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Abstract

This article deals with the study of some qualitative properties of a discrete-time mosquito Model. It is shown
that there exists period-doubling bifurcation for wide range of bifurcation parameter for the unique positive
steady-state of given system. In order to control the bifurcation we introduced a feedback strategy. For further
confirmation of complexity and chaotic behavior largest Lyapunov exponents are plotted.

Keywords mosquito model; period-doubling bifurcation; hybrid control.

Computational Ecology and Software

ISSN 2220-721X

URL: http://www.iaees.org/publications/journals/ces/online-version.asp
RSS: http://www.iaees.org/publications/journals/ces/rss.xml

E-mail: ces@iaees.org

Editor-in-Chief: WenJun Zhang

Publisher: International Academy of Ecology and Environmental Sciences

1 Introduction

Mosquito vector-borne diseases, such as West Nil, dengue fever and malaria spread between humans is a cause
of blood-feeding mosquitoes, have been big fears for the public health in the world. The world’s most
important tropical parasitic disease is the Malaria. In the whole world it is the fifth leading cause of death due
to infectious diseases worldwide (after respiratory infections, HIVV/AIDS, diarrheal diseases, and tuberculosis),
and in Africa it is the 2nd leading cause of death after HIVV/AIDS. At least, 109 countries suffering today by
cause of such infectious diseases and nearby half of the world at risk of malaria. Particularly, a brief data of
victims of Mosquito vector-borne diseases can be found in (CDC, 2010; WHO, 2010). To prevent and control
malaria, an effective weapon provides the transgenic or genetically-altered mosquitoes (Liu and Xiao, 2007;
Ito et al., 2002; Lycett and Kafatos, 2002). However, in the laboratories transgenic mosquitoes produces that
resistant and can be ultimately introduced into the field, there still exist significant hurdles, including multiple
mosquito subspecies, determination mechanisms, transposon stability and, that essential to be overawed
(Riehle and Jacobs-Lorena, 2005; Riehle at el., 2007). No vaccines are available for these mosquito-borne
diseases. An actual way to prevent diseases spread due to mosquito is to control mosquitoes. We need a better
understanding about the dynamics of mosquito population to obtain a suitable optimal strategy, hence to
formulate a mathematical model for mosquito dynamic. There are several modeling mechanism on mosquitoes
population have been seen in the field of mathematics (Anderson and May, 1991; Li, 2008; MacDonald, 1957).
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The dispersal of mosquito’s species, for searching the resources of their survival and to reproduce their new
generation is an interesting and impartment bio-mathematical process in a malarial endemic region. The
growth of such species depend on several factors, such as homogeneous environment, constant re-productivity
and carrying capacity. In order to discuss the behavior of mosquitos population, the general equation for
mosquitos population is given by:

Xn+1 = f(xn)g(xn)xn' 1)

where the number of wild mosquitoes at n is x,,, the birth function for per-capita offspring is given by f and
the fraction of offspring that survive is denoted by g (survival probability). Li (2008) assumed the Ricker-type
nonlinearity g(x,) = e~ % and discuss the qualitative analysis of the following mosquitos population
model:

Xps1 = Type a¥n,

Yn+1 = ﬁxne_kzxn'

2

where the per capita birth rate of adults is assumed to be r > 0, and k; > 0, k, > 0 denote the carrying
capacity of larva and adult, respectively, moreover, the death rate from larva to adult stage is taken as the
constant 8 > 0. Grove et al., (2000), proposed a mosquitos population model given by the following second-
order exponential difference equation:

Xn+1 = (axn + bxn—le_xn_l)e_xn, n=012,--, (3)

where a € (0,1) and b € [0, o). Taking x,,_; = y,,, model (3) can be converted into the following equivalent
two-dimensional form:

Xne1 = (ax, + by,e™¥n)e™*n, (4)
Yn+1 = Xp

The model (3) describes the growth of mosquito population at time n. Mosquito lays eggs and hatch them, due
to un-favorable satiation some of the eggs remain dormant for one or more years. In this model the dormancy
period is assumed to be one year at most. The global attraction of positive steady-state is discussed in Grove et
al. (2000). Our aim in this paper is to explore the chaotic nature of system under consideration. Moreover, it is
proved that model undergoes period-doubling bifurcation for unique positive steady-state for large range of
bifurcation parameter and exhibits complex chaotic nature. In particular, we study not only the period-doubling
bifurcation but we alsointroduced a feedback strategy in order to control the bifurcation.

