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Abstract 

Invasive earthworm species, such as Lumbricus rubellus, can cause changes to forest soils, which may result in 

reduced forest biodiversity. Individual Based Modeling (IBM) offers a way to predict the spread of invasive 

species and can provide insight for control. We developed an individual-based, spatially explicit, earthworm 

population dynamics modeling software package (WORMSPREAD). This software accounts for 

environmental interactions and individual variation that impact population growth and behavior of earthworms. 

In the model, individual earthworms are affected by temperature and pH, resulting in changes in reproduction, 

growth, movement and mortality. WORMSPREAD allows ecologists and conservation biologists to test 

invasion scenarios with simulations that involve variations in landscape structure and demographic parameters 

that potentially affect abundance and distribution of invasive earthworm species. The user interface is easy to 

learn and flexible enough to incorporate new data. Results can help determine where to concentrate 

conservation efforts and control strategies. An example study of the spread of L. rubellus in a portion of the 

Adirondack Park in upstate New York demonstrates computational experiments that can be conducted with 

WORMSPREAD. WORMSPREAD can be used to predict population growth in real landscapes, with real 

variation in environmental conditions. However, it will only lead to accurate predictions if the underlying 

physiological and behavioral traits of the invading species are known. Indeed, our assessment of these traits for 

L. rubellus indicates that more data are needed for this species, and the situation is likely to be more 

challenging for less well-studied species. Thus we encourage more studies that relate the physiology and 

behavior of invasive species to variability of environmental conditions in invaded habitats. 
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1 Introduction 

Understanding invasion by exotic earthworms in North America has been highlighted as one of the most 
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important conservation topics of the early twenty-first century (Sutherland et al., 2010). Populations of 

invasive earthworms can alter soil characteristics and biodiversity, compared to areas with fewer or no 

earthworms (Burtelow et al., 1998; Dempsey et al., 2013; Snyder et al., 2013). Once invasive earthworms are 

established, eradication may be unfeasible. Therefore, preventing colonization into new areas is the best 

strategy for protecting local ecosystems and communities from exotic earthworms (Keith and Spring, 2013).  

There is strong interest in using models to predict the potential distribution of invasive species (Gallien et 

al., 2010). Classical differential equation models have been used extensively with ecological problems, 

typically to demonstrate concepts such as density-dependent population growth or intra- and interspecific 

competition (Fahse et al., 1998). However, differential equation models are only able to study the average 

behavior of the system (Hastings, 1997; Uchmanski and Grimm, 1996). Additionally, the population-level 

parameters that these models depend on can be unavailable (Hooten and Wikle, 2010). These traits of classical 

models can limit their usefulness for testing hypotheses in ecology. 

An Individual Based Model (IBM) is a computational model that uses agents to simulate individual 

organisms and their histories, as well as their intraspecific and environmental interactions (Deangelis and 

Mooij, 2005). In contrast to differential equation models, IBMs can easily incorporate heterogeneity of 

individuals and the environment. Additionally, IBMs can be constructed from individual-level phenomena, 

such as pH-dependent propagule production, which can be easier to measure than parameters used to 

characterize population-level traits (Hooten and Wikle, 2010). IBMs have demonstrated usefulness in ecology 

and wildlife management (Bousquet and Le Page, 2004; Deangelis and Mooij, 2005; McLane et al., 2011). 

IBMs have been used as tools in the development of conservation strategies for many rare species, including 

the large blue butterfly (Griebeler and Seitz, 2002), the red-cockaded woodpecker (Letcher et al., 1998), and 

walleye and yellow perch in zebra mussel-infested waters (Rutherford et al., 1999). 

IBMs may be useful tools in the study of invasive, exotic species, but to date that usefulness has largely 

been untapped. Keith & Spring (2013) developed an IBM to examine the efficacy of control of the invasive red 

imported fire ant in Australia and use it to make suggestions to increase success of future eradication efforts. 

IBMs of invasive earthworms have modeled population growth and dynamics from starting densities of adults 

and propagules, developmental stages, survival probabilities in various environments, and fecundity (Baveco 

and De Roos, 1996; Pelosi et al., 2008). However, someone who is not experienced with computer modeling 

and programming may have trouble adjusting these parameters, running the program, and gathering results, 

which makes these models very species and system specific (West et al., 2011).  

