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Abstract 

Mathematical model of population dynamics with two types of individuals (mosquitoes which are malaria 

transmission vectors, and mosquitoes which are not transmission vectors) is under consideration. Some of 

basic properties of model were determined. Numerical analysis allowed obtaining typical dynamic regime. 
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1 Introduction 

In literature it is possible to find a lot of various publications which are devoted to problem of modeling and 

analysis of spread of malaria in human population (see, for example, Ross, 1915; Kermack and McKendrick, 

1922; Mandal et al., 2011; Macdonald, 1957, and others). Diversity of publications is determined by goals of 

investigations, used mathematical approaches, and methods. One group of models can be characterized by 

small number of variables and based on systems of ordinary differential equations (Ross, 1915, 1916a, b; Ross 

and Hudson, 1916; Anderson and May, 1991; Macdonald, 1957). Some other models contain big number of 

variables which describe dynamics of local human population and mosquito’s population (with different 

specification of life cycle of mosquitoes; Koella and Antia, 2003; Depinay, 2004). Such models have a lot of 

various problems: first of all, this is a problem of determination of model parameters, and, the second, 

necessity to use huge volume of empirical information. The third problem is following: we have to be sure that 

there are no possibilities to give sufficient fitting of time series with models which contain smaller number of 

variables (Nedorezov, 2012; Nedorezov and Utyupin, 2011). Anyway, if we have model which gives good 

fitting of time series, we can try to decrease number of variables, unknown parameters etc. 

Some of considered models cannot be used for the explanation of observed time series and can be used for 

constructing of forecasts (see, for example, Midekisa, 2012). Note, that autoregressive models (asymmetric 

filters) are rather popular in analysis and modeling of population dynamics (Isaev, 1984, 2001). It is important 
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to note that such kind of models can be effectively applied to analysis of population if and only if we have no 

information about population ecology, life cycle, interaction with other components of ecosystem and so on.  

In current publication we consider simplest mathematical model which describes mosquito’s population 

dynamics. It is assumed that population contains of two different groups of mosquitoes: mosquitoes which are 

vectors of malaria, belong to first group; other mosquitoes belong to second group. It is also assumed that 

human population which can be attacked by mosquitoes contains of individuals which have immunity against 

malaria, and disabled individuals only (population size is equal to constant and number of disabled individuals 

is greater than zero). These assumptions allow assuming some parameters of model equal to constant, and 

concentrate view onto population dynamics. 

 

2 Description of Model 

Let’s assume that there is a sufficient small pool (it will allow excluding the spatial structure of population, 

and analyze the model of local dynamics) where the mosquito’s larvae have normal conditions for 

development. Let )(tx  be a number of non-vector mosquitoes in a pool at time t , and )(ty  be a number of 

vector mosquitoes. As it was pointed out above human population contains of individuals which have 

immunity against malaria, and disabled individuals only (population size is equal to constant and number of 

disabled individuals is greater than zero; it is obvious that if number of disabled individuals is equal to zero 

then asymptotically 0)( ty ). 

Within the framework of model we’ll assume that the following processes determine the changing of  )(tx  

in time: appearance of new individuals with the rate yx 0
21    where 1  and 0

2  are Malthusian parameters 

for non-malaria mosquitoes and vectors respectively. In other words, it is assumed that both types of 

mosquitoes can produce non-malaria mosquitoes only, and vectors can appear in population in a result of 

interaction between normal mosquitoes and sick people only. Coefficient 1  is equal to the difference between 

intensity of birth rate and intensity of death rate plus intensity of migration of individuals out of a pool. 

Additional death rate (in a result of influence of intra-population self-regulative mechanisms) is equal to 

)(1 yxx  . Immigration of insects which had interactions with healthy persons only, has the rate )(0
1 txp , 

where 00
1  constp  is a positive coefficient; positive parameter   is equal to average time of absence of 

mosquitoes out of the pool, 0 const . 

Finally, we have the following equation for the description of non-malaria mosquito’s dynamics in a pool:  

)()( 0
11

0
21   txpyxxyx

dt

dx
.                                     (1) 

Note, that Malthusian parameters 1  and 0
2  in (1) are different, 0

21   . Parameter 0
2  is an intensity 

of reproduction rate of malaria mosquitoes; the value of parameter 1  depends on the intensities of three 

various processes: it is intensity of birth rate, minus intensity of death rate of individuals, and minus intensity 

of emigration of mosquitoes out of the pool. It is obvious, if intensities of productivities for malaria and non-

malaria mosquitoes are equal, then we have the following inequality for these parameters: 0
21   . 

