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Abstract 

Landmark-based geometric morphometrics is an effective tool for measuring the biological shape, shape 

variation and covariation both for biotic and abiotic elements. It ensures graphical illustrations of shape 

changes that are visually interesting and instinctual. Using the results from relative warp analysis, histograms, 

CVA and PCA were generated to visualize morphological variations and sexual dimorphism. A total of 60 

individuals (30 males and 30 females) were subjected to landmark-based analysis. This application will 

demonstrate morphological variation and sexual dimorphism on the body shape of Glossogobius giuris using 

geometric morphometry by means of Relative Warp Analysis. Sixteen landmarks generated 19 relative warps 

for each sample and showed slight morphological variation were females obtained the highest percentage than 

males. The MANOVA test value shows non-significant value (P=0.1655) on the left lateral side between sexes. 

This indicates that there were no shape variations and may be due to behavior and ecology of the organism to 

compete with others for food haunting, mating and to buffer environmental condition. While the right lateral 

side shows significant value (P<0.05) between sexes this reason explains that they were sexually dimorphic. 

That was essential for its adaptation and reproduction. The results of Principal Component Analysis (PCA) and 

Canonical Variance Analysis (CVA) show no significant body variations between sexes. This study was 

employed to identify the importance or relative warp analysis in detecting and morphological variations and 

sexual dimorphism of G. giuris collected at Lower Agusan River, Butuan City, Philippines. 
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1 Introduction 

Morphometrics is the numerical study of biological shape, shape variation and covariation of shape with other 

biotic and abiotic aspects. This method presents a consistency into the description and difference amongst 

morphologies. The function of morphometric technique contributes advances in any research field that depends 

on upon comparative morphology like systematics, evolutionary biology and developmental biology (Webster 

and Sheets, 2010).Geometric morphometric (both outline and landmark-based) is effective and established tool 

because of the evidence concerning the spatial relationship between landmarks on the organism is enclosed 

within the data. It enables to draw suggestive illustrations of morphological transformations or dissimilarities, 

proposing an instantaneous image of shape and the spatial localization of shape variation. Such graphical 

demonstration is easier to instinctively recognize than a table of numbers (Webster, and Sheets, 2010). It helps 

to illustrate commonly shared characteristics of an organism between sexes and will identify the differences. In 

addition, Geometric morphometrically comprises of 2D or 3D Cartesian landmark coordinates (relative to 

some arbitrarily chosen origin and axes). It consists of landmarks that propose locations or points of 

correspondence on each sample that match among and inside the populations or, equally, biologically 

homologous anatomical loci noticeable on all specimens in some studies (Bookstein, 1991; Dryden and Mardia, 

1998). Moreover, the importance of geometric morphometry on describing shape has prompted innovative 

mechanism in terms of biometric analysis (Rohlf and Marcus, 1993; Bookstein, 1996). It was constantly used 

as an indicative tool in order to describe the shape and size factors from any biological entities (Rohlf, 1993; 

Bookstein, 1991). Employing landmark-based methods was efficient way unlike others because they operate 

equivalences biologically both structures that match landmarks (Ibañez et al, 2007). Various publications deals 

extensively with the theory, development and application of land-mark based geometric morphometrics, i.e. 

Kendall, 1984; Bookstein, 1986, 1989, 1991, 1996b; Rohlf and Bookstein, 1990; Goodall, 1991; Marcus et al., 

1996; Small, 1996; Dryden and Mardia, 1998; Elewa, 2004; Zelditch et al., 2004; Claude, 2008). Also, 

utilizing the importance of landmark-based geometric morphometric techniques to different research fields has 

been widely acknowledged (Rohlf, 1990, 1998; Rohlf and Marcus, 1993; Bookstein, 1996a; O’Higgins, 2000; 

Roth and Mercer, 2000; Richtsmeier et al., 2002, 2005; Adams et al., 2004; Slice, 2007; Lawing and Polly, 

