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Abstract  

The generalized discrete logistic model (GDLM) of population dynamics was used for fitting of the known 

empirical time series on the green oak leaf roller (Tortrix viridana L.) fluctuations in European part of Russian 

Federation (Korzukhin and Semevsky, 1992). The model was assumed to demonstrate satisfactory data 

approximation if and only if the set of deviations of the model and empirical data satisfied several statistical 

criterions (for fixed significance levels). Distributions of deviations between theoretical (model) trajectories 

and empirical datasets were tested for symmetry (with respect to the ordinate line by Kolmogorov–Smirnov, 

Mann – Whitney U-test, Lehmann – Rosenblatt, and Wald – Wolfowitz tests) and the presence or absence of 

serial correlation (the Swed–Eisenhart and “jumps up–jumps down” tests). Stochastic search in a space of 

model parameters show that the feasible set (set of points where all used tests demonstrate correct/required 

results) is not empty and, consequently, the model is suitable for fitting of empirical data. It is also allowed 

concluding that observed regime of population dynamics isn’t cyclic (if length of cycle is less than 1500 years) 

and can be characterized by the fast decreasing autocorrelation function (with further small fluctuations near 

zero level). Feasible set allows constructing almost-Bayesian estimations of GDLM parameters. For the 

situation when model parameters are stochastic variables algorithm of calculation of model trajectories is 

presented. 

 

Keywords discrete logistic model; parameter estimation; ordinary least squares; method of extreme points; 

analysis of deviations; almost-Bayesian approach. 

 

 

 

 

 

 

 

 

1 Introduction 

One of the most important problems in modern ecology is a problem of identification of population dynamics 

type for existing time series (Isaev et al., 1984, 2001). Solution of this problem can give us a scientifically-

based background for forecast, understanding of situation when we have to use one or other method for 
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optimal population dynamics management (and what kind of methods we must use for it), and methods for 

solution of some other important ecological problems. 

Determination of population dynamics type can be provided by two different ways. We can use various 

biological tests (Isaev et al., 1980, 1984; Berryman, 1981, 1990) which allows using information of 

qualitatively different types. We can also use mathematical models of ecosystem dynamics (Berryman, 1992; 

McCallum, 2000; Tonnang et al., 2009a, b, 2010; Nedorezov, 2012a, b, 2016), and compare existing time 

series with values generated by these models (Turchin et al., 2003; Nedorezov, 2014). 

For various mass species of forest insects (and, in particular, for green oak leaf roller (Tortrix viridana L.); 

Korzukhin and Semevsky, 1992; Rubtsov, 1983; Rubtsov and Shvytov, 1980; Nedorezov and Sadykova, 2010; 

Nedorezov et al., 2010), we have (rather) big time series from various locations, and for analyses of these 

datasets it is possible to use ecological models with several (visible and invisible) variables (Isaev et al., 1984, 

2001; Myers, 1988, 1993; Turchin, 2003; Baltensweiler, 1964, 1978; Baltensweiler et al., 1977; Baltensweiler 

and Fischlin, 1988). But before applying of complex multi-component models describing population 

/ecosystem dynamics we must be sure that we cannot obtain sufficient description of population dynamics with 

simpler models (Lyapunov and Bagrinovskaya, 1975). In particular, as it was demonstrated in various 

publications (see, for example, Rubtsov, 1983; Isaev et al., 1980, 1984, 2001) population dynamics of green 

oak leaf roller can be characterized as an outbreak proper (or pulse eruptive outbreak in Berryman’s 

classification; Berryman, 1981, 1990) or as permanent outbreak. But these dynamic regimes contain several 

non-trivial stationary states of system (in positive part of phase space) and respectively can be realized within 

the framework of rather complicated mathematical models. But before use of difficult models we have to be 

sure that population dynamics cannot be described by simple models which have one non-trivial equilibrium. 

In current publication for fitting of known time series (Korzukhin and Semevsky, 1992) on the dynamics 

of green oak leaf roller generalized discrete logistic model (GDLM) was used (Maynard Smith, 1968, 1974). 

