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Abstract

In this paper, the dynamics of a discrete-time predator-prey system with Crowley-Martin functional response is
examined. Via application of the center manifold theorem and bifurcation theorems, we algebraically show
that the system undergoes a bifurcation (flip or Neimark-Sacker) in the interior of R2. Numerical simulations
are presented not only to validate analytical results but also to reveal new dynamical behaviors which include
bifurcations, phase portraits, period- 5, 6, 7, 10, 11, 15, 16, 17, 21, 28, and period- 51 orbits, invariant closed
cycle, sudden disappearance of chaotic dynamics and abrupt emergence of chaos, and attracting chaotic sets.
Furthermore, maximum Lyapunov exponents and fractal dimension are computed numerically to justify the
chaotic behaviors of the system. Finally, we apply a strategy of feedback control to control chaos exists in the
system.
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1 Introduction

Predator-prey interactions have long been studied and have become one of the dominant themes in both
biology and mathematical biology due to their universal existence and importance, such as resource-consumer,
plant-herbivore, and phytoplankton-zooplankton forms. In recent decades, mathematical models have been
established to analyze various complex dynamics of the predator-prey systems in various circumstances. The
research on the Crowley-Martin functional response has now drawn great attention (Dong et al., 2015; Li et al.,
2015; Tripathi et al., 2016).

Despite plenty and extensive results on dynamics of continuous predator-prey system, studies on discrete
predator-prey model are relatively rare. In fact discrete predator-prey model is not a simple parallel promotion
of continuous system. Sometimes it shows richer and more complex dynamics than the corresponding
continuous model. Besides, for insects with non-overlapping generations, predator-prey system can be
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modeled in a discrete-time form; and numerical computation also requires to discretize a continuous-time
model (He and Lai, 2011; Elhassanein, 2014; He and Li, 2014; Nedorezov and Neklyudova, 2014; Rana,
2015a-d, 2017, 2019; Zhao et al., 2016; Zhao et al., 2017). These researches have mainly focused on Gauss-
type predator-prey interaction with monotonic functional responses. They obtained many complex properties
in discrete-time models including the possibility of bifurcations (flip and Neimark-Sacker) and chaos
phenomenon which had been derived either by using numerical simulations or by using center manifold theory.

In recent times, a few number of articles in literature discussed the dynamics of discrete-time predator-
prey systems with Crowley-Martin functional response (Ren et al., 2017; Zhang et al., 2018). For example, a
discrete-time predator-prey system of Leslie type with Crowley-Martin functional response was investigated in
Ren et al. (2017), and a discrete predator-prey system with Crowley-Martin Type functional response was
studied in Zhang et al. (2018). In their studies, the authors paid their attention to drive the existence of flip and
Neimark-Sacker bifurcations by using center manifold theory. In this paper, we consider the following
predator-prey system with Crowley-Martin functional response (Crowley and Martin, 1989):

. — _Xy_ ey

r = mn (1 K) (1+ax)(1+B8y)

. bxy d (l)
Y T Gaemaepy W

where x and y stand densities of prey and predator, respectively; r,K,a,b,d,a and B are all positive

axy

—————— denotes Crowley-Martin functional response. The parameter r is the intrinsic
(1+ax)(1+By)

constants, and
growth rate of the prey, the parameter K is the carring capacity of the prey and the parameter d is the
mortality rate of the predator; a and Z stand for the effect of capture rate and conversion factor denoting the

newly born predators for each captured prey; the parameters « and S are the saturating parameters of
Crowley-Martin functional response, a measures the magnitude of interference among prey, and S
expresses the interference among the predators.

Forward Euler scheme is applied to system (2) to get the following discrete system

(x) ~ X+ ox [T (1 B %) B (1+ax‘;(y1+BY)] (2
y bx
y+ 6y [(1+zxx)(1+[3y) N d]

where & is the step size. The objective is to study systematically the existence condition of a bifurcation (flip
or NS bifurcation) in the interior of R% using bifurcation theory and center manifold theory (Kuzenetsov,
1998; Winggins, 2003).

