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Abstract 

The current investigation centres on the consequences of intra-specific rivalry involving predators in the 

predator-prey equation. A careful account of the investigation is offered mathematically of the model to offer 

insights into important outcomes that result from the interplay of deterministic and stochastic process. In 

particular, the steadiness and bifurcation investigation of this model find mention. Allowance is also made in 

this model for a stochastic environment impacted by white noise. While for this particular version, the global 

stability is predicated under conditions bordering on stochasticity close to environmental concerns. Rivalry 

among the predator population is without a doubt accommodating for a various predator-prey models by 

keeping population stable at a positive interior equilibrium. Numerical solutions obtained for the models 

support the assumptions governing the study. 

 

Keywords intraspecific competition; Hopf-bifurcation; stochasticity; Lyapunov function; discrete model; 

white noise. 

 

 

 

 

 

 

 

1 Introduction 

Mathematical models of population dynamics find expression in terms of difference or differential equations 

that detail how populations change with time, space or particular stages of development (Zhang, 2015, 2016). 

Although research in the field of population dynamics, traditionally the preserve of mathematical ecology, can 

be found in accounts of 18thcentury, a watershed of its arrival as a scientific discipline and its subsequent 

respectability may be attributed to the works of Alfred J.Lokta and Vito Volterra. 

To begin with, actual instances of individual behaviour accompany the concept of functional response, 

defined as the rate at which an individual predator consumes prey in terms of density of prey. Plenty of 
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literature is available that has already discussed ecological systems (Arditi et al., 1989; Freedman et al., 1980;  

Gatto et al., 1991; May et al., 1973), where the model systems are based on prey-dependent model systems. In 

all the cases the functional response which is prey-dependent is modelled as

 22 2 2, ,ax x ax x ax x x       or some equivalent form. The Holling-Tanner model deals 

with the Michaelis-Menten or Holling type –II functional response of the form cx m x . Where c  is the 

maximal predator, per capita utilization rate, i.e., the most extreme number of prey that can be devoured by a 

predator in each time unit and m is the half catching immersion consistent i.e., the quantity of prey important 

to accomplish one-half portion of the greatest rate c. Such functional responses go by the name of “prey-

dependent”, named as such by Arditi and Ginzburg, in view of the fact that it depends on prey density only. It 

was realised early on that the predator density could directly impact functional response. Plenty of such 

predator-dependent models (Akcakaya et al., 1995; Cosner et al., 1999; Gutierrez et al., 1992; Hanski et al., 

1991; Arditi et al., 1992; Gutirrez et al., 1992; Blaine et al., 1997; Poggiale et al., 1998; Cosner et al., 1999] 

have been in the offing, the most well - known being Hassell and Varley, 1969; Detngeles et al., 1975. Arditi 

and Ginzburg 1989, 1991; presented a Michaelis-Menten type ratio dependent functional response of the form

cx my x , where x, y stand for densities of prey and predator respectively.  

This article intends to propose a model with intraspecific competition between predators with half 

saturation constant, before this so many authors investigated prey-predator models with intraspecific 

competition without saturation constant. Intraspecific competition among predators for prey starts the minute 

the ratio of predators to prey is sufficiently large, leading to individuals among the predator population 

undergoing reduced fitness from absence of sustenance (Purves et al., 2001). This extreme competition 

happens in blue crab populations where they express brutal behaviour, leading to bloodied wounds due to 

scarcity (Clark et al., 1999). More extreme intra specific competition has been known to happen in intra 

specific predation in a variety of predator populations due to limited availability of alternative food source 

(Fox, 1975). Finally, it is surmised that competition within the predator population might be advantageous for 

predator species under specified circumstances in deterministic environment. 

However, the deterministic environment rarely occurs in reality since most natural environments display 

randomness. Most of what shows up in the models proposed and explored in the ecological literature operate is 

in the framework of an unchanging, deterministic ambience. That is, real environments tend to be uncertain 

and stochastic.  