Estimations of model parameters were provided by several different statistical approaches: Ordinary Least 

Squares (OLS) (Draper and Smith, 1981; Bard, 1973; Demidenko, 1981; Lawson and Hanson, 1986), Method 

of Extreme Points (MEP) (Nedorezov, 2012a, b, 2014, 2015), and almost-Bayesian approach. The last 

approach was called as “almost-Bayesian approach” because it was assumed that parameters of the GDLM are 

stochastic variables. Bayes theorem wasn’t used, and a’priori density functions of parameters were not 

considered: determinations of model parameter’s distributions were based on elements of feasible set (which 

was constructed for MEP approach) and presentation of joint density function as product of marginal density 

and conditional density functions (for initial value of population size and model parameters).  

Feasible set is a set of points from a space of model parameters (plus initial value of population size; for 

GDLM dimension of this space is equal to three) which correspond to model trajectories with specific features. 

These specific features are following: several statistical criterions give correct results for set of deviations 

(between model trajectories and empirical time series) for fixed significance levels. Set of deviations must 

have symmetric distribution (with respect to origin); density function must have monotonic behavior of 

branches for negative and positive values of deviations; there are no serial correlations in a sequence of 

deviations. In other words, for every point of feasible set we can conclude that respective values can be used as 

estimations of model parameters and used statistical criterions don’t allow concluding that model isn’t suitable 

for fitting of empirical time series.  

Provided calculations show that OLS-estimations belong to “non-biological zone” of space of model 

parameters, and it doesn’t allow determining of population dynamics type and present a real forecast of 

population size changing in time. Searching of MEP-estimations of model parameters was provided within the 

boundaries of “biological zone” of space of model parameters (definition of “biological zone” and “non-
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biological zone” are presented below). Several points with extreme properties were found; on a qualitative 

level all extreme points correspond to one and the same dynamic regime: it isn’t cyclic fluctuations of 

population size (when length of a cycle is less than 1500 years), and it can be characterized by fast decreasing 

of auto-correlation function.  

For model with “almost-Bayesian” estimations of parameters algorithm of generating of model trajectory 

is presented. Initial steps of generating process are illustrated by figures with density functions and by method 

of obtaining of values of model parameters (Mikhailov, 1974; Ermakov, 1975). 

 

2 Model Description 

Ecological studies employ a relatively small number of basic population dynamics models, which serve as a 

kind of blocks used in a construction of more complex multicomponent models (Maynard, 1968, 1974; 

Svirezhev and Logofet, 1978; Svirezhev, 1987; Nedorezov and Utyupin, 2011; Kostitzin, 1937; Pielou, 1977; 

Berezovskaya et al., 2005; Karev et al., 2008, and others). The very first of such basic models was the discrete 

logistic model (Nedorezov, 2012a): 

௞ାଵݔ ൌ ൜
௞ሺܾݔܽ െ ௞ݔ   ,௞ሻݔ ൑ ܾ

௞ݔ   ,0 ൐ ܾ
                       (1) 

Here, ݔ௞  is a population size (or population density) at time moment ݇ , ݇ ൌ 0,1,2… . Parameter ܾ  is a 

maximum value of population size; in (1) it is assumed that if ݔ௞ ൐ ܾ at time moment ݇ than for all ݉ ൐ ݇ we 

have ݔ௠ ؠ 0. Product ܾܽ is a maximal value of birth rate (which is defined as relation of sizes of population of 

two nearest generations). Parameters ܽ, ܾ, and initial value of population size ݔ଴ are non-negative amounts, 

ܽ, ܾ, ଴ݔ ൒ 0.  

If inequality ܾܽ ൑ 4 is truthful trajectories of model (1) are non-negative and bounded for all 0 ൑ ଴ݔ ൑ ܾ. 

If inequalities ܾܽ ൐ 4 and 0 ൏ ଴ݔ ൏ ܾ  are observed for model parameters possibility for model trajectory to 

intersect limits of the domain ሼݔ: ݔ ൏ ܾሽ is appeared; in this situation identification of population dynamics 

type is practically impossible: behavior of model trajectory will correspond to regime of population extinction. 

In other words, in a space of model parameters domain ሼሺܽ, ܾሻ: ܾܽ ൐ 4ሽ can be defined as “non-biological 

zone”. Below domain ሼሺܽ, ܾሻ: ܾܽ ൑ 4ሽ will be called as “biological zone”.  

