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Abstract 

In this paper, we have studied interaction among diffusive phytoplankton, zooplankton and fish population 

with Beddington-DeAngelis type functional response for the zooplankton and Holling type III for fish. The 

stability analysis of the model system with diffusion and without diffusion has been analyzed. The conditions 

for Maximum sustainable yield and Optimal harvesting policy for non-spatial model have been discussed. Our 

study may be helpful to improve and manage ecosystem services provided by wetlands on an agricultural 

landscapes include fisheries, water conservation, climate change and many more.  
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1 Introduction 

Wetlands are one of the world’s most important environmental assets, existing in all continents and latitudes. 

Wetlands are home of a large biota diversity and yield significant economic, social and cultural benefits related 

to timber, fisheries, hunting, recreational and tourist activities, etc. In general they provide a wide array of 

useful and appreciated ecosystem services related to water quality preservation, erosion shore protection from 

wave action, nurseries for fish and other freshwater and marine animals. 

     Modelling of harvesting is an important notion and an interesting topic of mathematical bio-economics in 

aquatic system. Harvesting is basically of three types: (i) constant harvesting reveals that the constant number 

of individuals is harvested per unit time. (ii) Linear harvesting ( )h X qEX shows that the number of 

individuals harvested per unit time is proportional to the current population. (iii) Non-linear harvesting 

1 2( ) / ,h X qEX m E m X   where q  denotes the catch ability coefficient and E  denotes the attempt applied to 

harvest the individuals and 1 2,m m  are suitable positive constants. Optimal control theory is to obtain the 

increased application in both theoretical and applied ecology. The optimal harvesting policy in their model has 

been discussed by many authors (Kar and Chaudhuri, 2004; Kar et al. 2009; Dubey and Hussain, 2000). The 

optimal harvesting policy in the model of fishery resource with reserve area has been discussed by Dubey et al. 
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(2003). Recently, Dubey et al. (2014) proposed a model to investigate the dynamical interaction among 

phytoplankton-zooplankton-fish population. A bio-economic model of non-selective harvesting of two 

competing fish species has been proposed by Purohit and Chaudhuri (2004) and studies the optimal harvesting 

policy. In this model, they examine non-linear harvesting in both competing species.  

     The wave phenomenon, non-linear and non-equilibrium pattern formation in a phytoplankton-zooplankton 

system with Holling type IV functional response has been investigated by Upadhyay et al. (2008). Upadhyay 

et al. (2011) proposed a reaction-diffusion model to study the dynamics of phytoplankton-zooplankton system 

in which the consumption of phytoplankton species follows the Beddington-DeAngelis functional response. A 

population model with diffusion, strong Allee effect and constant yield of harvesting has been investigated by 

Ali et al. (2009). Spatio-temporal complexity of a three-species ratio-dependent food chain model has been 

proposed by Rao (2014). Chang and Wei (2012) explore the dynamics of a diffusive delayed predator-prey 

system with Holling type II functional response and discussed the optimal control problem. Recently, complex 

dynamics of spatial predator-prey system under non-linear harvesting has been studied by Upadhyay et al. 

(2015) and interpret how Turing patterns develop gradually under non-linear harvesting. DeAngelis et al. 

(2010) investigated a model of reaction-diffusion to interpret the fish population dynamics in a seasonally 

varying wetland of Florida Everglades, USA. 

In this paper, we deal with complex dynamical behaviour of phytoplankton-zooplankton model with non-

linear harvesting. The paper is organized as follows. In secton 2, we present a non-spatial model and discuss 

the stability analysis, maximum sustainable yield and optimal harvesting policy. In section 3, we propose the 

spatial model and in section 4, we have discussed the conclusions of present study. 

 

2 The Proposed Model System 

In this section, the system of differential equations in which interaction among phytoplankton, zooplankton 

and fish population is shown as follows: 
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                                                        (1) 

with 
(0) 0, (0) 0, (0) 0.u v w                                                                                                                            (2) 

In the proposed model (1), r is the intrinsic rate of growth of phytoplankton in the absence of predation.   is 

the rate at which phytoplankton is grazed with Holling type II functional response.   is the intensity of 

interference between individuals of zooplankton.   determines how fast the per capita feeding rate approaches 

to its saturation value. 1  is the conversion coefficient from  individuals of phytoplankton into individuals of 

zooplankton. c is the rate of mortality of zooplankton. 1  is zooplankton density at which the specific growth 

rate becomes half of its saturated value. 1r  and K are rate of growth and carrying capacity of fish population 

respectively. '  is the conversion coefficient of zooplankton. q is the catch ability  coefficient and  e  is catch 

per unit effort. 1m and  2m  are the positive constants. 