Frankly, randomness or stochasticity majorly impacts the structure and function of biological systems 

(May, 1974; Renshaw, 1995; Nisbet and Gurney, 1982; Samanta, 1996). The environmental factors are usually 

time-dependent, randomly changing and are to be treated as stochastic. Renshaw (1995) maintain that natural 

phenomena of whatever persuasion defy purely deterministic laws and toggle randomly around some average, 

so much so as to enable the deterministic equilibrium to suffer the loss of an absolutely fixed state; instead it 

pans out towards a “fuzzy” value, surrounding the biological system it is concerned with. A primary hurdle in 

the stochastic modelling of an ecosystem is the lack of reliable mathematical wherewithal at hand to analyze 

non-linear multi-dimensional stochastic process. Many researchers (Dimentberg, 1988, 2002; Samanta, 1994; 

Samanta and Maiti, 2003, 2004; Bandyopadhyay and Chakrabarti, 2003; Bandyopadhyay and Chattopadhyay, 

2005; Maiti and Samanta, 2005, 2006; Maiti et al., 2007) found out the comparison between deterministic and 

stochastic models with good accuracy.  

We also considered discrete version of the considered continuous population model. Generally, discrete 
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model shows richer dynamics than continuous models. Based on this many researchers (Liu et al., 2007; 

Lopez-Ruiz et al., 2004; Elsadany et al., 2012) have considered these models to discuss the population 

dynamics of prey- predator models. Usually discrete models are described with difference equations. Also, we 

can easily obtain numerical simulations for discrete models. 

This paper is organized as follows: Section 3 discusses the boundedness of the system; Section 4 

permanence of the system, Section 5 throws equilibrium points, existence, and stability and bifurcation 

analysis of the model. Section 6 defined discrete version of the mathematical models, Section 7 and 8 throws 

equilibrium points, their stability and bifurcation analysis, Section 9 throws light on stochastic stability of the 

system by using Lyapunov function. Section 10 explores numerical simulation of the system which supports 

analytical results arrived at.  

 

2 Formulation of Deterministic Mathematical Model  

In this section we have constructed a mathematical model of Prey-predator with intraspecific competition 

between predators. The model can be presented by the following set of ordinary differential equations  

    
2

1



 


      

  
 

dx x xy
rx

dt k x

dy e xy y
dy

dt x L y

              (2.1) 

with initial conditions    0 0, 0 0x y  , where x(t), y(t) represents prey and predator population biomass, 

r stands for intrinsic growth rate of prey, k carrying capacity,   conversion rate ,   saturation constant, e  

another conversion rate, d represents death coefficient of predator,   rate of predator inter competition, L

saturation constant. All the model parameters are positive constants. 

This model involves certain assumptions which consist of the followings:    

(i)  Prey individuals are assumed to have the logistic growth rate with carrying capacity K. 

(ii) The Prey- dependent functional response is assumed in the interaction between prey and     

      predator Population. 

(iii) We assumed intraspecific competition among the predators. 

 

3 Behaviour of the Solutions of Deterministic Model  

Theorem 1. The solutions of the system (1) are invariant under 2R . 

Proof: we can easily verify that    1 20,0 0,0 0F F  , then from this we can say that  1 ,F x y  and 

 2 ,F x y  are continuous on 2R  and also Lipschizian on 2R . Hence solution of (1) exists and it is unique. 

These solutions are exist for all 0t   and stay non-negative. Hence, the interior of 2R  is invariant under 

model system (1). 

Theorem 2. The solutions of the system (1) are bounded. 

Proof: Let W x y   

21



Computational Ecology and Software, 2019, 9(1): 19-36 

 IAEES                                                                                    www.iaees.org

dW dx dy

dt dt dt
                                          

                                                                                    (3.1) 

 ( 1) min 1,
dW

x r mW where m d
dt

     and also 1
dx x

rx
dt K

   
 

then by a standard comparison 

theorem we have  lim ( ) (0),
t

Supx t M where M x K


  . 