 

Fig. 1 Bifurcation diagram of model (1). Parameter ܾ ൌ 1. 

 

Model (1) has very rich set of dynamical regimes (Fig. 1). If ܾܽ ൏ 1 there is the regime of population 

asymptotic extinction (in figure 1 this domain is ሾ0,1ሿ). If inequalities 1 ൏ ܾܽ ൏ 3 are truthful there is the 

regime of stabilization of population size at non-zero level for all initial positive values of population size, 
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0 ൏ ଴ݔ ൏ ܾ. If 3 ൏ ܾܽ ൏ 4 cyclic dynamical regimes of all lengths can be observed (Maynard, 1968, 1974; 

Nedorezov, 2012a; Nedorezov and Utyupin, 2011). 

 

3 Statistical Criterions 

In publication several different ways for analysis of correspondence of empirical time series and model 

trajectories were used. Ordinary least squares (OLS) method (Bard, 1974; Draper and Smith, 1981) was used 

in traditional way. Parameters of model (1) were determined in a result of minimization of squared deviations 

between empirical time series and model trajectories (global fitting). After that deviations between empirical 

time series and model trajectories were tested for Normality, equivalence of average to zero, and 

existence/absence of serial correlation. If we can conclude (i.e. we cannot reject the respective Null hypothesis) 

that distribution of set of deviations corresponds to Normal distribution (it was checked with Lilliefors test, 

Shapiro – Wilk test and some other tests; Shapiro and Wilk, 1965; Shapiro et al., 1968; Lilliefors, 1967, 1969; 

Bolshev and Smirnov, 1983; Anderson and Darling, 1952, 1954), after that we can use tests for checking 

existence/absence of serial correlation (for this reason Durbin – Watson test was used; Draper and Smith,1981). 

In a situation when distribution of deviations doesn’t correspond to Normal there are no reasons to check 

existence/absence of serial correlation: in such conditions we have to conclude that model doesn’t correspond 

to considering datasets.  

It is well-known that criterions can give qualitatively different result: some tests can demonstrate that 

Null hypothesis (for example, about Normality of deviations) cannot be rejected, and some other criterions can 

demonstrate that Null hypothesis must be rejected. In this situation we will follow the “principle of spoon of 

tar”: it is well-known that spoon of tar can make foul a barrel of honey. In other words, result of application of 

statistical criterions doesn’t correspond to our target (we get “bad result”). 

Non-traditional way – method of extreme points (MEP) (Nedorezov, 2012a, 2015, 2016) – was applied to 

estimation of model parameters too. MEP is based on qualitatively different approach to estimating of model 

parameters (than it is observed for OLS). At first step of determination of MEP-estimations we must find 

elements of feasible set.  

As it was pointed out above feasible set is a set of points from a space of model parameters (plus initial 

value of population size which is assumed to be unknown too) which correspond to model trajectories with 

special properties. These properties are following: used statistical criterions described below give required 

results for sets of deviations (between model trajectories and empirical time series). Set of deviations must 

have symmetric distribution (with respect to origin); density function must have monotonic behavior of 

branches for negative and positive values of arguments; there is no serial correlation in a sequence of 

deviations. For every point of feasible set we can conclude that respective values can be used as estimations of 

model parameters, and for every point used statistical criterions don’t allow concluding that model isn’t 

suitable for fitting of empirical time series. After determination of elements of feasible set, we have to find 

points with extreme properties: these points correspond to sets of deviations when one or other property (or 

several properties) are observed in its maximum realization. 

When we use Ordinary Least Squares approach to estimating model parameters we try to realize the 

following steps. Let ݃ሺܽ, ܾ, ,଴ݔ ݇ሻ be a solution of Eq. (1), ݃ሺܽ, ܾ, ,଴ݔ 0ሻ ൌ ௞ݔ଴, and ሼݔ
݇ ,ሽכ ൌ 0,1,… , ܰ, be a 

considering sample where ܰ is sample size. At first step we must determine the basic ideology of analysis. 

