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Abstract 

In the sampling of species richness, the number of newly found species declines as increase of sample size, and 

the number of distinct species tends to an upper asymptote as sample size tends to the infinity. This leads to a 

curve of species richness vs. sample size. In present study, I follow my principle proposed earlier (Zhang, 

2016), and re-develop the model, y=K(1-e-rx/K), for describing the relationship between species richness (y) and 

sample size (x), where K is the expected total number of distinct species, and r is the maximum variation of 

species richness per sample size (i.e., max dy/dx). Computer software and codes were given. 
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1 Introduction 

In the sampling of species richness (Zhang and Schoenly, 1999; Zhang, 2011, 2012a, 2012b), the number of 

newly emerged species declines as increase of sample size, and the number of distinct species tends to an 

upper asymptote as sample size tends to the infinity, which results in a curve on the relationship between 

species richness and sample size. In present study, I follow my principle proposed earlier (Zhang, 2016) to 

re-develop a model for describing the relationship between species richness and sample size. Computer 

software and codes are given. 

 

2 Methods  

2.1 Model 

As a general rule, the number of newly found species declines as increase of sample size, and the number of 

distinct species (species richness) tends to an upper asymptote as sample size tends to the infinity (), as 

illustrated in Fig.1 (Zhang and Schoenly, 1999). The upper asymptote, K, is the expected total number of 
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distinct species. Here I follow my principle proposed earlier (Zhang, 2016), and re-develop the model for 

describing the relationship between species richness and sample size. Firstly, the variation of species richness 

per sample size is defined as  

 

c=dy/dx                           (1) 

 

where y is the number of distinct species (i.e., cumulative number of distinct species), and x is the sample size 

(i.e., cumulative number of samples). It is obviously that a preceding species in the samples list is more likely 

a distinct species than its succedent species. Thus c declines (from the maximum variation of species richness 

per sample size (i.e., max dy/dx), r) to zero as increase of y until the expected total number of distinct species, 

K, is achieved. As the first-order approximation of equation (1), let 

 

          c=r(K-y)/K                        (2) 

 

It leads to the following model  

 

dy/dx=r(K-y)/K                     (3) 

 

Solving equation (3), the mathematical model for the relationship between number of distinct species, y, and 

sample size, x, is obtained 

 

y=K(1-e-rx/K)                       (4) 

 

According to the model (4), y increases as increase of x, and tends to an asymptote, i.e., expected total number 

of distinct species, K (Fig. 1). 

The expected total number of distinct species, K, and the maximum variation of species richness per 

sample size, r, can be obtained by using data fitting to the model (4).  

Bootstrap procedures are used to produce y-x curve from sampling data of the form, (dij)m*n, where m is the 

number of distinct species found in all samples, n is the total number of samples. y-x curve plots the number of 

distinct species (y), defined as the number of distinct species found in the previous sample(s), and the sample 

size (x), defined as the number of samples taken so far. For the first sample, y is defined to equal its number of 

distinct species (Zhang and Schoenly, 1999). Here the columns of the sample-by-species (species, family, etc.) 

matrix are bootstrapped. Repeating this process many times (i.e., randomizations), generates a family of curves 

from which the mean number of distinct species (y) can be calculated for each sample size.  

The following are Matlab codes, Bootstrap.m, to produce y-x curve from sampling data of the form, 

(dij)m*n, where m is the total number of distinct species found in all samples, n is the total number of samples 

 

samp=input('Input the excel file name of sampling data (e.g., raw.xls. Sampling data matrix is d=(dij)m*n, where m is the 

number of distinct species in the network, n is the number of samples): ','s'); 

sm=input('Input the number of randomizations (e.g., 100, 500, etc.): '); 

sampling=xlsread(samp); 

m=size(sampling,1); n=size(sampling,2);  

x=(1:n)'; 

for pool=1:n 

u=0;     
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for sim=1:

ma=randp

s=zeros(m

for i=1:po

s=s+sampl

end 

u=u+sum(

end 

ya(pool)=u

end 

y=ya'; 

disp('    

[x y] 
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sig=input('Input the significanc level (e.g., 0.01): '); 

beta=[k r];   

[beta,R,J,SIGMA,MSE]=nlinfit(x,y,@predictfunction,beta); 