Therefore ( 1)
dW

mW M r
dt

                     (3.2) 

Applying the theorem in differential inequalities (Birkhoff et al., 1962), we obtain 

     1
0 , (0), (0) / mtM r

W x y W x y e
m


   and for

 1
,0

M r
t W

m


   . 

Therefore all solutions of system (2.1) enter into the region 

   2 1
, : , 0

M r
B x y R W for any

m
 

 
     
 

.                    

(3.3) 

 

4 Permanency of the System 

Theorem 3. If ( , ) 0 x y  then the solution of the system (2.1) is permanent. 

Proof: Consider the Lyapunov function 1 2( , )  p ph x y x y , where 1 2,p p are positive constants. 

In positive octant
.

1 1 2 2( , ) / / /   x y h h p F x p F y . To show the system has permanence of the solution 

we required to show ( , ) 0 x y at axial equilibrium point (E2). Here it is clearly exist without any condition. 

Hence the system has a permanent solution with unconditionally. 

 

5 Existences of the Equilibrium Points and Their Stability Analysis  

In this section we will study the existence and stability behaviour of the system (2.1) at various equilibrium 

points. The equilibrium points of the system (2.1) are  

(i) Trivial equilibrium : 1(0,0)E  
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(ii) Persistent equilibrium :  2 ( ,0)E k  

(iii) Interior equilibrium : 3 2 2( , )E x y  

where 
  2

2
2 2( ) ( )

  
 
 


   

dL d y
x

L y e dL d y
 and 2y is the root of the following equation. 

3 2
1 2 3 4 0      y y y                    (5.1) 

where 

2
1

2 2 2
2

2 2 2 2 2 2 2 2
3

2 2 2 2 2 2
4

( ) ;

( ) 2 ( )( );

( ) (2 1) ;

;

   

            

              

         

  

       

        

   

e d

e rk d e r e rk L e d e d

L e d e rd L e Lr e rdkL e rkL e Lrkd e Lrk

L e rd e Lrk e L rkd e L rk

 

The first two equilibrium points always exist and (5.1) has one and only positive root if 
2 34 0   , if 

2 34 0   then (5.1) has two equal roots and if 
2 34 0    then it has three distinct real roots, where 

2 3 2
1 4 1 2 3 2 1 3 23 2 ,               . By Cardan’s method, the roots of the equation (5.1) is 

2
1

1
( )

 


 A
A

, where A denotes the value of   
1

3
2 31

4
2

       
. We obtain the remaining roots 

of the equation (5.1) by Cardan’s method in a similar manner. Now, for positive root of 2y , one positive 

interior equilibrium point is attained provided that 2 2( ) ( ) 0     L y e dL d y . 

5.1 Stability and bifurcation analysis of each fixed point 

The stability analysis of each equilibrium point finds discussion along with bifurcation analysis of the system 

(2.1). In this process, the following notations have been employed.  

 1 2( , ) ( , ), ( , ) , where ( , )


  T TX F X m F x y F x y X x y , and the Jacobian matrix of the system 

( , )J AF X m . 

5.1.1 Stability analysis at E0 

The Jacobian at this equilibrium point is denoted by J0, and is defined as 0

0

0

 
   

r
J

d
 

The Latent values are r,-d. Hence the system (2.1) at equilibrium point E0 is unstable. 

5.1.2 Stability analysis at E1 
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The Jacobian matrix of the system (2.1) at equilibrium point E1 is denoted by J1 and is defined as  

 

The Latent values are ,



 


e k

r d
k

. Therefore the system (2.1) is stable if     where
( )  

d k

ek
.  