2010). This study focuses on landmark analysis which purposes in copying the location of a definite important 

points or it describe the shape of the object in its plainest form, eliminating irrelevant details such as size 

variances, location, and variation, thus, simplifying the differences between the two objects pictured via thin-

plate splines (Requiron et al, 2012). It also identifies variation in shape which at present continuously uses 

because of its significant approach of differentiating individuals (Truong et al, 2005). Thus, the advancement 

of this technique carries better understanding to analyze the differences of shape among the organisms based 

on anatomic markers defined by Cartesian coordinates (x and y). Hence, the outcome of this study will 

eventually discuss the characteristics of sexual dimorphism and morphological differences in the organism 

standing as an important knowledge in the behavior, history and its ecology (Requiron et al, 2012). This study 

utilizes Glossogobius giuris, a freshwater organism that is widely found in the rivers of Mindanao specifically 

in Lower Agusan River, Butuan City and commonly subjected to experimental procedures. Thus, the goal of 

this research was to establish and aimed to identify sexual dimorphism and morphological variations on the 

body shape of Glossogobius giuris using geometric morphometry by means of Relative Warp Analysis. 

 

2 Materials and Methods 

2.1 Study area 

This study was conducted in Lower Agusan River Basin, Butuan City, which lies between 8059’26.35” 

96



Computational Ecology and Software, 2016, 6(3): 95-105 

 IAEES                                                                                    www.iaees.org

N125031’31.16” E in Agusan Del Norte, Philippines. Fish collection was done in the month of May 2016. 

 

Fig. 1 Map showing Lower Agusan River Basin, Butuan City, Agusan del Norte, Philippines. 

 

 

2.2 Relative warp analysis of Glossogobius giuris 

2.2.1 Sample processing 

About 60 individuals (30 males and 30 females) were collected in the area with the aid of local fisherman. The 

collected samples will then be processed for image capturing and analysis. The sampled fish was placed in a 

flat styrofoam for the pinning of its fins to make it wider and to clearly see the samples point of origin for the 

land-marking process. About 10% Formalin was applied in all the fins of the fish samples to make it hardened 

using a small brush. Digital image of the left and right lateral side of each sample was taken using Canon 

camera (14 mega pixels). 

2.2.2 Sex Determination 

Sex of the samples was also determined by its genitalia. Females were identified by the presence of its eggs 

and ovaries which are in general yellow or orange and granular in texture. The males were identified based on 

the presence of its testes which were typically smooth, whitish and non-granular in texture ((Requieron et al., 

2010). Images were assorted according to sex and digitized using the tpsDig2 program (version 2.0, Rohlf, 

2004) and were saved as TPS file. 

2.2.3 Landmark selection and digitization 

97



Computational Ecology and Software, 2016, 6(3): 95-105 

 IAEES                                                                                    www.iaees.org

Digital images were assorted according to sex and converted to tps files using tpsUtil. Landmarking of the 

samples were digitized using the tpsDig version 2 (Rohlf, 2004). A total of 16 anatomical landmarks points 

(Table 1) were located in right lateral view to represent the external shape of the body of the sample for male 

and female goby (Fig. 2). 

 

 

Table 1 Description of the landmark points according to Dorado et al. (2012). 

Coordinates Locations 

1  Snout tip 

2 Posterior end of nuchal spine 

3 & 4 Posterior & anterior insertion of 1st dorsal fin 

5 & 6 Posterior & anterior insertion of 2nd dorsal fin 

7 & 9 Dorsal and ventral insertion of caudal fin 

8 Lateral line  

10 & 11 Posterior & anterior insertion of anal fin 

12 Insertion  of the pelvic fin 

13 Insertion  of  the operculum at the lateral profile 

14 Posterior extremity of premaxillar 

15 Anterior margin through midline of orbit 

16 Posterior margin through midline of orbit 

 
  

  Fig. 2 Landmarks’ description of the Glossogobius guiris (A. male, B. female): 
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2.2.4 Shape analysis 

The converted tps files with the anatomical landmarks was then processed in tpsRelw to get relative warp 

analysis and to obtained X and Y coordinates for further analysis. The coordinates were then first transferred to 

Microsoft Excel 2010 application before transporting to PAST software (Hammer et al., 2009). Histograms 

were generated which serves as presentations for comparing patterns of sexual dimorphism. It generated from 

the relative warp scores of the fish shapes which were computed and analyzed by PAST software. This 

software provides valuable information on the distribution of the data from the mean over the range of the 

variable. Collected coordinates were then subjected to MANOVA, Canonical Variance Analysis (CVA) and 

Principal Component Analysis (PCA) using PAST software (Hammer et al., 2009) from the relative warps of 

the morphology of the flathead gobies. 