Below we’ll use global fitting (Wood, 2001 a, b): real (empirical) trajectory we’ll approximate by artificial 

(model) trajectory. It means that model parameters are estimated at minimization of the following functional 

form: 

  ܳሺܽ, ܾ, ଴ሻݔ ൌ ∑ ሺݔ௞
כ െ ݃ሺܽ, ܾ, ,଴ݔ ݇ሻሻଶ

ே
௞ୀ଴ ՜ min௔,௕,௫బ ܳ                            (2)                                                  

4



Computational Ecology and Software, 2019, 9(1): 1-18 

   

  IAEES                                                                                                                                                                          www.iaees.org

It is easy to find in literature other variants of loss-function (2): this form can be constructed for birth rates 

(birth rate is defined as relation of two nearest values of population sizes), it is possible to use absolute values 

of deviations, squared deviations may have constant or dynamic weights etc. (see, for example, Nedorezov, 

2012a, 2018a, b; Wood, 2001a, b; Mvalusepo et al., 2011). It means that there are no rules for determination of 

kind of loss-function. It can be marked as one of serious problems of OLS approach.  

For example, in literature one can find other types/modifications of functional form (2). If we want to take 

into account stronger influence of small values of initial sample onto final result (on parameter estimations), 

functional form (2) with weights can be applied: 

ܳሺܽ, ܾ, ଴ሻݔ ൌ ෍ݓ௞ሺݔ௞
כ െ ݃ሺܽ, ܾ, ,଴ݔ ݇ሻሻଶ

ே

௞ୀ଴

՜ min
௔,௕,௫బ

ܳ 

In this expression weights ݓ௞ are non-negative values for all ݇, ݓ௞ ൒ ଴ݓ ,0 ൅ڮ൅ݓே ൌ 1. But now criterion 

for selection of weights ݓ௞ doesn’t exist. The only recommendation can be present: in such occasion we have 

to have bigger values of weight for smaller deviation.  

One more way for modification of functional form (2) is as following:  

ܳሺܽ, ܾ, ଴ሻݔ ൌ ෍|ݔ௞
כ െ ݃ሺܽ, ܾ, ,଴ݔ ݇ሻ|ఊ

ே

௞ୀ଴

՜ min
௔,௕,௫బ

ܳ 

In this expression ߛ is positive number, ߛ ൐ 0.  

Abundance of types of loss-functions allows concluding that now we have no criterions for selection of 

functional forms of the type (2). If for obtained estimations of parameters one of used statistical criterions give 

negative result (in particular, Null hypothesis about correspondence of distribution of set of deviations to 

Normal distribution, serial correlation is observed in sequence of residuals etc.) it gives a background for 

conclusion that model cannot be used for fitting of time series. In other words, final conclusion about 

suitability or non-suitability of model for fitting of considering time series we make using one point of a space 

of model parameters. Use of loss-functions for finding estimations of model parameters is one of the basic 

limitations of OLS. It becomes extra serious problem in a situation when we have to use several correlated 

time series (Rosenberg, 2010; Gilpin, 1973; Gilpin and Ayala, 1973; Tonnang et al., 2009a, b, 2010; 

Nedorezov, 2014). 

As it was pointed out above after estimation of model parameters following hypotheses must be checked: 

about equivalence of average of residuals to zero; about Normality of deviations (Kolmogorov – Smirnov, 

Lilliefors, and Shapiro – Wilk tests were used; Bolshev and Smirnov, 1983; Shapiro et al., 1968; Lilliefors, 

1967), about absence of serial correlation in sequences of residuals (Draper and Smith, 1981; Bard, 1973). If 

Null hypotheses cannot be rejected, we can conclude that good correspondence between model and empirical 

datasets is observed. Below we will call it as traditional approach. On the other hand, requirements on 

Normality of deviations are rather strong. Thus, we can modify it and check the following properties of 

samples: symmetry of distribution with respect to origin; density functions must be unimodal with monotonic 

branches. Hypotheses about monotonic behavior of branches of density functions were checked with Spearman 

correlation coefficient of ranks (Bolshev and Smirnov, 1983; Nedorezov, 2012a, b, 2014, 2015). Like in 

previous case it is important to check existence/absence of serial correlation. For checking of 

absence/existence of serial correlation in sequence of deviations Durbin – Watson test, test “jumps up – jumps 

down”, and some other tests were used (Draper and Smith, 1981; Bard, 1973; Hollander and Wolfe, 1973; 