Let’s assume that following processes have a strong influence onto the dynamics of malaria mosquitoes in 

a pool: immigration with intensity 1
1p   (in a result of interaction between non-malaria mosquitoes with sick 

persons); natural death with intensity 0   and emigration of mosquitoes out of the pool with intensity 1  ; 

additional death rate in a result of influence of intra-population self-regulative mechanisms with the rate 

)(2 yxy   (the assumption that there is the equality between self-regulation coefficients for both types of 

mosquitoes, 21    , can’t be excluded), and immigration with intensity 2p  (returning back of malaria 

mosquitoes). Finally, we have the following equation for the description of malaria mosquito’s dynamics in a 

pool: 

8



Computational Ecology and Software, 2018, 8(1): 7-14 

 

 IAEES                                                                                                                                                                            www.iaees.org   

)()()( 22
1
2

1
1   typyxyytxp

dt

dy
,                                  (2) 

where parameter 10
1
2   .  

Taking into account that the number of emigrated non-malaria mosquitoes can’t be less than the sum of 

malaria and non-malaria mosquitoes returning back, we have the following relation between coefficients of 

model (1)-(2): 
1
1

0
11   , 1

1
1
1

0
1  pp ,                                                   (3) 

where 0
1  is Malthusian parameter for non-malaria mosquitoes and 1

1  is an intensity of emigration process 

(for non-malaria mosquitoes too). Like for coefficients of self-regulation, we can’t exclude the assumption that 

coefficients 1
1  and 1  are equal, 1

11   . 

Also there is the following inequality for coefficients in equation (2): 

12 p ,                                                                      (4) 

because the number of emigrated insects (malaria mosquitoes) can’t be bigger than the number of immigrated 

individuals (during this time interval part of mosquitoes die).  

Combining the equations (1) and (2) we obtain the required model. For complete the model we have to 

point out the initial non-negative functions of mosquitoes dynamics of both types on the time interval ]0,[  : 

0)()( 0  txtx , 0)()( 0  tyty .  

 

3 Properties of Model (1)-(2) 

1. If at any time moment 1t  the number of non-malaria mosquitoes is equal to zero, 0)( 1 tx , for all time 

moments 1tt   we have 0)( tx , and the number of malaria mosquitoes is greater or equal zero, 0)( 1 ty , 

then the following relation is realized: 

0)(0
1

0
2

1




 txpy
dt

dx

tt

. 

It means that for every sufficient small 0t  we have 0)( 1  ttx .  

If at any time moment 1t  the number of malaria mosquitoes is equal to zero, 0)( 1 ty , for all time 

moments 1tt   we have 0)( ty , and the number of non-malaria mosquitoes is greater or equal zero, 

0)( 1 tx , then the following relation is realized: 

0)()( 2
1
1

1




 typtxp
dt

dy

tt

. 

Realizations of these inequalities mean that for all non-negative initial functions solutions of model (1)-(2) are 

non-negative too. 

2. It is naturally to assume that there exist two various values xr0  and yr0  and for all values ]0,[ t  the 

following inequalities are realized: 
xrtx 0)(  , yrty 0)(  . 

For next time interval ],0[   we have the following relation: 

2
2

1
2020

1
122

1
2

1
1 )()()( yyrprptypyxyytxp

dt

dy yx   . 

It means that if y  is greater than  

2

020
1
12

21
2

1
2

1 2

)(4)(


 yx

y rprp
r


 , 
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then the rate of changing of number of malaria mosquitoes becomes negative. Denote as x
kr  and y

kr  the upper 

limits for )(tx  and )(ty  respectively on the time interval ],)1[(  kkk  . Then the last relation can be 

presented in the form: 

2

2
1
12

21
2

1
2

1 2

)(4)(


 y

k
x

ky
k

rprp
r


 . 

Let’s consider the situation when 

1

0
2




x . 

If the last inequality is realized then we have the following inequality: 

xrpxxtxpyxxyx
dt

dx
0

0
1

2
11

0
11

0
21 )()(   . 