2 Existence of Period-Doubling Bifurcation
In this section, we investigate the existence of equilibrium and the period doubling bifurcation. It is trivial to
obtain the coupled algebraic equations from (4):

x, = (ax, + by,e™V)e ™,
y* = X

One can easily obtain the following positive equilibrium point by simply neglecting the trivial fixed point

(0,0).
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a+\/a2+4b) | <a—|—\/a2—l—4b>
,1n .

(x0y) = ln( > >

Let

TAx —_ -2 *
R,y = [0¢7 7% (1mxbe™®]

be the Jacobian matrix evaluated at (x,, y,). In order to investigate the stability we have the following theorem;
Theorem 2.1 Let F(A) = A2 — A;A + A,, and F(1) > 0 withA,, A, are roots of F(A) = 0, then:

(i) |[A,] < 1and |4,| < tlifand only if F(—1) > 0 andF(0) < 1;

(i) |44l < 1and |2, > 1 or (|2, > 1land |4, < |1) if and only if F(—1) < O;

(iii) |A;| > 1 and |4,| > 1if and only if F(—1) > 0 and F(0) > 1;

(iv)A; = —1and A, = lifand only if F(—1) = 0 and F(0) # +1;

(v) 1, and A, are complex and |1;| = 1 and |,| = 1 if and only if 4, — 44, < 0 and F(0) = 1.

The characteristic polynomial of Jacobian matrix evaluated at positive equilibrium point (x,, y,) is given

by;
F(1) = 22 — (ae* — x) )1 + be % (x, — 1). (5)
Take into account, F(1) > 0 holds trivially. Moreover,

F(—1) =1+ ae ™ + be ?*+(x, — 1) — x,and F(0) = be™?*(x, — 1).

Thus by applying Theorem 2.1 we obtained the following dynamic of system (4).
Lemma 2.1 Let (x,,y.) be the unique positive fixed point of system (4) then;
(i) (X.,y.) is sink if one of the the following condition hold true:

2Xx
1—a<b<e2(e2—a),and0<b<%,

(ii) (x.,y.) is source if the following condition hold true:

2Xx%
1—a<b<ez(ez—a)andb>h.
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(iii) (x,, y.) is saddle point if the following condition hold true:
b > e?(e? — a).

(iv) The equilibrium population (x,, y,) of (4) is non-hyperbolic if the following conditions hold true.

eZX*

2Xx%
b=e*(e?—a)b#—andb# —.

1—-x,

The main objective of study is to discuss the period-doubling bifurcation of the unique positive equilibrium
point (x,, y,) of system (4) by using the technique of bifurcation theory and taking b as bifurcation parameter.
Similar results are found in (Liu and Xiao, 2007; Jing and Yang, 2006). By using Theorem (2.1) we have the
following results.

Assume that

Ts ={(a,b):b=e?(e? —a), 0<a<1, b>0 and 4, # +1}. (6)

The unique positive equilibrium point of system (4) undergoes period doubling bifurcation when parameters
vary in a small neighborhood of Tys. Choosing the parameters (a, b,) in an arbitrary fashion from the set Ty,
we consider system (4) with parameters (a, b), which is described by the following map:

(;) 5 ((ax + b);ce—y)e—x). -

It is easy to see that map (7) has a unique positive fixed point (x,, y,) such that (x,, y,) is unique positive
equilibrium point of system (4). Since (a,c) € TyS and b; << 1. Taking b, as bifurcation parameter and
considering the perturbation of (7) as follows:

(;) 5 ((ax +(by + B)ye‘y)e-x) @

X

Next, we assume the transformations N = x — x,, P = y — y, so that map (8) is transferred into the following

form:

DT P4 e

where

f(N,P,b) = a;3N? + a;4uNP + a;sP? + ¢;N3 + c,N?P + c3P?N + ¢, P + e;bN + e,bP
+e3bN? + e,DNP + eshP? + ech?N + e;b%P + egh? + egb® + O((IN| + |P| + |B])*),

aln(K)K—-aK+b,In(K) b,(In(K)-1) by (—2+In(K))
y A1 = — a3 = )
K2 K2 2K2

(10)

a;; = —
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_ b;(In(K) — 1) v = b, (-2 + In(K))

a14 K2 15 2K?2
aln(K)K — 3 aK + b;In(K) b;(In(K) — 1)
1= 6K? 2= T ke
_ bi(—2+In(K)) _ by(=3+In(K)) _ In(K)VBK—aln(K)K+2 aK—2 byIn(K)+b,
G="" e 4T TT e AT VB
In(K)vVBK —+vBK — 2 byIn(K) + 3 b, In(K)VBK — aln(K)K + 3 aK — 2 b;In(K) + b,
e2 = — 3 Je3 = 3 ]
VBK 2vVBK
In(K)VBK — VBK — 2 byIn(K) + 3 b, In(K)VBK — 2VBK — 2 b;In(K) + 5 b,
e4- = Ies = ]
VBK3 2vVBK3
€6
_ —2K%In(K)a — 2 aln(K)KVB + 4 BKIn(K) + 4 K?a — 4 KIn(K)b, + 5 aKVB —6 b;In(K)VB — 2 BK + 2 Kb + 5 b,
- 2B3/2K4 2B3/2K4
4 BKIn(K) — 4 KIn(K)b; — 6 In(K)b;VB — 6 BK + 6 Kb, + 11 bvB
- 2B3/2K4 ’
—2K%n(K)a — 2 aln(K)KVB + 4 BKIn(K) + 2 K?a — 4 KIn(K)b; + 3 akK\/B
=" 2B3/2K*
—6 byIn(K)VB —2BK +2Kb +5 b;VB
- 2B3/2K4 1 €9
_ —12K3In(K)a — 12 K?In(K)avB + 12 BK?In(K) — 6 BKIn(K)a + 18 B*?KIn(K)
- 6B5/2K5
12 K3a — 24 K?In(K)b; + 18 K?av/B — 36 KIn(K)b;vVB — 6 BK? + 11 BKa
+ 6B5/2K5
15 B3/2K — 24 BIn(K)b; + 12 K?b; + 30 Kb;\/B + 26 Bb,
635/21{5 ’
where

K_a+,/a2+4b1

5 , andB = a? + 4b,.

In order to obtain the canonical form of (8) at b = 0, consider the following mapping:

N\ _ a2 a2 u
(P) - (_1 —aqq /12 - a11) (U) (11)
Under mapping (11), the canonical form of (8) can be expressed as:
u -1 0)\/u f(u,v,b)
+ ), 12
(v) - < 0 /12) (v) <g(u, v, b)) (12)
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where

Fauwb) (=22 +a;)b;N* (=2, +a;1)b,PN?  ay3(—=2, + ay;)N?
w,u,b) = — - -
a;;(A; +1) a;;(A; +1) a;;(A; +1)

_ (=A3+ay1)b3P?N  a14(=A3+a11)PN _ (=Ap+ay;)byP?
a12(A2+1) a12(A2+1) ai2(A2+1)

_ais(-A+a3)P?  (—Aptas e, BN (=Ap+ayq)e;bP
a12(A2+1) a12(A2+1) a12(22+1)

_ (=Ap+ay1)besN?  (=Ap+aqs)beyPN  (=Ap+ayq)besP?
ai2(A2+1) a12(A2+1) asz(A2+1)

_ (=Ap+ay1)b?eN  (=Ap+as)b%e;P (=Ay+aq1)beq
a12(12+1) ai2(A2+1) a;2(A2+1)

_ (=Az+aq1)b3ey
as2(A2+1)

+0(Clul + |v| + 16D)*),

(1+a,,)b;N®* (1 +ay;)b,PN? a3(1+ay,)N?
a;; (A, +1) a;;(A; +1) a;;(A; +1)

g, 5) =

(1+aq1)b3sP?N | a4(1+a,1)PN | (1+a;1)bsP3
a12(A2+1) ai2(A2+1) a12(A2+1)

a;s(1+a.1)P? | (1+aq1)esbN | (1+aqq)eycP
a12(A2+1) ai2(12+1) a12(12+1)

(1+aq1)besN?  (1+aq;)be,PN | (1+a,,)besP?
a12(12+1) a12(A2+1) a1,(A2+1)

(1+aq,1)b?egN | (1+aq1)b%e;P . (1+aq,)b%eg

T+ a12(A,+1) a2(A,+1) a;2(A,+1)
Wrabes 4 o ((lul + [v] + [B])*)
aq2(A,+1) )