This paper is organized as follows. Section 2 deals the existence condition for fixed points of system (2)
and their stability criterion. In Section 3, we prove that under certain parametric condition system (2) admits a
bifurcation. In Section 4, we implement numerical simulations of the system for one or more control
parameters which include diagrams of bifurcation, phase portraits, maximum Lyapunov exponents and Fractal
dimensions. In Section 5, we use the method of feedback control to stabilize chaos at an unstable trajectories.
Finally we carry out a short discussion in Section 6.

2 Fixed Points: Existence and Their Stability
The fixed points of system (2) are solution of

IAEES WWww.iaees.org



Computational Ecology and Software, 2019, 9(2): 37-57 39

N T A [
xoxr(1-3) wranapyl T 7 3)
(1+ax)(1+By)

A simple algebraic computation shows that system (2) has a predator free fixed point E;(K,0) for all
parameter values. Next, it is of great interest to find the positive fixed point of system (2). Suppose that
E,(x*,y*) is a positive fixed point of system (2). Then, x* and y* are solutions of

_x - e
T(l K) (A+ax*)(1+By*)
o (4)
(A+ax*)(1+By")

From (4), we can see that x* € (0, K) is the root of the following cubic equation

pow? + 3p;w? + 3p,w + p3 = 0, (py # 0), (5)

with coefficients po = #. 3p1 = M, 3p; = a(b —da) — brp,p3 = —ad.

Now, the transformation z = p,w + p; converts the equation (5) to z3 + 3Hz + G = 0, whereG =
Do’p3 — 3pop1P2 + 2013, H = pop, — p12. Using Cardano’s method, we get following result.

Lemma 2.1 If G + 4H? > 0, then a unique positive fixed point E,(x*, y*) of system (2) exists, where

1
«_ 1 _H « _ —d+bx"—dax” 3
Xt = (q . p), Yy = PTerrTe andq denotes one of the three values of [

—G+\/GZ+4-H3]
2

Next, we investigate stability of system (2) at fixed points. Note that the magnitude of eigenvalues of Jacobian
matrix evaluated at fixed point E(x,y) determines the local stability of that fixed point. The Jacobian matrix
of system (2) evaluated at fixed point E(x,y) is given by

_ (%1 Qg2

](X,_V) - (a21 a22) (6)
where

_ rS§(K-2x) asy
a = 1+— (+a02(146y)"

- . ax
A2 = (1+ax)(1+By)? 7

_ by v
Q1 T Tran(+py)’

- 1 S(=bx+d(1+ax)(1+By)?)
a2z = (1+ax)(1+By)?

The characteristic equation of matrix J is

2 +p(,y)A+q(xy) =0 (8)
where p(x,y) = —tr] = —(ay1 + a,;) and det] = a;1a,, — a12057.
Using Jury’s criterion (Elaydi, 1996), we state the following stability conditions of fixed points.
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Proposition 2.2 The predator free fixed point E;(K,0) is a sink if 0 < § < min {%,%}, source if
. (2 2(1+Ka) _ . _2 2(1+Ka)
5 > min {r,—d+K(ad_b)} and non-hyperbolic if § == or TR (@db)

2(1+Ka)

LK@=’ the two eigenvalues of J(E;) are 4;, =1—7rd and

It is obvious that when 6=§ or

Ah=1—ad+ %. Therefore, a flip bifurcation can occur if parameters change in small vicinity of FBglor

FBE :
FBL = {(r,K,a,b,d,aﬁ,&) € (0,4):6 = 3,6 * M}
t T d+ K(ad — b)
or
FB: = {(r,K,a, b,d,aB,d) € (0,+00):6 = M, * E}
t d+ K(ad — b) r

At E,(x*,y"), we write equation (7) as
FQA):=2—-2+A5)A+ (1+A45+08%) =0,
where
1
2rx* N ay* bx* —d(1+ ax*)(1 + By*)? @ = (1+ ax*)2(1+ By
K (1+ax)?(1+ By (1+ax)(1+ByH2 + 1
K1+ ax*)?(1 + By

*

oE (abx*y* —ay

A = r-—

*)3 (r(K - 2

Then F(1) = Q6% >0 and F(—1) =4+ 2A6 + Q52
We state following Proposition about stability criterion of E,.