 
3 Results and Discussion 

MANOVA was used to show the significant body variations in the body shapes of Glossogobius guiris (Table 

2) for both sexes. The result shows a non-significant value of (P=0.1655) on the lateral side of the sample 

between sexes. This could happen because organisms shared common characteristics to be used as a 

mechanism to adapt to the environment which they inhabit. The reasons might be to their behavior, ecology 

and life history. Perhaps, adaptation and survival were considered to be aspects of non-variation in the shape of 

organisms that will be used within the environment. A changed condition might affect organism shape and this 

may lead to mortality. Alongside, organisms must keep in shape so that they can be coordinated to the 

environmental conditions which typically affect their health status. On the other hand, right lateral side for 

both sexes of G. giuris showed significant value of (P<0.05) this is contradictory with the lateral side, however 

this may be due to condition that organism may hold a shape variations in order to fit within the environment 

or it will provides a manifestation of adaptation. The result shows that G. giuris were slightly sexual dimorphic 

and were observed in its right lateral portion for both sexes. This happens because it acts as a mechanism to be 

capable of reproduction and maintain its population. This is also used to be more adaptable in the environment 

towards changes in nature. According to Casselman and Schulte-Hostedde (2004), sexual dimorphism 

contributes in reproduction that has been manifested in its morphology. Thus, male organism necessary for 

adaption and keeping its superiority in competing with their mates while the female organism essentially 

adaptive for producing offspring.     

 

Table 2 Results of MANOVA test for body shape sexes of G. giuris. 

 Wilk’s Lambda df1    df2 F p(same)  

 
Between 

sexes 

 

   0.9563 

 

5 

 

   174 

 

   1.589    

 

    0.1655ns 

 

** (P<0.05) highly significant; ns= not significant 

 

 Wilk’s Lambda df1    df2      F      p(same)  

 

Between 

sexes 

 

   0.9563 

 

5 

 

   174 

 

      5.422 

 

0.001161** 
 

** (P<0.05) highly significant; ns= not significant 
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Fig. 3 Summary of the geometric morphometric showing consensus morphology and the variation in the body shape of female 

and male population of G. giuris, (A) female left, (B) female right (C) male left, (D) male right. 

 

It was observed that the females obtain the highest values of relative warp analysis (RW1=49.95%) 

(RW2=13.41%) (RW3=11.40%) (RW4=6.51%) (RW5=5.03%) for the left and (RW1=45.50%) (RW2=14.97%) 

(RW3=9.86%) (RW4=5.67%) (RW5=5.41) for the right side of the body shapes (Fig. 3). This is because the 

female was more vulnerable in many changes towards environmental condition and the most considerable 

factor is the reproductive ability of the females to uphold offspring. In females, changes in shape are very 

significant to sustain its capability to resist changes and maintain homeostasis and metabolic rate for 

reproduction. In the study conducted by Requiron et al. (2012), it states that a shape has a big role in depicting 

biological studies. Also, shape variations are generated because of several progressions like pathology, 

ontogeny, and adaptability to geographic changes. Furthermore, diverse in shapes suggests a different useful 
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way (Requiron et al., 2012). On the contrary, males generated the lowest values of relative warp analysis 

(RW1=42.73%) (RW2=17.97%) (RW3=11.87%) (RW4=7.98%) (RW5=5.32%) for the left side and 

(RW1=41.08%) (RW2=22.05%) (RW3=9.83) (RW4=6.70) for the right sides of the body shapes. This is 

because males were more adaptive in nature than females. Males were inclined to suppress shape variations 

coming from different environmental changes. They were constantly adaptable to be more efficient in food 

haunting and mating process. The lowest the body shape variations, the organism are more flexible for the 

incoming and outgoing changes occur in the environment. In the aspects of morphological variations and sexual 

dimorphism it can be illustrated in the Principal Component Analysis (Fig. 4) and Canonical Variance Analysis 

(Fig. 5). It shows that male and female G. guiris shared common characteristics (male in blue, female in red). It 

represents, the degree of similarities in both sexes although from the result of MANOVA test right lateral side 

indicates significant values (P<0.05). In this, determining morphological variations of Glossogobius giuris 

cannot be illustrated clearly since the actual results show non-significant and significant values that are 

contradictory. However, it can be due to its nature, ecology and innate characteristics of the organism. 