2.1 Temporal model system 

Now, the equilibrium analysis of the model system (1) has been discussed. The system (1) has six non-

negative equilibrium points: 
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L0(0,0,0), L1(1,0,0), 2 ˆ(0,0, )L w , L3( u , v ,0), L4(1,0, ŵ ), * * *
5 ( , , )L u v w , 

In the equilibrium point 2 ˆ(0,0, )L w , the equation whose root  is ŵ  is as follows: 

2
1 2 1 1 1 2 1 1( ) ( ) 0r m w r m e r m K w q m r eK     .                                                                                             (3) 

The equation (3) contain a positive  real  root  w  if 1 1q m r . 

The equilibrium point 3 ( , ,0)L u v exists if the following equations has the positive solutions u and v : 
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The existence of interior equilibrium point * * *
5 ( , , )L u v w . In this case, *u , *v and *w are the positive solutions 

of the following equations. 
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From Eq. (8), we get 
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Substituting this value of  v  in Eqs. (9) and (10), we obtain 

                1 22 2
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From Eq. (12) when 0v  , then  1( ,0) 0G u   contains a real root xu , which is given by 
(1 )

x

c v
u

c


 

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 . 

We note that,  
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                                                            0xu   if c  .                                                                            (14) 

Now, substituting 0u  in Eq.(12), then  1(0, ) 0G v  contains a real root given by 
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From Eq.(13) when 0w  , then from 2 ( ,0) 0G u  , we have, 

                                                          2 ( )r u r r u r       ,                                                               (17) 
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Case I. Taking  in Eq. (17), if 

                                                           2( ) 4 ( ), ,r r r r r                                                                (18) 

then Eq. (16) contains no real root. 

Case II. Taking  in Eq. (17), then Eq. (17) contains a unique positive real root say, yP . 

Substituting 0u  in Eq. (13), then from 2 (0, ) 0G w  , we have 
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                          either  (i) 2 0
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holds. 

From the above analysis, we consider that the isoclines (12) and (13) inter-sect at a unique point * *( , )u w  if 

in addition to condition (12), (16), (18), (20), (21), the condition y xP P holds. 

This completes the existence of * * *
5 ( , , )L u v w . 

2.2 Stability of non-spatial model system 

To study the local stability of the proposed model system, first we find the variational matrices corresponding 

to each equilibrium point. Then we obtain the following results by using eigen value method and Routh-

Hurwitz criterion: 
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(vi) The variational matrix about the equilibrium point * * *
5 ( , , )L u v w  is given by 

144



Computational Ecology and Software, 2017, 7(4): 140-152 

 

  IAEES                                                                                                                                                                           www.iaees.org   

2

2 2 2

2 2

2

2 2

* * * *
*

* * 2 * * 2

2* * * * * *
1 1 1 1 1

5 * * 2 * * 2 2 2* 2 *
1 1

2* * * 2*
1 1 1

1 * 22 2* 2 *
1 21 1

( )
0

(1 ) (1 )

2

(1 ) (1 ) ( )

2 ' 2 '
0

( )( ) ( )

u v u u
ru

v u v u

v v u u wv v
v c

v u v u v v

v w r w m qev
r

K m e m wv v

  
   

     
     

  
 

   
   


          




  
 











     

                                                                              

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
   
 
 

 
The characteristic equation of matrix 5V  is given by, 

                                                         3 2
1 2 3 0A A A      ,                                                              (22) 

where 

                                                       1 11 22 33( )A a a a    , 

                                                       2 22 33 23 32 11 33 11 22 12 21A a a a a a a a a a a    , 

                                                       3 11 22 33 11 23 32 12 21 33A a a a a a a a a a    . 

Theorem 1: The unique non-trivial positive equilibrium point * * *
5 ( , , )L u v w is locally asymptotically stable if 

and only if the following inequalities hold. 

(i) 

4 2 2

2 2

2 2* 2 * * * * * * *
* 1 1 1 1

1* 2 * * 22*
1 2 1

2 2 ' '
,

( ) (1 )( )

r w m qe wv v v u v u u
ru r

K m e m w v uv

      
 

   
    

  
 

(ii) 

3 2

2 2

2

2

2

2 2* * * * *
1 1 1 1

* * 22 2* 3 * 2* *
1 1*

* * 2
* * 2

1 1
1 * 22*

1 21

2* * * *
1 1 1 1

* *

2 ' 2

(1 )( ) ( )

(1 ) 2 '

( )

( u + u )( v + v )