Proposition 2.3 Suppose that fixed point E,(x*, y*) of system (2) exists. Then itis a
(i) sink if one of the following conditions holds

(i) 2-40>0 and §<=2"27%

i2) A2-40<0 and 6<%
QO

(ii) source if one of the following conditions holds

(il) A2-4020 and §>212
(ii2) A2-4Q<0 and 6>-%;

(iii) non-hyperbolic if one of the following conditions holds

—A+VAZ-4Q,

(iii.l) A -40>0 and 6= —

(iii.2) A2 —40<0 and &= —ﬁi
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(iv) saddle if otherwise.

From Proposition 2.3, we see that two eigenvalues of J(E,) are 4; = —1 and A, # —1,1 if condition
(iii.1) holds. We rewrite the term (iii.1) as follows

—A—+VAZ —4Q
FBY, =1(r,K,a,b,d,ap,8) € (0,400):6 = ————, A2 -40>0y,
or
2 —A+VAZ =40 ,
FBEZ = (r,K,a,b,d,a[)’,(S)e (0,+oo):6=T‘ A2 —4Q0>0%.

Therefore, a flip bifurcation can appear at E, if parameters vary arround the set FB,%-2 or FBf-Z.
Also we rewrite the term (iii.2) as follows

A
NSBg, = {(r, K,a,b,d,aB,8) € (0,+4):6 = o A% — 40 < O},

and if the parameters change in small vicinity of NSBg,, two eigenvalues 4,, of J(E;) are complex having
magnitude one and then NS bifurcation can emerge from fixed point E,.

3 Bifurcation Analysis

In this section, we will give attention to recapitulate bifurcations (flip and Neimark-Sacker) of system (2)
around E, by using the theory of bifurcation (Kuzenetsov, 1998; Winggins, 2003). We set § as a bifurcation
parameter.

3.1 Flip bifurcation
Consider the system (2) at the fixed point E,(x*,y*) with arbitrary parameter (r,K,a,b,d,af,d) € FB%Z.

Similar fashion for the case of FB,%Z. Since the parameters lie in FB,}Z, let § =6y = _A_TM, then the
eigenvalues of positive fixed point (x*,y*) are
/’{1(61:') = _1 and 12(61:) - 3 + A6F
The condition |1,(6r)| # 1 leads to
ASp # —2,—4 ©)

Using the transformation ¥ = x —x*, § =y —y* and writing A(6) =J(x*,y*), we shift the fixed

point (x*,y*) of system (2) to the origin. After Taylor expansion, system (2) reduces to

()= 100)+ (567.5) -

where X = (%,7)" and
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o o~ 17 65apx* ~3 28ap ~e2 26aa 2~ 68aa’y* ~3
h&5.6) = 6[ (1+ax*)(1+By*)* (1+ax*)2(1+By*)3 xy (1+ax*)3(1+By*)? 7y (1+ax*)*(1+By*) ]
1 28apx* <2 28a o~ _2r 28aay” ~2 4
+ 2 [(1+ax*)(1+ﬁy*)3y (1+ax*)2(1+By*)? Xy + ( K + (1+ax*)3(1+ﬁy*)) x ] +oax 1) 11
Fi (%7 8) =1 68bB2x* ~3 28bp o2 28ba =2~ 68ba’y” ~3] (11)
:(85,0) =g Arax) @y ) rax2(@+py)? Y Grax P @By 2t Y T Araxy By
i[_ 26bfx* ~2 26b o~ 28bax”* ~2 4
+ 2 [ (1+ax*)(1+By*)3 yo+ (1+ax*)2(1+By*)? & (1+ax*)3(1+By*)x ] +oaXxI®

It follows that

82F,(§,6)
B1(X'Y) = ?,k:l 5555,(

XiVk
&=0
_ __ 20apx" . 8a
T Wrax)1+8y)? 22 T Traxn2 e py)?
—_ 2 62F2(Ev5)
BZ(x' y) - Zj,k=1 551'55}(

2r 26aay”
(12 + x2y1) + (— -t m) X1Y1,

XiVk
§=0
28bBx* b

_ 28aay*
T (Qtax)(1+By")3 X2Y2 + (1+ax*)2(1+y*)?