Subsequently, morphological variation in the fishes could be attributed due to its feeding adaptation like in 

bigger head region in order to maximize buccal volume and suction velocity (Caldecutt and Adams, 1998) 

while deep bodies increase maneuverability when foraging (Webb, 1982).Likewise, male in particular must 

have wider anal fin base than the females to be able to promote success in male-male competition or female 

choice as observed in the genus Pretotilapia by Kassam et al (2004). 

 
Table 2 Variations observed in the body shapes of female G. giuris. 

 
RW1 = 49.95 %   Differences in the observed        RW1 = 45.50%   Variations occurs relating to 
     on the head , trunk                                the curvature in the head 
     and tail regions. Its body                           trunk and tail regions. Its body 
     shows slanted position.       showing twisted formation. 
 
RW2 = 13.41%   Observable body shape  RW2 = 14.97%    Variability in the body shape 
                differences relating to the head              occurs in the dorsal-caudal fin.  
     specifically in its pelvic fin 
     and operculum. 
 
RW3 = 11.40%  Variations in the body shape  RW3 = 9.86%    Differences in the body shape 
            occurs in the head and trunk       happens into the head 
region, 
           regions. its body has minimal       making it downward position. 
                 deformities. 
 
RW4 = 6.51%    Variability in the mouth, trunk RW4 = 5.67%    Observable variations  
            and tail regions. Its body shape            involving its head making 
                  slightly skewed.         it upward position. Its 
body 
                  shape slightly twisted. 
RW5 = 5.03%     Differences in the head and tail  RW5 = 5.41%    Variability in the body shape 
     regions are observed. Its body             occurs in the head 
region  
                shape slightly deformed.       making upward position. Its 
            body shape slightly slanted. 

 

RW (%)         Left   RW (%)        Right 
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Table 3. Variations observed in the body shapes of male G. giuris. 

 

RW1 = 42.73%    Variations in the body          RW1 = 41.08%  Observable body shape 

      shape occurs in the head,              variations occurs in the 

            trunk and tail regions. Its              head, trunk and tail  

            head in upward position               regions. Its head in  

            and its body in a curvature              upward formation a 

                  form.          its body is slanted. 

 

RW2 = 17.97%     Changes occurs in the body          RW2 = 22.05%  Differences occurs  

      depth trunk, head and tail              in the regions of the 

                  regions. Specifically its              head and in the dorsal 

      tail pointing downward.              and ventral insertion 

                      of caudal fin. 

RW3 = 11.87%    Variations associated with          RW3 = 9.83%   Variability in the body 

      the head region. Its trunk                    shapes take place in its 

                 gets shorter and the tail region                        head region and its tail 

      pointing downward.               becomes narrower. 

 

RW4 = 7.98%    Observable changes in the          RW4 = 6.70%   The fourth relative  

           body shape occurs in the               warp (RW4) accounts 

                 head region, making it        for variations linked  

                 upward. While its tail        with the head region. 

     in downward position. 

 

RW5 = 5.32%    The fifth relative warp (RW5) 

           manifests changes associated 

     with the head region projecting 

     upward. Its dorsal portion 

     slightly slanted.  

 

 

RW (%)          Left    RW (%)         Right 
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  Fig. 4 PCA scatterplot of the landmark coordinate data of female and male body shape variation of G. giuris. 

 

  Fig. 5 CVA scatter plot showing the distribution of female and male G.giuris based on the body shape. 
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4 Conclusion 

The fish flathead Goby (G. iuris) was utilized to determine the morphological variations and sexual 

dimorphism on the body shape using geometric morphometry by means of Relative Warp Analysis. To locate 

the standard landmark the metric traits of the fish were used. The results of MANOVA test revealed 

contradictory of non-significant value (P=0.1655) for the left lateral side while the right lateral side was 

significant (P<0.05). It might be due to the organism’s innate characteristics. The morphological variations 

were drawn in the Relative Warp Analysis which is the highest values obtain in females it generated ten (10) 

relative warps while in males it has the lowest values and generated nine (9) relative warps. In the aspects of 

Principal Component Analysis (PCA) and Canonical Variance Analysis, it showed a non-significant degree of 

dissimilarities in both sexes. The used of landmark-based analysis provides insight to determine shape 

variation and sexual dimorphism in the organism. 
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