We created an IBM based software package, WORMSPREAD, using NetLogo, a common IBM 

programming language and modeling environment. WORMSPREAD includes a graphical user interface (GUI) 

that does not assume a high level of programming experience and can be easily tailored to a new terrestrial 

landscape and soil-dwelling species of interest (e.g., earthworms, millipedes). We demonstrated the 

functionality of WORMSPREAD by simulating the dynamics of Lumbricus rubellus, a European lumbricid 

earthworm, in a small portion of the Adirondack Park in upstate New York. This species was chosen as a 

model invasive species due to the availability of life history and environmental-tolerance data. Additionally, L. 

rubellus is currently of interest to soil ecologists due to the earthworms’ role in plant loss and decreasing soil 

quality (Eisenhauer et al., 2007; Sutherland et al., 2010). Individuals representing L. rubellus were placed into 

a simulated environment and progressed through life cycles while moving through the environment and 

responding to environmental conditions present in the landscape. Whereas the program was originally tested 

with L. rubellus, its flexibility will allow for the modeling of other species. For instance, when the relevant 

parameters are available, the model could be used to predict population survival and spread of Amynthas 

agrestis, an Asian earthworm species that is actively invading multiple areas of North America (Greiner et al., 
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2012). 

 

2 Components of WORMSPREAD 

In this section the components of WORMSPREAD will be described in detail. The software can be 

downloaded at https://github.com/aylab/WORMSPREAD and figshare (DOI 10.6084/m9.figshare.5193295.v1) 

2.1 The context for invasion 

2.1.1 pH 

Soil pH was considered because areas of low soil pH can potentially limit the survival and reproduction, and 

consequently the invasive potential, of earthworms and other soil-dwelling organisms (Bernard et al., 2009; 

Homan et al., 2016; Peramaki et al., 1992). Most earthworms can survive in a variety of soil pH levels, but will 

avoid very acidic or basic soils (Ammer and Makeschin, 1994). In addition, propagule production decreases as 

the earthworms’ environment becomes more acidic (Spurgeon et al., 2006). Thus, understanding worms’ 

responses to pH may be particularly important for mapping the invasion of lands with more acidic soils.  

The pH-dependent survival provided by the user is represented by ߪԢሺுሻ. This function, like others 

described here, can be updated with new data and for other species. The details of making these changes are 

provided in the WORMSPREAD User Manual. The user provides a probability of pH-dependent survival that 

is potentially measured over a period of multiple days, so we account for the decrease in survival probability 

over time due to extended exposure. The time-adjusted pH-dependent survival, ߪሺுሻሺݐሻ, is shown below: 

ሻݐሺுሻሺߪ ൌ ݁ି כ ௧ 

where ݐis the number of days spent on a patch with the same pH, and  

݄ ൌ  െ
ln Ԣሺுሻߪ

݀
 

where d is the number of days over which the original experiment to obtain data was performed.  

2.1.2 Temperature  

All soil-dwelling organisms, including earthworms, are temperature-sensitive, although the soil in which they 

live can act as a buffer against harsh environmental conditions (Zheng et al., 1993) and the animals typically 

can survive within a wide temperature range. For example, Lumbricus species can survive for up to a week in 

soil temperatures as low as -1°C and for several days in temperatures as high as 25 °C (Daniel, 1992; 

Meshcheryakova and Bulakhova, 2014). Extreme temperatures may negatively affect movement, feeding 

activity, and growth (Duiker and Stehouwer, 2008). Users of WORMSPREAD supply soil temperatures of 

their region for each day to be simulated. These may be based on historical data or projections from climate 

models. The survival function is based on interpolation among available empirical data and is represented by 

the parameter, ߪሺ்ሻ, which is the temperature-dependent survival of earthworms when the temperature is ܶ 

(°C). Users may change the survival data as necessary by following instructions provided in the 

WORMSPREAD User Manual. 

2.1.3 Landscape  

The landscape within which agents move in WORMSPREAD is based on actual variability in soil 

environmental factors that may be relevant to soil-dwelling animals. Geographic Information System (GIS) 

integration enables WORMSPREAD to make population projections in a simulated real-world environment. 

The developers recommend study areas between 200 and 300 km2 for the default resolution of 

WORMSPREAD, given the loss of landscape information associated with larger areas and the lack of detail 

needed for predictions on a smaller scale. Users can upload GIS shapefiles, a standard geospatial vector data 

format.Within the United States, it is possible to find geo-referenced soil data on Web Soil Survey website 

(http://websoilsruvey.sc.egov.usda.gov/), butdata availability varies by county. For utilization outside of the 
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U.S., data are available for other global regions from sources such as the European Soil Data Center 

(http://esdac.jrc.ec.europa.eu/) and Australian Soil Resource Information System (http://www.asris.csiro.au/). 

The model is temperature and pH-dependent, as described above, and the data we have used to form our 

models are available to the user in the supplemental materials. Users can also upload additional GIS filesif they 

also provide a properly formatted key linking environmental values to location. Instructions to upload 

additional data are available in the WORMSPREAD User Manual. Future work could incorporate other 

available soil attributes, such as moisture, that could be relevant to earthworm movement or behavior. 