(12 + x2¥1) — ey aagyy Sy

2
62F1(£,6)
Gayw= ) Sl gy
Jkl=1

58,0508,
B 68ap’x* 68aa’y*
T T A a)@+ By P T T axyi(1 + gy

26aa 26ap
+ (1 + ax*)3(1 + ﬁy*)z (xlyzul + xzylul + x1y1u2) + (1 + a’x*)z(l T ﬁy*)3 (x1y2u2

+ Xy1Uy + X3Y5Uy)

e ) 82F,(¢,6)
25y, U) = < Sz SE XYW
L 85,6585,
B 65bB2%x* N 68ba’y*
T+ ax) (1 + Byt B T axyi1 + gyn)
26ba 26bp

T AFax A+ By YUy + x251Uy + XY Up) — A+ ax)2(1+ By ) (1y2u,

+ xy1Uy + X3Y5Uy)
and § = 6.

Therefore, we obtain the following symmetric multilinear vector functions of x,y,u € R?:

Bi(x,y) Cl(x,y,u)> .

Bz(x.y))a”d .y = (cz(x,y. )

Bxy) =

Let p,q € R? be two eigenvectors of A for eigenvalue A,(8r) = —1 such that A(6p)g = —q and
AT (8)p = —p. Then by direct calculation we get
b6px* bSpy* )T

q~ (2 — d(SF + (1 T ax*)(l + ‘By*)z - (1 + (l’x*)Z(l + [)’}’*)
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(2 d6u + bépx* adpx” )T
p @+ ax)(@+By)2" (1 +ax’)(1+ By)?
_ _ bSpx* adpx” T
Weset p=m (2 4o + (1+ax*)(1+[3y*)2'(1+ax*)(1+[3y*)2) » Where
1
V1= 2 2
_ bSpx* _ abdgx*y*
(2 dop + (1+ax*)(1+ﬁy*)2) (A+ax)3(1+By*)3

Then by the standard scalar product in R? defined by (p,q) = p1q; + p2q,, we show that (p,q) = 1. The
direction of the flip bifurcation is obtained by the sign c(ér), the coefficient of critical normal form
(Kuzenetsov, 1998) and is given by

c(8r) = £ (. C(0, 4. 0) —5(p, B(q, (A— D*B(q,9))) (12)

We state the following result on flip bifurcation according to above analysis.

Theorem 3.1 If (9) holds, c(éz) # 0 and the parameter § changes its value around &, then system (2)
undergoes a flip bifurcation at positive fixed point E,(x*, y*). Moreover, the period-2 orbits that bifurcate
from E,(x*,y*) are stable (resp., unstable) if c¢(8z) > 0 (resp., c(6r) < 0).

3.2 Neimark-Sacker bifurcation
Next, we consider system (2) at fixed point E,(x*,y*) with arbitrary (r,K,a,b,d,ap,&) € NSBg,. From
equation (7), the eigenvalues are given by
- —p(®)t 6)? —4q(6
11— PO VPO~ 49(5)

2
Since the parameters belong to NSBg,, so the eigenvalues will be complex and

_ AV RN 1)
ALA=1 +7i%\/4Q—A2,
Let

A
8 = (SNS = _5 (13)

Therefore, we have

d|A(s A
A =a@®), q@n) =1 L =_Zs0 (14)

6=6NS

Moreover, if p(Sys) # 0,1, then
AZ
5 723 (15)

which obviously satisfies
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M(Gys) £1 for k =1,2,3,4 (16)

Suppose q,p € C? are two eigenvectors of A(Sys) and AT(Sys) for eigenvalues A(Sys) and A(Sys) such
that