Likes and Laga, 1985; Hettmansperger, 1987).  
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Note that use of Method of Extreme Points (MEP) (Nedorezov, 2012b; Nedorezov and Utyupin, 2011) 

doesn’t assume using of any loss-functions. For obtaining of MEP-estimations of model parameters we have to 

construct feasible set of points Ωכ in a space Ω ൌ ሼሺܽ, ܾ, :଴ሻݔ ܽ, ܾ, ଴ݔ ൒ 0. Set Ωכ must be constructed by the 

following way: at the beginning we have to choose a set of statistical criterions which must be used for 

checking of properties of sets of deviations between theoretical/model values and respective values of initial 

time series. We have also to fix significance level for all criterions. After that we must find points in a space Ω 

which correspond to sets of deviations when all used statistical criterions give desired results.  

If feasible set is empty, Ωכ ൌ  we get a background for conclusion that model isn’t suitable for fitting of ,׎

considering time series. When Ωכ isn’t empty for approximation of time series we must choose points with 

extreme properties (for example, we can choose points with maximum p-value for one or another statistical 

criterion).   

In current paper 5% significance level was fixed for all used criterions. For every selected point of space 

of model parameters set of respective deviations was checked on symmetry with respect to origin (it was 

provided with tests of homogeneity of two samples: Kolmogorov – Smirnov, Mann – Whitney, Lehmann – 

Rosenblatt, and Wald – Wolfowitz tests were used). Monotonic behavior of branches of density function was 

checked with Spearmen rank correlation coefficient (Bolshev and Smirnov, 1983; Lakin, 1990). For analysis 

of absence/existence of serial correlation in sequences of deviations Swed – Eisenhart test and test “jumps up – 

jumps down” were used (Draper and Smith, 1981; Hollander and Wolfe, 1973; Likes and Laga, 1985; 

Hettmansperger, 1987).  

 

4 OLS-estimations of Model Parameters 

Minimizing of loss-function (2) allowed obtaining following estimations of model (1) parameters: ݔ଴ ൎ

0.086465, ܽ ൎ 0.090102, ܾ ൎ 54.236778; for these estimations we have ܳሺܽ, ܾ, ଴ሻݔ ൎ 1215.035. This point 

of space of model parameters belongs to zone where origin is global stable equilibrium; when time step 

݇ ൌ 30 population size ݔ௞ ൌ 65.12392, and after that step population size becomes equal to zero for all 

݇ ൒ 31. 

Analysis of deviations shows that with 5% significance level hypothesis about equivalence of average to 

zero cannot be rejected. At the same time probability that distribution of deviations corresponds to Normal 

distribution is following: ݌ ൏ 0.1  (Kolmogorov – Smirnov test), ݌ ൏ 0.01  (Lilliefors test), ݌ ൌ 0.0116 

(Shapiro – Wilk test). Thus with 1% significance level hypothesis about Normality of deviations must be 

rejected (we follow the principle of “spoon of tar”).  

For weaker testing conditions we have following results. Testing of symmetry of distribution of 

deviations: probability of event that distribution is symmetric is equal to ݌ ൌ 0.584645 (Wald – Wolfovitz 

test), ݌ ൌ 0.033261 (Mann – Whitney U-test). It allows concluding that with 5% significance level hypothesis 

about symmetry must be rejected, and consequently OLS-estimation doesn’t belong to feasible set Ωכ.  

Thus, obtained results allow concluding that with OLS-estimations model (1) cannot give sufficient 

approximation of time series. Regime of population extinction is observed in model at 31 time step; 

distribution of deviation doesn’t correspond to Normal (respective hypothesis must be rejected with 1% 

significance level) and so on. In Fig. 2 there are real trajectory and model trajectory obtained for pointed out 

above values of parameters. 
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Fig. 2 Time series of fluctuations of green oak leaf roller (real trajectory, solid line) and trajectory of discrete logistic model 
(1) (broken line) obtained for parameters when minimum value of functional form (2) is observed. 