If     then one Eigen value of 1J  is zero and the other eigen value isr . Let the Eigen vectors of 1J  

and 1
TJ  corresponding to the Latent value ‘0’ are M and N respectively. M and N are defined as 

2

2

( )




 
   
  


M

M

k
M

r k and 
2

2

0 
  
 

N
N

respectively. Here 2 2,M N are two non zero real numbers. Now

 , 0     
TN F X , where  1 ,0X k . Hence by Sotomayor theorem (Sotomayor, 1973) the system 

does not attain any saddle-node bifurcation around E1. Again   2 2
1, 0 


     

T ekM N
N AF X M

k
 and 

    2
1, , 0    

TN A F X M M , where
 

,  


 
 

AFF
F AF . Therefore, by the same theorem 

[25] the system experiences a transcritical bifurcation at    around the axial equilibrium E1. 

5.1.3 Stability analysis at E2 

The Jacobian matrix of the system around the equilibrium point E2 (x2, y2) is defined as  

   

   

2 2 2 2
2

22

2
2 2

2 2

2 2

 


  


      
 

   

rx x y x

k xx
J

e y Ly

x L y

 

In above matrix 
  

2 2 2 2
11

2 2

/
0,if <

/ 1 1 /

    
  

 
    

 
srx y rx y

a
k x x k

      
2 2 2

12 21 222 2
2 2 2

0, 0& 0
   

 
 

     
  

x e y Ly
a a a

x x L y
 

11 22 2 11 22 12 22 10&det( )( ) 0 if <       str J a a J a a a a  Where 2

2

 s r x

ky
 

1

0

k
r

kJ
e k

d
k







    
   
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Therefore, the system (2.1) is locally asymptotically stable at positive equilibrium point 2 2 2( , )E x y  if <  s .    

5.1.4 Bifurcation analysis 

i) Saddle-node bifurcation: To account for the saddle node bifurcation we have to consider 2det( ) 0J 

which gives SN   and one eigen value of 2J will be zero. Here SN is the solution of the equation  

   2 2 3 2 3( ) ( ) ( )( ) ( ) ( )k exy L y k xy x k xy x L y r xy x L y                 .  

Let 1 2and  be the eigen vectors of 2J and 2
TJ corresponding to the eigen value zero. The first eigen 

vector 1 is defined as  1 2

T
z and z and  2 1 2,

T
h h  , where 

12 22 21 22
1 2 2 1 2 2

11 21 11 12

,
a a a a

z z z h h h
a a a a

   
     , and 2 2,z h are any two non-zero real numbers. 

By simple calculation we can verify easily that  2 2 , 0T SNF X     and 

 2
2 2 1 1, ( , ) 0T SNA F X       . Therefore, by Sotomayor theorem [25] the system has saddle -node 

bifurcation at positive equilibrium 2 2 2( , )E x y and also the system has neither transcritical nor any pitch-fork 

bifurcation at 2 2 2( , )E x y since  2 2 , 0T SNF X     . 

ii) Hopf-bifurcation: If 2( ) 0tr J  which gives 
HB   

where
 

 
 2 2

2
HB rx L y Ly x

xyk L y

 


  
 


and 

   2 2 3 2
2 3 2

3

1
det( ) [ ( ) ( ) ( )( )

( ) ( )

( ) ( )]

J k exy L y k xy x k xy x L y
k x L y

r xy x L y

      


 

      
 

  
 

If 2 2( ) 0&det( ) 0tr J J  then the Latent values of 2J will be purely imaginary and by implicit function 

theorem, the system undergoes Hopf bifurcation at positive equilibrium 2E . 

 

6 Formulation of the Discrete Mathematical Model  

In this section we study the dynamics of discrete predator-prey model with intraspecific competition between 

predators, which has the following difference equations 
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yx
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yx

k

x
rxxx






















2

1

1 1








 (6.1)          

                                                                        

where x and y are the population biomasses of the predator and prey generations n and n+1 respectively. In 

system (6.1), all the parameters are same as in system (2.1). The map given by equation (6.1) is a noninvertible 

map of the plane. The study of the dynamical properties of the above map allows us to have information   

about long-run behaviour of the predator–prey populations. Starting from the initial condition  00 , yx  , the 

interaction of (6.1) uniquely determines a trajectory of the states of population output in the following form:  

      00 ,, yxTnynx n   where ,.........2,1,0n  

 

7 Fixed Points and Stability Analysis  

The system (6.1) has two fixed points 1 2E and E  and these are exactly same as the fixed points of continuous 

model (2.1). Next we have to study the stability of these fixed points. 