(1+ v + u )

v w u u wv
c

v uv vu v
ru

v u r w v m qe
r

K m e m wv

    
  

  


    
 

  
                         


2

2

* * 2
1 1

14 * 22*
1 21

2 '
,

( )

r w v m qe
r

K m e m wv




  
         

 

 

 

 

 

 

 

 

145



Computational Ecology and Software, 2017, 7(4): 140-152 

 

  IAEES                                                                                                                                                                           www.iaees.org   

(iii)   

     

2 2

2 2

2 2

* * * * * * * *
* *

* * 2 * * 4 * * 2

2
* * 2 * * 2

1 1 1 1
1 1* 2 * 22 2* *

1 2 1 21 1

1

( )( )

(1 ) (1 ) (1 )

2 ' 2 '

( ) ( )

u v u u v v u v
ru ru

v u v u v u

r w v m qe r w v m qe
r r

K m e m w K m e m wv v

u

     
     

 
 



     
                 

   
                  

*2 2

1
2 2 2

2

2

22 2* * * * * * *
*1 1

* * 2 * * 22 2 2* 2 * * 2
1 1 1

2* * * * *
* 1 1 1

* * 2 * * 2 2* 2
1

2 2 '

(1 ) (1 )( ) ( )

2

(1 ) (1 ) ( )

wvu u v v v w
c ru

v u v uv v v

u v u u wv
ru c

v u v u v

   
     

   
    

                             
  

        

2 2

2

2

2 2

2 2

* * * *

* * 4

* * * * 2
* 1 1

1* * * 22*
1 21

2* * * * * 2
1 1 1 1 1

1* * 2 2 2* 2 *
1 1

( )( )

(1 )

2 '
2

(1 ) ( )

2 2 '

(1 ) ( )

u u v v

v u

u v r w v m qe
ru r

v u K m e m wv

u u wv r w v m qe
c r

v u Kv v

   
 

 
  

   
   

  
      

  
           

            
2

2

3 2

2 2

* 2
1 2

2
* * 2

1 1
1 * 22*

1 21

2* * * * 2
1 1 1

1 * 22 2* 3 *
1 21 1

( )

2 '

( )

2 ' 2 '
.

( )( )

m e m w

r w v m qe
r

K m e m wv

v w r r w v m qe
r

K m e m wv v




 
 

     

       
 

       

 
2.3 Maximum sustainable yield 

In the above model (1), the fish population depends on zooplankton. We have, 

                                                          

*

*
1 2

* * 2
*

1 22
1

'
1 .

qew
h

m e m w

w w v
r w

K v







 
     

 

Hence 
*

0
h

w





  yields 

2
*

22
1 1

'
1

2 ( )

K v
w

r v




 
  

 
 and 2

2

*
0

h

w





. 

Thus, we have 

                                                      

2
2

1
22

1 1

'
1

4 ( )
MSY

r K v
h

r v




 
  

 
. 

If MSYh h , then it indicate the over exploitation of fish population. If MSYh h , then the fish population is 

under exploitation.  

2.4 Optimal harvesting policy 

The present value J  of a continuous time-stream of revenues is given by  
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1 20

( ) ,t pqw
J e c E t dt

m e m w



  

   
  

where   is the instantaneous rate of annual discount, c  is the utilized cost per unit effort and p is the price 

per unit harvested fish. Thus, our objective is to max J , subject to conditions (8)-(10) and control constraints 

max0 E E  . 

Now to find the optimal level of equilibrium, we use Pontryagins Maximum Principle (21). The associated 

Hamiltonian function is given by 

2
1

1 2 22
1 2 1

2

3 1 22
1 21

( ) ( ) (1 ) ( )
1 1

'
( ) 1 ,

t pqw uv uv wv
H e c E t t ru u t cv

m e m w v u v u v

w wv qew
t r w

K m e m wv

   
    




     
                     
         

 

                                                                                                                                                                     (23) 

where  1 2 3, ,     are adjoint variables and  

                                     
2 2

2 2
32 2

1 2 1 2

( )
( ) ( )

t pqm w qm w
t e c

m e m w m e m w
     

         
 

is switching function. 

The optimal control ( )E t which maximizes H  must satisfy 

                                    

2
1 2

max 3 2
2

2
1 2

3 2
2

( )
, ( ) 0 . . ,

( )
( )

0, ( ) 0 . . .

t

t

c m e m w
E t i e e p

qm w
E t

c m e m w
t i e e p

qm w





 

 

  
    

   
       

 

Now, the usual shadow price is 3
te and the net revenue on a unit harvest is 

2
1 2

2
2

( )c m e m w
p

qm w

 
 

   

Thus, if 

the shadow price is less than the net economic revenue on a unit harvest, then maxE E , if the shadow price is 

greater  than  the  net  economic  revenue  on  a  unit harvest  then 0E  and when shadow price equals the 

net economic revenue on a unit harvest, i.e ( ) 0t  , then the Hamiltonian becomes independent of the 

control variable ( )E t  i.e. 0
H

E





. This is the necessary condition for singular control 

*( )E t to be optimal 

over control set *
max0 E E  . 