Consequently, if variable x  is greater than the value 

1

0
0
11

2
11

1 2

4)(


 x

x rp
r


 , 

then the rate of changing of number of malaria mosquitoes becomes negative. Taking into account all 

notifications pointed out above, we can write 

1

0
11

2
11

1 2

4)(


 x

kx
k

rp
r


 . 

We can’t assume that x
k

x
k rr 1  because the extreme of solution value can be at boundary (right) point of time 

interval k  (if x
krtx 1)(   on the interval 1k  the rate of )(tx  changing is negative and its amount decreases 

monotonously). Consequently, we have to construct a new sequence of values which organize the upper limits 

for solution: 

),max(~
11

x
k

x
k

x
k rrr   . 

Note, that if the following inequality is realized 

1

1
0
1





p

r x
k , 

then x
k

x
k rr 1 . This property of sequence }{ x

kr  allows us to proof that solutions of model are bounded. We 

can choose the first value xr0 :   







 




)(max,max
01

1
0
1

0 tx
p

r
t

x




. 

If so, the sequence xx
k rr 0

~   and, respectively, for all 0t  we have xrtx 0)(  .  

The similar procedure can be realized for second variable. Let denote as *u  the solution (the biggest 

positive root) of the following equation (with respect to y
kr ): 

2
2

1
220

1
1 )( y

k
y

k
y

k
x rrrprp   . 
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It is obvious, that this solution *u  exists. If we have the inequality *ur y
k   then y

k
y

k rr 1 . As it was 

assumed before, on the initial time interval ]0,[0    the following inequality is realized: 

y

t
rty 0)(max

0




. 

In this situation we can choose the following value of yr0 : 








)(max,max

0

*
0 tyur

t

y


. 

Finally, we can conclude that all solutions of considering model are bounded and for all 0t  point 

],0[],0[))(),(( 00
yx rrtytx  .  

3. Coordinates of stationary states of model are determined by the following system of algebraic equations: 

0)( 0
11

0
21  xpyxxyx  , 

0)( 22
1
2

1
1  ypyxyyxp  . 

Obviously, point )0,0(  satisfies to this system. And there are no other stationary states, which belong to 

coordinate lines. From the second equation of this system we have the following relation: 

yp

yAy
x

2
1
1

2
2







 , 

where 02
1
2  pA   is a positive parameter. It is obvious, that this curve comes through origin )0,0( . 

From basic conditions for relations between model parameters we have that this function is monotonous 

increasing function and the second derivative is positive. Also there exists asymptotic value, which is 

determined by the following expression: 2
1
1 / py  , 

0
)(

)2(
2

2
1
1

22
22

1
1 





yp

yyAp

dy

dx




, 0
)(

)(
3

2
1
1

1
1

21
1

2

2






yp

App

dy

xd


. 

Note that first derivative has extreme points in “non-biological part” of phase plane. 

From the first equation we have the following function: 

x

pxx
y

1
0
2

0
11

2
1 )(






 . 

It is obvious, that this curve comes through origin )0,0( . Let 

1

0
2*




x , 
1

0
11**


 p

x


 . 

If we have the following inequality: *** xx   or   

0
2

0
11   p , 

function )(xyy   has negative values only. It means that there are no stationary states in non-negative part 

of plane (in “biological part” of phase plane). Also it means that population eliminates for all possible initial 

11
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values of sizes of mosquitoes. On the other hand, realization of last inequality means that transformation of 

non-malaria mosquito into malaria mosquito leads to catastrophic decrease of insect productivity. 

Consequently, realization of this inequality seems unreal for natural conditions and later we’ll assume that the 

inverse inequality is realized for considering situation, *** xx  .  

The first derivative of this function is presented in the form: 

2
1

0
2

22
1

0
111

0
2

)(

)2(

x

xpx

dx

dy







 . 

The upper part of this fraction has two various roots: 

1

0
11

0
2

20
2

0
2

2,1

)()(


 p

x


 , 

that can be presented in the following form: 

)( *****
2,1 xxxxx  . 

The biggest root of last expression is greater than *x  where function )(xyy   is negative. And lowest root 

belongs to domain **xx   where function )(xyy   is also negative. Finally, on the interval of argument 

changing ],[ *** xx  function )(xyy   increases monotonously (up to plus infinity).  

The second derivative of function )(xyy   has the form: 

3
1

0
2

0
11

0
2

0
21

2

2

)(

)(2

x

p

dx

yd







 . 