To discuss the local stability of each fixed point, first we have to compute Jacobian matrix of the system 

(6.1) at each fixed point. 

 

   

2

2 2

1

1

rx xy x

K xx
J

e y Ly

x L y

 


 


       
 

   

 

To study the stability of the fixed points of the system (6.1) we recall the following lemma. 

Lemma 1.  Let   2
1 2L L       and  1 0   

Let 1 2,   are two roots of   0   . Then: 

i). 1 1  and 2 1  if and only if  1 0    and  0 1   

ii). 1 1  and 2 1  if and only if  1 0    

iii). 1 1  and 2 1  if and only if  1 0    and  0 1   

iv). 1 1   and 2 1  if and only if  1 0    and 1 0,2;L   

v). 1 2,   are complex and 1 21, 1   if and only if 2
1 24 0L L   and  0 1   

A fixed point  * *,x y is called a sink if 1 1  and 2 1  , so it is locally asymptotically stable.  * *,x y  
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is called a source if 1 1  and 2 1  , so it is locally unstable. If  * *,x y is called a saddle if 1 1  and 

2 1   and  * *,x y  is called a non-hyperbolic if 1 21, 1   . 

Theorem 4. Suppose that the fixed point 1E  

i).is a sink if 0r  and     

ii).is a source if 0r  and     

iii).is a saddle if 0r  and     

iv).is non-hyperbolic if 1r  and     where 
 d K

eK





  . 

Proof: To prove all these results first we have to compute the variation matrix of the system (6.1) at 1E  is 

1

1

0 1
E

K
r

KJ
e K

d
K







    
    

 

The eigen values of above Jacobian matrix are 1 21 , 1
e K

r d
K

 


    


. 

By using Lemma1 we can easily verify that 1E is a sink if 1 . ., 0r i e r   and 

 
1 1 . .,

d Ke K
d i e

K eK

  



    


; 1E is a source if 0r  and    ; 1E is a saddle if 0r 

and     and is non-hyperbolic 1r   and    .  

 

8 Local Stability and Hopf-bifurcation around Interior Point  

We now investigate the local stability of positive equilibrium  * *,x y . The variation matrix at the positive 

equilibrium  * *,x y  is 

2

* *
*

*
1

1
E

rx x
Mx

J K x
e M LN






 
    

  

  where 
   

* *

2 2* *
,

y y
M N

x L y

 


 

 
 

The characterstic equation of this Jacobian matrix is   2 0B C        
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Where 
* * * *

* * *
*

2 , 1
rx rx rx e M x

B Mx LN C Mx LN LN LMNx
K K K x

 


          


 

Theorem 5: If 
* * * *

* * *
*

2
2 2 3

rx rx e M x rx
LMNx LN Mx LN LMNx LN

K K x K

 


        


 then the 

fixed point 2E  is locally asymptotically stable. 

Proof: In order to prove 2E is locally stable by using Lemma1 we have to verify

   1 0, 1 0 1and C     .  

 
* *

*
*

1
rx e M x

LN LMNx
K x

 


  


 

If 
* *

*
*

rx e M x
LN LMNx

K x

 


 


then  1 0   

 
* * *

* *
*

2
1 3 2 2

rx rx e M x
Mx LN LN LMNx

K K x

 


       


 

If 
* * *

* *
*

2
2 3

rx e M x rx
Mx LN LN LMNx

K x K

 


     


 then  1 0    

* * *
* *

*
1 0

rx rx e M x
C Mx LN LN LMNx

K K x

 


       


 

Which is true if 
* * *

* *
*

rx rx e M x
LN LMNx Mx LN

K K x

 


    


 

From above results 2E is locally asymptotically stable if () is exist. 