 

 

5 MEP-estimations of Model Parameters 

In Fig. 3 there are projections of 120000 points of feasible set Ωכ onto coordinate planes. All points were found 

at pure stochastic search in the domain ሾ0,102ሿ ൈ ሾ0,3ሿ ൈ ሾ0,180ሿ. Outside of this domain points of feasible set 

were not detected. As we can see on Fig. 3 big number of points of feasible set Ωכ are within the boundaries of 

“biological zone” of space of model parameters where inequalities ܾܽ ൑ 4 and ݔ଴ ൑ ܾ are truthful. Highest 

concentration of points (Fig. 3) is observed near bifurcation curve ܾܽ ൌ 4 . It indicates that with a big 

probability population dynamics of green oak leaf roller corresponds to cyclic regime with a big length of 

cycle.  

Analysis of elements of feasible set shows that 0.15% of all points are in zone between bifurcation curves 

ܾܽ ൌ 2 and ܾܽ ൌ 3. It means that with rather small probability we can observe a regime of fading fluctuations 

(with asymptotic stabilization of population size at non-zero level). About 79.52% of points are in zone 

between bifurcation curves ܾܽ ൌ 3 and ܾܽ ൌ 4. It means that with rather big probability we observe a regime 

of periodic fluctuations for population. More than 20% of points belong to non-biological zone (ܾܽ ൐ 4). 

Points of feasible set (Fig. 3c) in the zone ܾܽ ൏ 2 were not detected. It means that estimations of probabilities 

of regimes of monotonic stabilization of population size at non-zero level and population extinction are equal 

to zero.  

For points of set Ωכ it was obtained that minimum value for Kolmogorov – Smirnov test (݀ ൌ 0.25064) 

was observed at ݔ଴ ൌ 26.16194 , ܽ ൌ 0.11327 , ܾ ൌ 35.31373  (ܾܽ ൌ 3.999978 ). For these estimations 

minimum value (0.019231) was also observed for Lehmann – Rosenblatt test. For ݐ ൌ 0.26 probability ܭሺݐሻ of 

Kolmogorov distribution is close to zero (Bolshev and Smirnov, 1983), and respectively with significance 

level which is close to one, we cannot reject Null hypothesis about symmetry of distribution of deviations. 

Lehmann – Rosenblatt test shows that this hypothesis cannot be rejected with significance level 0.997. It 

means that Null hypothesis about symmetry of distribution must be accepted. Close result was obtained for 

Mann – Whitney test: ܷ ൌ 60 with critical level 45 when sample size is equal to 26. 
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Deviation ݁௞
ା is positive value of deviation ݁௞, and respectively ݁௞

ି is a negative one. If sample size is small, 

then we can check pointed out property for set ሼ݁௞
ାሽ ׫ ሼെ݁௞

ିሽ. Let’s consider a situation when ሼ݁௞
ାሽ is sufficient 

big sample, ݇ ൌ 1,… ,݉. And let ሼ݁௞
ାכሽ be a sample of ordered positive deviations: 

݁ଵ
ାכ ൑ ݁ଶ

ାכ ൑ ڮ ൑ ݁௠ାכ. 

Monotonic decreasing of density function means that bigger values (in sample) must be observed with 

smaller probabilities. Respectively, for lengths of intervals 

ሾ0, ݁ଵ
ାכሿ, ሾ݁ଵ

ାכ, ݁ଶ
ାכሿ, … , ሾ݁௠ିଵ

ାכ , ݁௠ାכሿ 

we have to have the similar order (in ideal situation). Rank 1 will correspond to shortest interval ሾ0, ݁ଵ
ାכሿ, 

biggest rank ݉will correspond to biggest interval ሾ݁௠ିଵ
ାכ , ݁௠ାכሿ. Ideal case we must compare with real situation 

which is determined by sample ሼ݁௞
ାכሽ . For this reason, we have to calculate Spearmen rank correlation 

coefficient ߩ (and/or Kendall correlation coefficient ߬) and check Null hypothesis ܪ଴: ߩ ൌ 0 with alternative 

hypothesis ܪଵ: ߩ ൐ 0. For selected significance level Null hypothesis must be rejected. Note we have stronger 

result in a case when we can reject Null hypothesis with smaller significance level. 