Hence, the optimal harvesting policy is  
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max

*

, ( ) 0,

( ) 0, ( ) 0,

( ), ( ) 0.

E t

E t t

E t t






 
 

                                                              (24) 

For the singular control to be optimal, we must have ( ) 0
H

t
e


 


. This yields 

                                                   

2

1 2
3 2

2

( ) tc m e m w
p e

qm w
 

 
   
 

.                                                          (25)                

According to the Pontryagin's Maximum Principle, the adjoint equations are         

                                            31 2, ,
dd H d H H

dt P dt Z dt F

   
     

  
.                                               (26) 

From the first adjoint equation, we have 

                    
2 2

1 1 1
1 22 2
( ) 2 ( )

(1 ) (1 )

d v v v v
t r ru t

dt v u v u

      
   

    
             

. 

Using Eq. (8), this equation becomes 

                                     
2

1 1 1
1 22 2

.
(1 ) (1 )

d uv v v
ru

dt v u v u

     
   

   
             

                             (27) 

The second adjoint equation becomes

2 22 2 2 2 3
2 1 1 1 1

1 2 32 22 2 2 2 2
1 1

(( ) 2 2 ) 2 '

(1 ) (1 ) ( ) ( )

d u u u u v wv wv wv
c

dt v u v u v v

         
     

    
           

. 

Using Eq. (13), this equation becomes 

2 4 22 3 5 3
2 1 1 1 1

1 2 22 2 2 2
1

2
1

3 22 2
1

3 2 2 4

(1 ) (1 ) ( )

2 '
.

( )

d u u u v wv wv wv wv wv

dt v u v u v

wv

v

        
    

 


      
        




        (28) 

The third adjoint equation becomes  

2 2 2
3 1 1 1

2 3 12 22 22 2
1 2 1 21 1

2 '

( ) ( )

td pqm e v r w v m qe
e r

dt m e m w K m e m wv v

  
 

      
                   

.        

Using Eq.(10), this equation becomes

2
3 1 1 2

2 322 22
1 2 1 21

.
( ) ( )

td pqm e v r w m qew
e

dt m e m w K m e m wv

  


      
                                               (29)

 

 

 

Differentiating Eq. (26), with respect to t, we have 

                                                                             3
3

d

dt

   .                                                                 (30) 
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Using Eq. (28) in Eq. (27), we obtain  

                                                                           2 1
tB e   ,                                                                    (31) 

where 

        
2 2 2

1 1 2 1 2 1
1 2 2 2 2

1 2 2 1 2

( )
.

( ) ( )
tv r w qm ew c m e m w pqm e

B p e
v K m e m w qm w m e m w

      
            

 

Putting the value of 2  from Eq. (31) in Eq. (28), we find 

                                                                   1
2 1 3

td
B B e

dt
     ,                                                           (32) 

where 
2

1 1 1
3 22 2

( )
,

(1 ) (1 )

B v v uv
B B ru

v u v u

   
   

   
            

. 

 

 solving Eq. (31), we obtain 

                                                                     23
1 0

2

B ttB
e k e

B



 


.                                                    (33) 

When t  , then shadow price 1
te  is bounded iff 0 0k  . Hence, we have 3

1
2

tB
e

B






. 

Putting the values of  1  and 3  in Eq. (28), we obtain when t  , then shadow price  1
te  is 

bounded if 0 0k  . Hence, we have 

                                                                    3
1

2

tB
e

B






.                                                                   (34) 

Substituting the values of 1  and 3  in Eq. (27), we obtain 

                                                           2
4 2 5

td
B B e

dt
     ,                                                                  (35) 

where 
3 4 23 5 3

1 1 1 1
4 22 2

1

3 2 2 4

(1 ) ( )

u v wv wv wv wv wv
B

v u v

    
  

    
     

, 

2 22
31 2 1

5 22 22 2
2 21

( )( ) 2 '

( )(1 )( )

B u uc m e m w wv
B p

qm w B v uv

  
  

  
       

. 

 Solving Eq. (35), we obtain  

                                                                45
2 1

4

t
B tB e

k e
B








 


. 