K=beta(1) 

r=beta(2) 

deltabeta=nlparci(beta,R,J); 

fitted=predictfunction(beta,x); 

chi_square=sum((y-fitted).^2./fitted) 

p=chi2cdf(chi_square,n-2) 

if (p<sig) disp('The data fit model well at the given significanc level.');  

else disp('The data is not able to fit model at the given significanc level.');  

end 

 
The following is the function predictFunction.m 

 

function f=predictfunction(beta,x) 

f=beta(1)*(1-exp(-beta(2)/beta(1)*x)); 

 

    The example data and software of speRichModel and Bootstrap can be found in supplementary material 

of the present article. 

2.2 Data sources 

2.2.1 Dataset I 

The data are from our field sampling (1 m2 of each sampling unit) on arthropods and weeds around Pearl River 

delta and Zhuhai Campus of SYS University in 2008 (Zhang, 2014; Zhang et al., 2014). Arthropods data for 

different taxa and areas are represented by dataset names xygz, xyfampea, xyspepea, and weed data for 

different taxa and areas are represented by dataset names xyweedspepea, xyweedspezhu, xyweedfampea. 

2.2.2 Dataset II 

The data are from field sampling (0.16 m2 of each sampling unit) on arthropods in 1996 (Zhang and Schoenly, 

1999; Zhang, 2011). Arthropods data for different taxa and seasons are represented by dataset names 

ir0318family, ir0318species, ir0415family, ir0415species, ir0917family, ir0917species, ir1008family, and 

ir1008species. 

 

3 Results 

Using model (4) and the codes to fit taxa richness vs. sample size relationship of datasets I and II, the results 

are listed in Fig. 1, Fig. 2, Table 1, and Table 2. In most cases the fitting is statistically well. In Dataset I, Pearl 

River Delta has the greatest the maximum variation of taxa richness per sample size (r) for arthropod families 

and species compared to its sub-areas and weed taxa. For Dataset II, ir0415 has the greatest maximum 

variation of taxa richness per sample size (r) for arthropod families and species compared to other seasons. 
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Fig. 1 Fitting results of model (4) to taxa richness vs. sample size relationship of Dataset I. 

 

 

Fig. 2 Fitting results of model (4) to taxa richness vs. sample size relationship of Dataset II. 
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Table 1 Fitting results of model (4) to taxa richness vs. sample size relationship Dataset I. 

xygz xyfampea xyspepea xyweedspepea xyweedspezhu xyweedfampea 

Tot. No. Samples 55 80 80 55 100 55 

No. Taxa 44 families 58 families 117 species 57 species 46 species 25 families 

K 41.67 52.78 108.69 54.36 43.31 23.11 

r 3.22 7.39 7.65 4.13 4.06 2.23 

p 6.3*10-8 2.68*10-5 0.571 7.96*10-8 4.15*10-22 1.02*10-9 

Siginificance <0.0001 <0.0001 - <0.0001 <0.0001 <0.0001 

 

 

Table 2 Fitting results of model (4) to taxa richness vs. sample size relationship of Dataset II. 

ir0318family ir0318species ir0415family ir0415species 

Tot. No. Samples 60 60 60 60 

No. Taxa 66 families 126 species 71 families 141 species 

K 60.89 116.77 66.22 132.66 

r 9.58 10.88 11.37 14.57 

p 0.038 0.989 0.003 0.583 

Siginificance <0.05 - <0.01 - 

ir0917family ir0917species ir1008family ir1008species 

Tot. No. Samples 60 60 60 60 

No. Taxa 75 families 131 species 75 families 140 species 

K 70.22 124.29 69.34 132.70 

r 8.99 9.81 9.77 10.57 

p 0.004 0.467 0.006 0.684 

Siginificance <0.01 - <0.01 - 

 

 

4 Discussion 

From Fig. 1 and 2, we may find that there is a systematic deviation between model (4) and observed curves. 

Generally, the deviation has two phase transitions. The model underestimates species richness in the first phase 

and proceeding into the second phase, it overestimates species richness. In the third phase, the model 

underestimates species richness again. How to find a mechanism of the deviation and improve the model is a 

future consideration. 
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