For pointed out parameters we have ݌ െ ݁ݑ݈ܽݒ ൌ 0.02052 for Spearmen rank correlation coefficient, and 

݌ െ ݁ݑ݈ܽݒ ൌ 0.02325 for Kendall correlation coefficient ߬. Thus, Null hypotheses must be rejected for both 

coefficients with 3% significance level. 

 

Fig. 4 Behavior of autocorrelation function. a – first 50 steps; b – 1500 steps. 

 

Analysis of behavior of auto-correlation function ݎሺ݇ሻ shows that for 0 ൏ ݇ ൏ 15000  all values of this 

function belong to close interval ሾെ0.02,0.02ሿ (Fig. 4). It allows concluding that if observed process is cyclic, 

the length of cycle is bigger than 1500 years. Moreover, fast decreasing of values of this function (Fig. 4a) 
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ሺ0ሻݎ) ൌ 1) and further fluctuations in narrow limits near zero level (Fig. 4b) is typical behavior for processes 

which forget their history very fast (for example, like pure stochastic processes). In Fig. 5 considering time 

series and model (1) trajectory obtained for pointed out parameters are presented. 

For points of feasible set Ωכ  (Fig. 3) it was obtained that maximum value for Mann – Whitney test 

ܷ ൌ 119  was observed for ݔ଴ ൌ 0.529402 , ܽ ൌ 0.299619 , ܾ ൌ 13.234814  (note this point belong to 

“biological zone” of space of model parameters, ܾܽ ൌ 3.9654). For these parameters we have ݌ െ ݁ݑ݈ܽݒ ൌ

0.1838 (Kolmogorov – Smirnov test), ݌ െ ݁ݑ݈ܽݒ ൌ 0.06028 (Lehmann – Rosenblatt test). Thus with 6% 

significance level Null hypothesis about symmetry cannot be rejected; but we must note that amount of 

݌ െ  .is very close to critical threshold ݁ݑ݈ܽݒ

 

 
Fig. 5 Time series of fluctuations of green oak leaf roller (solid line) and trajectory of model (1) (broken line) obtained for 
parameters when maximum amounts of ݌ െ   .are observed for Kolmogorov – Smirnov and Lehmann – Rosenblatt tests ݁ݑ݈ܽݒ

 

Spearmen rank correlation coefficient ߩ ൌ 0.6178 with ݌ െ ݁ݑ݈ܽݒ ൌ 0.0004933 . Kendall correlation 

coefficient ߬ ൌ 0.4277 with ݌ െ ݁ݑ݈ܽݒ ൌ 0.0009166. Taking it into account we must accept hypothesis about 

monotonic behavior of branches of density function. 

Analysis of behavior of auto-correlation function ݎሺ݇ሻ shows (Fig. 6) that for arguments  8 ൏ ݇ ൑

15000 all values of this function belong to close interval ሾെ0.08074,0.0685ሿ. Like in a previous case if 

observed process is cyclic length of this cycle must be bigger than 1500 years. In Fig. 7 considering time series 

and model (1) trajectory obtained for pointed out parameters are presented. 

For set Ωכ (Fig. 3) maximum value of Spearmen rank correlation coefficient ݎ ൌ 0.888547is observed 

for the following estimations of model parameters: ݔ଴ ൌ 0.573105, ܽ ൌ 0.217602, ܾ ൌ 18.18987 (this point 

belong to “biological zone” of space of model parameters, andܾܽ ൌ 3.958159). For obtained parameters 

݌ െ ݁ݑ݈ܽݒ ൌ 0.1226 for Kolmogorov – Smirnov test, ݌ െ ݁ݑ݈ܽݒ ൌ 0.20171 for Lehmann – Rosenblatt test, 

݌ െ ݁ݑ݈ܽݒ ൌ 0.218743 for Wald – Wolfovitz test, and ݌ െ ݁ݑ݈ܽݒ ൌ 0.293265 for Mann – Whitney test. 

Thus with 12% significance level hypothesis about symmetry of deviation’s distribution cannot be rejected. 