Currently, there are not enough data to establish a dependence on other parameters, such as detailed burrowing 

behaviors, interspecific competition, or intraspecific competition. If more information about the earthworms 

were to become available, only knowledge of NetLogo and minimal coding experience would be required to 

add support for new features. 

2.2 Demography of the invader 

2.2.1 Mortality 

We assumed that non-optimal environmental conditions of pH and temperature could cause earthworms to 

have lower survival than optimal conditions, and that the chance of mortality was additive with the underlying 

chances of dying due to senescence. Temperature- and pH-dependent mortality rates were each calculated 

daily using survival probabilities based on empirical evidence as follows: 

ሻݐሺுሻሺߤ  ൌ 1 െ  ሻݐሺுሻሺߪ

ሺ்ሻߤ ൌ 1 െ ߪሺ்ሻ 

In addition to the mortality due to non-optimal soil conditions, we assumed thatindividuals senesce and die at a 

rate based on a survivorship curve. For L. rubellus, we used a Type III survivorship curve(Baveco and De 

Roos, 1996). The age-dependent mortality curve for L. rubellus was obtained from Baveco and De Roos 

(1996), represented by ߤሺሻ where ܽ is the age of the earthworm in days. 

The overall mortality probability, ܯ, is then calculated as a function of the age-, pH-, and temperature-

dependent mortality probabilities.In our simulations, we used the mortality function: 

ܯ ൌ ሺሻߤ  ߤሺுሻሺݐሻ  ߤሺ்ሻ 

where the mortality function is calculated for each worm at each time interval. Specific interactions between 

the mortality factors could be incorporated if needed by modifying a single line of the WORMSPREAD source 

code. By adjusting sliders in the GUI while setting up simulations, the user may change the earthworms’ 

tolerance to pH (߬ுሻ and temperature (்߬ሻ. Doing so will translate the survival probability functions to the 

left or right according to the tolerance shift—a positive shift will translate the curve to the right, a negative 

shift will translate the curve to the left. Incorporating these tolerances results in a modified version of the 

mortality function: 
ܯ ൌ ሺሻߤ  ߤሺு ା ఛಹሻሺݐሻ  ߤሺ் ା ఛሻ 

An increase in ߬ு is analogous to a decrease in the environmental pH and an increase in ்߬ is analogous to 

a decrease in temperature within the region. 

2.2.2 Production of propagules 

Time that it takes an individual to reach sexual maturity is considered to be a Gaussian variable (Edwards, 

2004). So in the program, maturation ratewas sampled from a Gaussian distribution with parameters based on 

empirical data, for each individual. The agents are each randomly assigned to one of four reproduction 

temperature ranges in order to handle the uncertainty of the actual temperature range within which organisms 

produce propagules (eggs in cocoons in the case of earthworms).Whenever the global temperature falls within 

the individual's temperature range, a counter is incremented by the user-provided, weekly rate of propagule 

production. When the counter reaches the reproduction threshold, a propagule is produced and the counter 
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resets. Each organism also has a pH-dependent propagule-production rate provided by the user. We assumed 

that temperature and pH affect reproduction rates independently.We use a conservative estimate of their 

combined effects by taking the minimum of the two rates at any given time as the propagule-production rate. 

Again, interactions between the production factors could be incorporated in our code if needed. 

 

 

 

2.2.3 Hatching of propagules 

Temperature accumulation (or degree-days) can be used as an accurate measure of the length of time required 

for a propagule to develop to hatching or germination(Ameden et al., 2009; Butt, 1991; Greiner et al., 

2011).We use Ameden et al.’s (2009) method of calculating degree-days as the sum of the mean daily 

temperature. The length of time required to hatch or germinate is consequently dependent upon the daily 

temperature.We assumed that the number of degree-days needed to hatch propaguleshas a strong genetic 

component, so organisms in our model inherit this trait from their parent.Butt (1991) observed a relationship 

between earthworm cocoon hatchability and temperature; therefore, we assumed that propagule survival is 

temperature-dependent and that any propagule surviving until its required number of degree-days will hatch. 

The two relevant parameters are the degree-day threshold, which is based on available data (Butt, 1991), and 

temperature-dependent propagulesurvival, which is supplied by the user. 