N=a,,(u+v) and P=(—1—-ay;;)N+ (1, —a;1)P. Let W€(0,0,0) be the center manifold of (12)
evaluated at (0,0) in a small neighborhood of b = 0, then W ¢(0,0,0) can be approximated as follows:

W€(0,0,0) = {(u,v,b € R®):v = M3bh? + Mybu + Myu? + (O|ul, |b|)?},
where

2 2
_ A+ ay)(ar1a1s — A14a12a11 + agp°a33 + 2 a11a15 — A1404, + ay5)

Ml = 'MZ
alz(/lzz - 1)
_ (1 +ay,)(ea11 —€1a4; + €3) _ (I+ayeg
= My = ————128
alz(ﬂ.zz - 1) a12(/122 - 1)
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Hence, the map restricted to the center manifold W€ (0,0,0) is expressed as:
F:iu - —u+ quu® + qoub + qsu?b + quub? + qsu® + (0|ul, |b|)*,
where
(At a)(@n’ars — 14012011 + arp° 33 + 2 a31a15 — Qa4 + Ags)

h= a;;(A, +1) 12

_ (=42 + ag1)(epa11 —e1a4; +€3)
a;;(A; +1) ’

(A + a2 ayuMyay, — 2 ag3a013M; — a1 My, — ajzes + agaMy)
1= A, +1

B (=22 + ay1)(ass%es — e4a1,a1; — e;Myagq + My, + 2 ag1e5 — egaq; + e5)
a;,(A; +1)

(At a1 ani*aisMy — 2 4130554, Mp + 2 ag1a45M; + .My ag; — 2 ag54,M,)
a12(42 + 1) '

(A2 + a11)M5(2 a14a11 — 2 a12a43 — Ay4dy + a14)
= A +1
4 (=22 + ay1)(e;Mzay, — e;Mpay; — e, MM, — e6ay3)
a;;(1; +1)

B (A2 + a1 + a11)(2 aja15M3 — 2 ay54,M3 — e;)
a;2(A, +1) '

(=22 + a11)(a11°bs — ayzbra41 + a1°by + 2 agpa,3M; + 2 aq1b3 — agby + bs)
1+ 1

qs = —

4 (=22 + a11)(a113by + 2 a14Mya12011 — ayaMyagAy + 3 ag1%by + a;4Myay; + 3 ag1by + by)
a;;(A; +1)
(=22 + a11)?a;5(1 + ag)M;

+2
a;;(A; +1)

Next, we define the following two nonzero real numbers:

_ azf n 10F azF _ (_AZ + all)el (—/12 + all)ez(_l — all)
" \ouob ~ 29bou? (0 )_ 1, +1 a;;(A, +1) ’

and

10%F  (19°F\’ ,
2= eawr t2awz) | THHGFO
(0,0)
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The aforementioned computation surmise the following result about period-doubling bifurcation of system(4).
Theorem 2.2 If s, # 0 then there exists period-doubling bifurcation for

a+m>l <a+m>
,1n
2 2

(¥ = ln(

of (4) whenever b varies in small neighborhood of b,. Furthermore, if s, < 0, (s, > 0) then the orbit having
period-2 unstable or stable, respectively.

3 Hybrid Control of Period-Doubling Bifurcation

We consider the hybrid control strategy for controlling the period-doubling bifurcation in non-linear dynamical

system (4). Such strategies are found in (Luo et al., 2004; Luo et al., 2003; Chen and Yu, 2005; ELabbasy et

al., 2007). Consider the following controlled system crossposting to system (4):

(xn+1) 5 (B(axn + by,e¥m)e™n + (1 - ﬂ)xn)
Yn+1 Bx, + (1 =By, '
where 0 < B < 1. Moreover, by suitable choice of controlled parameter 8, the period-doubling bifurcation of

the equilibrium point (x,,y,) of controlled system (13) can be advanced (delayed) or even completely

eliminated. The original system (4) and the crossposting controlled (13) has the same fixed point, the

variational matrix at positive fixed point (x,, y.) of controlled system can be written as:

(13)

[2b + ava® + 4bB — B (a2 + 2b + 2bIn [% (a+Va%+ 4b)]) 4bf(1 + In[2] — In[a + m)]

2b (a +Va? +4b)’
1 1-8

The following result gives conditions for local asymptotic stability of positive equilibrium (x,,y,) of the
controlled system (13).