When t  , then shadow price 2
te  is  bounded  iff 1 0k  . Hence, we have 
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                                                               5
2

4

tB e

B











.                                                                              (36) 

Hence from Eqs.(32) and (37), we have 

                                                               5
1

4

B
B

B 



.                                                                              (37) 

 

By solving Eq. (37)  we get ,E E where E  is the optimal  harvesting effort. Hence by solving Eqs. (8)-

(10)  using Eq. (37),  we find the optimal solution  ( , , )P Z F   . 

 

3 Spatial Model System 

In this section, the model system is given by: 

                                                      2
1(1 )

1

u uv
ru u d u

t v u


 


    
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,                                             (38) 

                                                      
2

21
222

11

v uv wv
cv d v

t v u v


  


    
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,                                      (39) 

                                                      
2

2
1 122

1 21

'
1

w w wv qew
r w d w

t K m e m wv




          
,                     (40) 

with initial conditions, 

( , , 0) 0, ( , , 0) 0, ( , , 0) 0u x y v x y w x y                        for                ( , )x y                                (41) 

and boundary condition, 

                          0
u v w

n n n

  
  

  
                                   for                 ( , )x y   , 0t  ,                (42)  

where, 1 2,d d and 3d are diffusion  coefficient  for phytoplankton, zooplankton and fish populations 

respectively,  n is the outward normal to  and  
2 2

2
2 2x y

 
  

 
. 

To understand the spatial dynamics of the model system (38)-(40), we consider the linearized form of the 

system about * * *
5 ( , , )L u v w as follows: 

                                                     

2
11 12 13 1

2
21 22 23 2

2
31 32 33 3

,

,

.

u
a u a v a w d u

t
v

a u a v a w d v
t
w

a u a v a w d w
t


    




    



    


                                                     (43) 
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where we introduce small perturbations  * *,u u u v v v     and  *w w w  . Let us suppose that the 

model system (42) has the solution which is of the form 

                                                    
1

2

3

exp( )cos( )cosk x y

U l

V l t k x k y

W l


   
      
   
   

, 

where 1 2,l l and 3l are  sufficiently small constants. xk and yk are the components of wave number along x and 

y  directions respectively and k  denotes the wavelength.  

The variational matrix of the linearized model system  (42)  is given by  

                                                  

2
11 1 12

2
21 22 2 23

2
32 33 3

0

0

a d k a

J a a d k a

a a d k

 
 

  
  

                                         (44) 

where k  is the wave number given by 
2 22

x yk k k  .  The characteristic equation of  J  is given by  

                                                         
3 2

1 2 3 0k k k         ,                                                          (45) 

where 2
1 1 2 3 1( )d d d k A     , 

           
 4 2

2 1 2 2 3 3 1 1 22 33 2 11 33 3 11 22 2( ) ( ) ( ) ( )d d d d d d k d a a d a a d a a k A           , 

           

6 4
3 1 2 3 11 2 3 22 1 3 33 1 2 1 22 33 23 32 2 11 33 3 11 22

2
12 21 3

[ ] [ ( ) (

)]

d d d k a d d a d d a d d k d a a a a d a a d a a

a a k A

        

   

and 1 2,A A and 3A  are defined  in Eq. (22). 

Theorem 2: The equilibrium point * * *
5 ( , , )L u v w is locally asymptotically stable in the presence of diffusion 

if the conditions of Theorem 1 hold.  

The proof of theorem follows from Routh –Hurwitz criterion, hence omitted. 

 

4 Conclusions 

 Human activity has been the major threat to wetlands. Agriculture, industrial development, and urban and 

suburban sprawl have caused the greatest losses of freshwater wetlands. The biggest current source of loss for 

fresh-water coastal wetlands is from urban sprawl. Subsidence causes the land surface to drop, which can then 

become flooded if the surface is already very near to sea level. Wetland management generally involves 

activities that can be conducted with, in, and around wetlands, both natural and man-made.  Two major facets 

of managing wetlands for protection include buffering wetlands from direct human pressures, and maintaining 

natural processes in surrounding lands that affect wetlands and that may be disrupted by human activities. Our 

study is based on the study of system dynamics and stability of the wetland system. In this paper, we have 

analytically investigated a diffusive three species phytoplankton-zooplankton-fish model. The non-trivial 
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equilibrium where all the species coexist is locally asymptotically stable under a fixed region of attraction 

when certain conditions are satisfied. Next, the optimal harvesting policy is discussed.  The result of the model 

system (1) shows that a proper management of the wetland is required to control the growth of the wild grasses. 

So there should be taken some proper management of the wetland system by means of the comfortable 

survival of the species of the system and for the good economic values.    
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