅ ሺ݌ଶݍସ݌ହ଼݌ ൅ ଽ݌ଵሻ݌଺݌ସ݌ଶݍ ൅ ሺ݌ଶݍସݍଽ ൅ ଽݍସ݌ଶݍ ൅  ଵሿ. (24)݌଼݌଺݌ହ݌ସሻݍଶݍ

 

For simplicity, we assume that there is uncertainty in a single corridor unreliability, say that of corridor 

number 1. We let ݌ଵ  be lognormally distributed with F1 = 3 and mi = 1.00E-02 (similar to corridor 

unreliabilities in Example 1), and we let each other ݌௜ ሺ2 ൑ ݅ ൑ 9ሻ be deterministic (F=1) and equal to m1= 

1.00E-02. Equations (2)-(4) now reduce to  

ଶߤ ൌ ଵܥ 
ଶߥଵଶ .     (25) 

 

ଷߤ ൌ ଵܥ 
ଷߥଵଷ .     (26) 

 

ସߤ ൌ ଵܥ 
ସߥଵସ .     (27) 

This means MoM_D simplifies considerably, while MoM_P is still involved and hence not used herein. The 
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numerical results are shown in Table 5. It demonstrates an agreement between MoM_D and Monte Carlo 

Simulation, that is best for µ1 followed by µ2. 

 

Table 5 Quantitative Assessment of system unreliabilities as a random variable for uncertainties pertaining to ݌ଵ only. 

 µ1 µ2  µ3 µ4 ࢽ ࣋૚ ࢽ૛ 

Method of Moments 

via Derivative 

2.4412e-

08 

3.1462e-

23 

5.5963e-

34 

2.1480e-

44 

2.2977e-

04 

3.1711 18.6992 

Monte Carlo 

Simulations (106 

samples) 

2.4412e-

08 

3.1507e-

23 

4.7378e-

34 

2.0841e-

44 

2.2993e-

04 

2.6790 17.9947 

 

 

4 Conclusion 

This paper dealt with the quantification of uncertainty when studying the probability that a specific species 

migrates successfully from a critical habitat patch to destination habitat patches via imperfect ecological corridors 

whose unreliabilities are random variables. The uncertainty issue is studied herein in a general setting 

encompassing the variance µ2 (the typical measure of uncertainty), the third central moment (a measure of 

skewness or lack of symmetry), and the fourth central moment (a measure of peakedness). The paper utilized 

and enhanced two methods of moments, namely, the Method of Moments via Derivatives (MoM_D) and the 

Method of Moments via Powers (MoM_P). The two methods are similar and originate from a utilization of a 

multi-affine nature of the unreliability function. MoM_D is more effective when only a few corridor 

unreliabilities have uncertainties. The two analytical methods of moments agree reasonably with one another 

and with the results of Monte Carlo Simulation. 
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