Theorem 3.1 The equilibrium population (x,,y,) of control system (13) is locally asymptotically stable iff the
following condition hold.

4b +avaZ T 4bp — B (a? + 4b + 2bin |5 (a +VaZ ¥ 45)))
2b

<1+

2(~2b + a*(~1+ B) + avaZ T 4b(~1+ ) + 4b8) (1 + fin |5 (a +vaZ T 45))
(a ++Va? + 4b)2

<2

4 Numerical Simulation and Discussion

In this section we prove the correctness of above mathematical analysis and visualize the further complex and
interesting behavior of system (4). For this we consider the following special cases of (4).

Example 4.1 Assuming the parametersa = 0.5, b € [1,300] and initial conditions

(%0, ¥0) = (2.512424567,2.512424567). Then both the population undergoesperiod-doubling bifurcation
(see Fig. 1 and Fig. 2). Furthermore, MLE is shown in Fig. 3 which conform the existence of chaotic behavior.
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7
I_IEI a0 1aa 150 200 250 300
u]
Fig. 1 Bifurcation diagram of x,, for system (4).
l_"r T T T T T
u
o 50 100 150 200 250 300

Fig. 2 Bifurcation diagram of y;, for system (4).
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0.4 T T T T T

-0

0 =11 100 150 200 250 300
b

Fig. 3 Maximum Lypunov exponents for system (4).

Example 4.2 Assuming the parameters a = 0.5, b = 53. In this case the unique positive equilibrium (x,,y,) =
(2.019479352,2.019479352), which is unstable and undergoes period-doubling bifurcation (see Fig. land
Fig. 2). In order to control the bifurcation one has the following control system;

Xne1 = PB(0.5xy + 53y,e™m)e + (1 = B)xy,

Yn+1 = Bxn+ (A = Byn. (14)

Thus, the controlled system (13) has has a fixed point (x,,y.) = (2.019479352,2.019479352) which is
similar to the un-control system (4). Moreover, the variational matrix evaluated at fixed point (x,,y.) =
(2.019479352,2.019479352) is given by;

[—2.953117078 f+1 —0.9518243829

B 1-p
Furthermore,the characteristic equation of variational matrix is given by;

22 +(3.953117078 B — 2)A + 1 — 3.953117078 B + 3.904941461 2 = 0. (15)

According to Theorem 3.1 the control system is locally asymptotically stable if 0 < 8 < 0.990354.
Moreover, one can see that the bifurcation control for 0 < 8 < 0.990354 (see Fig. 4 and Fig. 5).
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tJ
—_
I

1.6 . : . : : - : :
] a1 0.2 0.3 1.4 0.5 (N o a.3 0.9 1
Eesta
Fig. 4 Bifurcation diagram of x,, for system (14).
25 T T T T T T T T T
2.4
”T 1
15 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.5 0.7 0.s =] 1
Eeta

Fig. 5 Bifurcation diagram of y,, for system (14).
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In addition, a local amplification for control system (13) corresponding to Fig. 4 and Fig. 5 is shown in Fig.
6 and Fig. 7 which shows that population bifurcate for least range of control parameter .

LS T T T T T T T T
2.4
I'EIII_EF o.s2 034 085 O0E&8 J.9 0.9z 094 095 0.958
Eeta
Fig. 6 Local amplification corresponding to Fig. 4.
25 T T T T T T T T T
2.4
1B . ' ' . . ' ' . '
0.8 ez 084 085 088 ng ne2 094 095 098

Beta

Fig. 7 Local amplification corresponding to Fig. 5.
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5 Conclusion

We explore the dynamics of a discrete-time mosquito population model, and discuss the non-hyperbolic case
for the unique positive fixed point. We investigate the parametric conditions for the existence and direction of
period-doubling at uinque positive steady-state by implementing center manifold theorem and theory of
bifurcation. The existence of period-doubling bifurcation is found for wide range of bifurcation parameter b.
Moreover, it is investigated that the effects of period-doubling bifurcation can be controlled through
implementation of feedback strategy, which is known as hybrid control. For some recent results related to
feedback control strategies, we can refer to Din (20173, b, c, d), Din and Saeed (2017).
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