2.2.4 Barriers to movement 

Local conditions influence how organisms move. When an organism is in soil, we assumed that it had a 

uniform average speed of ݏ meters per day, which the user can control. Organisms in our model are unable to 

move through rock outcroppings and other areas with no soil. Many soil-dwelling organisms can survive 

extended periods of time in water (e.g., L. rubellus, Roots [1956]).  Therefore organisms in the model 

maintain the same mortality rates in water. However, we assumed that soil organisms were averse to entering 

water, and consequently have a low probability (0.0001%) of moving forward at a single time step if there is a 

large water feature, such as a lake, directly in their path. Interaction of individuals with small water features 

such as streams and drainage ditches are ignored by WORMSPREAD due to the intended scale and resolution 

 

 

Fig. 1 Summary of the relationships between demographic determinants. Arrows indicate dependencies; black arrows are 
adult-specific and cyan arrows are propagule-specific. 
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of the software. 

Gundale et al. (2005), indicated that roads are an important mechanism for facilitating the spread of 

invasive earthworms and Tyser and Worley (1992), have shown that the presence of roads can increase the 

speed of invasion of non-native invasive species of plants. We have thus implemented the facilitation of 

invasion by soil organisms along roads by assuming that organisms will travel faster when they are in the 

immediate vicinity (contained within the same patch in the NetLogo world) of a roadway. The magnitude of 

the distance from a road an organism is required to be within in order for its speed to increase is dependent 

upon how much land a single patch in NetLogo represents in the user’s selected area of interest.  

2.2.5 Burrowing 

To avoid mortality during periods of intolerably cold temperatures (i.e., winter) individuals may burrow deeper 

into the soil and remain dormant until the temperature reaches an acceptable range. An individual organism in 

our model will burrow if the cumulative survival probability due to temperature is less than ߪover ݐ days, 

where the user could specify ݐ and the threshold ߪ. We assume that during dormancy, organisms cannot 

move or reproduce, and that the surface temperature does not affect mortality during dormancy. 

2.2.6 Additional variables 

The current implementation of WORMSPREAD incorporates the most important factors for invasion by 

earthworms as example soil-dwelling organisms (Fig. 1). However, the software is modular and flexible 

enough to incorporate other factors, such as moisture, as more data are available. 

2.3 Features of the user experience 

2.3.1 User-Friendliness 

NetLogo features have allowed us to create a user-friendly interface for ecologists to set up and run 

simulations. Users save and manipulate the files with a GUI. The GUI allows users to manipulate existing 

environments, import from GIS vector data, or create their own environment with the controls provided (Fig. 

2).  Users can choose to input their own functions for pH-dependent survival, pH-dependent propagule 

production, and temperature-dependent survival. This adds flexibility to the software, so it can continue to be 

useful as more data become available. 

2.3.2 Output 

WORMSPREAD has the ability to record data within regions designated by the user. Currently, by default, the 

program will record organism abundance, organism density, ߬ு, and ்߬within specified regions of interest. 

These measurements are recorded for each week of the last year of the simulation and users may summarize 

those data as they wish (e.g., average over the entire year, maximum over the year). The program also outputs 

maps that display the earthworm population represented as colors (heat maps) for every five years of the 

simulation. 

 

3 Example Study 

We conducted an example studybased on a portion of the Adirondack Park in upstate New York (Adirondacks), 

where monitoring the spread of L. rubellus is relevant to conservation of native biodiversity. We selected the 

Adirondacks because its generally acidic soils and cold winters may offer abiotic resistance to invasion by 

certain species of earthworms (Bernard et al., 2009; Homan et al., 2016; Sullivan et al., 2006). Simulations in 

this type of environment may help conservation biologists determine whether conditions might deter 

earthworm invasion and what sorts of changes may reduce abiotic resistance to invasion. A 259 km2 area 

encompassing Raquette Lake and the surrounding forest was selected (Fig. 3). This area is representative of the 
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4 Conclusion 

WORMSPREAD is a user-friendly tool that allows the user to take basic environmental conditions and 

organism tolerances and create population simulations. The IBM we present here could help researchers 

understand how factors such as pH, temperature and urban development interact with each other within an 

ecosystem to influence invasion by soil-dwelling species. The information received from this program could 

help ecologists and conservation biologists create informed strategies to manage invasive populations(Patten, 

2013).  

Our example implementationwas limited by the lack of data available regarding behavior, physiology, and 

demography of L. rubellus. In particular, we found that data were sparse or non-existent for burrowing 

behaviors and rate of movement. This paucity of information will be more limiting for species that are less 

well-studied than L. rubellus. Our understanding of invasion dynamics in real landscapes is dependent on our 

understanding of how factors such as pH, temperature, soil moisture, and soil composition affect the 

movement speed, mortality, and fecundity of invaders. With more data, WORMSPREAD could become even 

more useful in predicting earthworm distribution over vast areas. The software could then be easily adapted to 

incorporate new or more specific parameters, which would increase the accuracy of predictions. We therefore 

encourage studies that relate demographic processes to environmental conditions for invasive species. 
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