Taking into account our assumption we made above about the relation between model parameters, the second 

derivative is greater than zero on the interval ],[ *** xx . Finally, in considering model we have two various 

situations: if the inequality 0
2

0
11   p  is realized in phase space there is a unique stationary state )0,0( ; 

at inverse inequality there are two stationary states on phase plane (origin and non-zero equilibrium). 

4. Numerical analysis of model (1)-(2) allowed obtaining some of dynamic regimes which were observed for 

initial conditions )0,[ t : 0)( tx , 0)( ty , 0)0( 0  xx , 0)0( 0  yy . Typical dynamic 

regime was observed for following values of parameters (Fig. 1): 05.00 x , 01.00 y , 1201 a , 
120

2 107 a , 31
2 a , 120

1 107 p , 5.31
1 p , 15.02 p , 131  , 10

2 105.3  , 5.1 . As we 

can see, in asymptotic we have periodic fluctuations of both variables near stationary level.  
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Fig. 1 Typical dynamic regime in model (1)-(2). Initial stage of process is in the left; asymptotic fluctuations of variables are in 

the right. Blue line corresponds to )(tx  dynamics; green line corresponds to )(ty  dynamics. 

 

 

4 Conclusion 

Considered model (1)-(2) needs in further modification. It can be provided in several possible ways. First of all, 

it is important to take into account influence of life cycle of insect onto population dynamics, and existence of 

several different stages of insect development. Another way must have relation to existence of more 

complicated structure of local human population. In all situations model (1)-(2) can be used as basic for further 

model constructions. 

 

 

References 

Anderson RM, May RM. 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford University 

Press, Oxford, UK 

Depinay JMO, Mbogo CM, Killeen G, et al. 2004. A simulation model of African Anopheles ecology and 

population dynamics for the analysis of malaria transmission. Malaria Journal, 3: 29-40 

Hassanali A, Nedorezov LV, Sadykov AM. 2008. Zooprophylactic diversion of mosquitoes from human to 

alternative hosts: A static simulation model. Ecological Modelling, 212: 155-161 

Isaev AS, Khlebopros RG, Nedorezov LV, et al. 1984. Forest Insect Population Dynamics. Nauka, 

Novosibirsk, Russia 

Isaev AS, Khlebopros RG, Nedorezov LV, et al. 2001. Population Dynamics of Forest Insects. Nauka, 

Moscow, Russia 

13



Computational Ecology and Software, 2018, 8(1): 7-14 

 

 IAEES                                                                                                                                                                            www.iaees.org   

Kermack WO, McKendrick AG. 1922. Contribution to the mathematical theory to epidemics. Proceedings of 

the Royal Society of London Series A, 115: 100-121 

Koella JC, Antia R. 2003. Epidemiological models for the spread of anti-malarial resistance. Malaria Journal, 

2: 3-14 

Macdonald G. 1957. The Epidemiology and Control of Malaria. Oxford University Press, London, UK 

Mandal S, Sarkar RR, Sinha S. 2011. Mathematical models of malaria – a review. Malaria Journal, 10: 202- 

221 

Midekisa A, Senay G, Henebry GM, Semuniguse P, Wimberly MC. 2012. Remote sensing-based time series 

models for malaria early warning in the highlands of Ethiopia. Malaria Journal, 11: 165-175 

Nedorezov LV. 2012. Chaos and Order in Population Dynamics: Modeling, Analysis, Forecast. LAP Lambert 

Academic Publishing, Saarbrucken, Germany 

Nedorezov LV, Utyupin YuV. 2011. Continuous-Discrete Models of Population Dynamics: An Analytical 

Overview. State Public Scientific-Technical Library, Novosibirsk, Russia 

Ross R. 1915. Some a priori pathometric equations. British Medical Journal, 1: 546-447 

Ross R. 1916a. An application of the theory of probabilities to the study of a priori pathometry – I. 

Proceedings of the Royal Society, A92: 204-230 

Ross R. 1916b. An application of the theory of probabilities to the study of a priori pathometry – II. 

Proceedings of the Royal Society, A93: 212-225 

Ross R, Hudson HP. 1916. An application of the theory of probabilities to the study of a priori pathometry – 

III. Proceedings of the Royal Society, A93: 225-240 

 

14