Corollary 1: The fixed point 2E  is unstable if and only if the following conditions holds 

* * *
* *

*

rx rx e M x
LMNx LN Mx LN

K K x

 


    


, or 

* * *
* *

*

2
2 2 3

rx e M x rx
Mx LN LMNx LN

K x K

 


     


. 

Corollary 2: Suppose that 
* * *

* *
*

2
2 2 3

rx e M x rx
Mx LN LMNx LN

K x K

 


     


 then the system (6.1) 

undergoes a Hopf-bifurcation when  passes through a critical value c  where det 1 cj at    . 
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9 Stochastic Stability of The Deterministic System at Positive Equilibrium Point 
 

 

To investigate the environmental fluctuations on model (2.1), it is understood that the stochastic perturbations 

are of white noise type and that they are proportional to the distances of ( )x t  and ( )y t respectively. So 

system (2.1) results  

 

 

1
1 2

2
2 2

2

1 t

t

dx x xy
rx

dt k x

d

x x d

y y d
y e xy y

dy
dt x L y




 

 


 

       

   
 



                     (9.1)
 

where 1 2,   are real constants,   , 1, 2i
t i t i    are independent of each other standard Wiener 

processes. The system (9.1) has the same equilibrium as the system (2.1). 

The stochastic differential system (9.1) may then centred at its positive equilibrium 2E  by the change of 

variables 

1 2 2 2,u x x u y y                           (9.2) 

The linearized Stochastic Differential Equations around 2E take the form 

         du t f u t dt g u t d t                         (9.3) 

where       1 2,
T

u t u t u t ,    2f u t J , which defined in section (5.1.3) and 

  1 1 2 2( ) ( , )g u t diag u u  . 

Let   1,2 20, ,


  C  be the family of nonnegative functions.  ,W t u  defined on 

  20,   is a continuously differentiable function with respect to t and twice with respect to u .  

We define the differential operator L for a function  ,W t u by 

           
2

2

, , ,1
( , )

2
T TW t u W t u W t u

LW t u f u Tr g u g u
t u u

   
       

                (9.4) 

1 2 3

, ,
W W W W

col
u u u u

    
      

,
 2 2

2

,
, 1, 2

j i

W t u W
i j

u u u

  
      

 and ‘T ’ means transposition. 

With reference to the book by Afanas’ev et al. 1996; the following theorem holds. 

Theorem 6. Suppose there exist a function     1,2 2( , ) 0, ,


   W t u C satisfying the following 
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inequalities 

 1 2,
p p

K u W t u K u  ;   3, ,
p

LW t u K u                     (9.5) 

where 1 2 3, ,K K K and p  are positive constants. 

    Then the trivial solution of (9.3) is exponentially p - stable for 0t  Moreover, if in (9.5), 2p   the 

trivial solution of (9.3) is globally asymptotically stable in probability. 

Theorem 7.  Suppose that 
   

2 2 2 2
2

2 2
1 2 2

2 2

2 , 2
rx x y Ly

k x L y
  




 
  

 
 




 hold. Then, the trivial solution 

of (9.3) is asymptotically mean square stable. 

Proof: Let us consider the Lyapunov function 

   2 2
1 1 2 2

1

2
W u w u w u                           (9.6) 

where 1 2,w w are nonnegative constants  to be chosen in the following . It is easy to check that inequalities 

(9.5) hold true with 2p  . 

 
       

     

2 2 2 2 2 2
2 2 2

22

1 1 2 1 2 1 2 2

2

2

2 2

,1

2
T

LW u w u u u w u u u

W t u
T

rx x y x e y Ly

k xx x L

u
u

y

r g u g

    
 






    
                

 
   



   (9.7) 

with      
2

2 2 2 2
1 1 1 2 2 22

,1 1

2 2
T W t u

Tr g u g u w u w u
u

 
 

      
 

If in (9.7) we choose
   1

2 2
22

2 2

x e y

x
w w

x

  
  

 , then 

 
   

2 2 2 2
2 2

2 2

2 2 2 2
1 1 1 2 2 2

1 1

2 2
LW u w

rx x y Ly

k x L y
u w u  



   
       

   
   


 

 

According to Theorem (1), we conclude that the trivial solution of system (9.3) is globally asymptotically 

stable.  