For Spearmen rank correlation coefficient we have ݌ െ ݁ݑ݈ܽݒ ൌ 8.367 · 10ି଻ . Kendall correlation 

coefficient ߬ ൌ 0.7169231 with ݌ െ ݁ݑ݈ܽݒ ൌ 5.988 · 10ିଽ. Considering presented results for deviations we 

have to accept hypothesis about monotonic behavior of branches of density function. 

Analysis of behavior of auto-correlation function ݎሺ݇ሻ  shows (Fig. 8) that for arguments 11 ൏ ݇ ൑

15000 all values of this function belong to close interval ሾെ0.038, 0.035ሿ. Like in previous cases if observed 

process is cyclic length of this cycle must be bigger than 1500 years.  
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considering model (1) are non-negative. And it was taken into account in all situations when we used 

determined algorithm for estimation of density function (fig. 9) for ݔ଴ and density functions for other model 

parameters. In various situations (for example, when we use Parzen’s windows for density fitting) we have to 

use variants of loss-functions (Parzen, 1962). The following principle for fitting of density function looks 

rather interesting: in a situation when we have a scalar sample and we have no idea about properties of density 

function (in other words, sample is a total information we have) width of Parzen’s window must be equal to 

value when Null hypothesis about equivalence of artificial sample (generated by Monte Carlo methods) and 

initial sample can be rejected with smallest probability (with Kolmogorov – Smirnov test, Lehman – 

Rosenblatt test etc.). For this reason, we have to generate a lot of artificial samples and for every sample we 

have to check respective Null hypothesis. 

 

 

 

Fig. 10 Conditional densities (after dividing on respective integrals; fragments) for parameter ܽ  (with condition ݔ଴ ൌ
14.6378) (a), and for parameter ܾ (with conditions ݔ଴ ൌ 14.6378 and ܽ ൌ 0.08) (b). 
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In Fig. 11 there are several trajectories of model which were obtained with the help of algorithm 

described above. A solid black curve is average for 10 stochastic trajectories of model. 

 

 

Fig. 11 Behavior of trajectories of model and average trajectory (solid black curve). 

 

7 Conclusion 

Provided analysis of fluctuations of green oak leaf roller population (Korzukhin, Semevsky, 1992) with 

generalized discrete logistic model showed that estimations of model parameters obtained with Ordinary Least 

Squares method belong to “non-biological zone”. Use of this approach gives us a background for conclusion 

that model doesn’t allow obtaining sufficient approximation for considering time series. Deviations between 

theoretical/model values and empirical numbers don’t correspond to several common requirements which must 

be observed if we check a “good” correspondence between model and existing dataset. For example, 

hypothesis about Normality of set of deviations must be rejected with 1% significance level.  

Use of Method of Extreme Points (MEP) allowed presenting several points of space of model parameters 

which are suitable for fitting. All presented points belong to “biological zone”, and deviations between 

theoretical/model trajectories and real dataset are satisfied to set of statistical criterions. In other words, 

analysis of deviations doesn’t allow concluding that model isn’t suitable for fitting of considering time series.   

It is interesting to note that all variants of dynamic regimes which are observed for MEP-estimations of 

model parameters, correspond (on a qualitative level) to one and the same population size behavior. This is not 

a cyclic regime with cycle length in 1500 years or less. Moreover, in all situations fast decreasing of values of 

auto-correlation function (calculated for model trajectories) with further small fluctuations near zero level is 

observed.  

Use of feasible set from the space of model parameters allows constructing modification of model (1) 

when parameters and initial population size are stochastic variables. It can be called as almost-Bayesian 

approach to estimation of model parameters (but Bayes’ theorem wasn’t used for determination of distributions 

of parameters). Projection of feasible set onto coordinate line corresponding to initial population size can be 

used for fitting of marginal density function of ݔ଴. Set of points which can be obtained in a result of separation 

of feasible set by rather narrow stripe (near value ݔ଴) can be used for fitting of conditional density for one of 

model parameters and so on. Finally, it allows obtaining of model trajectory with stochastic parameters. One of 

problems which exists in such situation is following: difference between model trajectory and existing time 
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series can be rather big (and we cannot conclude that there is a good correspondence between these 

trajectories).  
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