 

10 Numerical and Computer Simulation 

Example1. For the fixed parameter values 0.8, 50, 0.628, 10, 5, 0.06, 0.225r k e L d          
and varying   values, the system moves from stable to unstable or unstable to stable. If  varies from 0.4 to 

0.66 the system is stable, from 0.67 to 1.8 the system is unstable and the system is stable when greater than 1.8 

(Illustrated in Fig. 1, Fig. 2 & Fig. 3). Also, we observed when 1.8HB   the system will go under Hopf 
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bifurcation since for 1.8  , the model (2.1) have the equilibrium point (1.8451, 5.3368), 2( ) 0tr J   and

2 0.det 11 4( 0) 7J   . 

Example 2: Taking the parameter values as 0.2140.2; 50; 0.628; 0.; 05;r k e     

10; 0.5; 0.06;L d    with noise 1 10.01; 0.2;   Fig4 shows, the system (9.1) is asymptotically 

stable for intensities of white noise sufficiently large.  

Example 3: Fig5 to Fig7 illustrate that for different values of  and keeping other parameter values are made 

unchanging in system (2.1), the system goes unstable to stable when    increasing. This indicates the intra-

specific rivalry between predators for prey diminishes the development of the predator population and allows 

for biologically tenable oscillations and the presence of stable coexistence equilibrium.  

Example 4: If 0.5; 500; 0.628; 0.2; 0.02; 50; 0.06;0.314;r k e L d         

For above parameter values the system (2.1) has three equilibrium points (as shown in Fig8), of these one 

equilibrium point is spiral source at (0.00879, 0.04584), at this the Latent values of the Jacobian matrix are 

complex with positive real part, second equilibrium point is saddle at (81.9137, 109.0935), at this point the 

Latent values are opposite signs and third equilibrium point is nodal sink at (417.9748, 109.1915), at this point 

the Latent values of the Jacobian matrix are negative real part.  

If 0.514  then only one equilibrium point is exist (as shown in Fig9) and which is spiral source at 

(0.00458, 0.0239), at this point the Latent values of the Jacobian matrix are complex with positive real part and 

it is unstable. That means when   is increased from 0.314 to 0.514, two equilibrium points saddle node and 

nodal sink are disappear and the other equilibrium point remains same. This indicates at 0.514  the 

system (2.1) experiences saddle node bifurcation at positive equilibrium. 

 

11 Concluding Remarks  

The majority of the Prey-Predator models imagine intra-specific competition between predators without 

saturation constant. This system has been shown to possess transcritical bifurcation at   around the axial 

equilibrium. Also, it has saddle-node bifurcation at positive equilibrium point SN   and the system 

experiences Hopf bifurcation. Discuss the stochastic stability of the system by constructing a suitable function. 

Also, these analytical results were supported by suitable numerical examples. 

 

 

 

 

 

 

 

Fig. 1 Shows the trajectories and phase graphs of the model (2.1) with 0.4 
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Fig. 2 Shows the trajectories and phase graphs of the model (2.1) with 0.67 
 

 

 

 

 

 

 

 

 

Fig. 3 Shows the trajectories and phase graphs of the model (2.1) with 1.8 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Shows the trajectories of the model (9.1) with noise. 
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Fig. 5 Shows the trajectories and phase graphs of the model (2.1) with 0.01 
 

 

 

 

 

 

 

 

 

Fig. 6 Shows the trajectories and phase graphs of the model (2.1) with 0.1 
 

 

 

 

 

 

 

 

 

Fig. 7 Shows the trajectories and phase graphs of the model (2.1) with 0.2   
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        Fig. 8 Illustrates the three equilibrium points of the system (2.1) 

 

 

 

 

 

 

 

 

       Fig. 9 The equilibrium point 3E  
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