A(bns)q = A(Bns)q,  A(Sns)q = 1(5Ns)q
and

AT(6ns)p = A(6ns)p, AT (6ns)D = A(Sns)P-

Then by direct computation we obtain
T

b8ysx* béysy”
q~(1—/1—d8N5+ NS ,— w5 ) :
(1 +ax)(1+By)* (1+ax’)?(1+By)
_ boysx™ adysx™ T
p~ (1 — A — dbys + NS , o )
1+ ax’)(1+py)> (1 +ax*)(1+ fy*)?
_ g boysx* adysx” T
Weset p =7y, (1 A—dbys + (1+ax*)(1+ﬁy*)2'(1+ax*)(1+ﬁy*)2) , Where
1
Y2 = 2 2
_ = _ b8N5x* _ abﬁNsx*y*
(1 A—ddys + (1+ax*)(1+ﬁy*)2) (1+ax*)3(1+fy*)3

Then it is clear that (p,q) = 1 where (p,q) = p,q, + poq.for p,q € C2. Now, we decompose vector
X € R%as X =zq +zg, for § close to §yg and z € C. Obviously, z = (p,X). Thus, we obtain the
following transformed form of system (10) for |§| near 6ys:
ze A(6)z+ g(z, 2, 0),
where A(8) = (1 + ¢(8))e?® with ¢(Sys) =0 and g(z,z 6) is a smooth complex-valued function.
After Taylor expression of g with respectto (z,Z), we obtain
9(2,7,8) = z ﬁgkl(a)zkzl, with gy €C,  kl=01,-

k+122
According to multilinear symmetric vector functions, the coefficients g,; are

920(6ns) = (., B(q,9)), 911(6ns) = (p, B(q, D))
9o2(6ns) =0, B(@. ©)) 921(6ns) =(p.C(q, 4, D),
The invariant closed curve appear in the direction which is determined by the coefficient a(éys) and

calculated via

e—i9(51vs)g21 (1— Zei9(51vs))e—2i9(51vs)
a(dys) =Re| ————] —Re -
2 2(1 - 319(51\15))

where e@6ns) = 1(8ys).

1 2 1 2
920911 _§|911| _Z|902|r

It is clear that the conditions (14) and (16) known as transversal and nondegenerate for system (2) hold well.

We obtain the following result.
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Theorem 3.2 If (15) holds, a(6ys) # 0 and the parameter § changes its value in small vicinity of NSBg,,
then system (2) passes through a Neimark-Sacker bifurcation at positive fixed point E,. Moreover, if
a(8ys) < 0 (resp.,> 0), then there exists a unique attracting (resp., repelling) invariant closed curve
bifurcates from E,.

4 Numerical Simulations
Here, bifurcation diagrams, phase portraits, maximum Lyapunov exponents and fractal dimension of system (2)

will be drawn to validate our theoretical results using numerical simulation. We assume that § is a bifurcation
parameter unless stated. We consider parameter values in the following examples for bifurcation analysis:

Example 1 We fix the parameters r = 1.75,K = 1.0,a = 1.0,b =1.1,d = 0.2, = 098, = 0.5 and
varying § in range 2.4 <4 <3.15. By calculation, we find that the fixed point ystem (2) is
E,(0.623837,2.25864), and the critical point for flip bifurcationa is § = §p~2.54621. At the critical
bifurcation point, the two eigenvalues are 4; =—-1,1, =0.586109 , a(dr) =28.7908 and
(r,K,a,b,d,aB,&) € FBE,. This verifies Theorem 3.1.

According to bifurcation diagrams shown in Fig. 1(a-b), we see that stability of fixed point E, happens

for § < 2.54621, loses its stability at § = 2.54621 and a period doubling phenomena lead to chaos for
& > 2.54621. The maximum Lyapunov exponents and fractal dimension related to Fig. 1(a-b) are computed
and shown in Fig. 1(c-d). We observe that the period -2,- 4, -8 orbits occur for § € [2.4,3.026], chaotic set for
6 € [3.026,3.15]. As determined by the maximum Lyapunov exponent, the status of stable, periodic or chaotic
dynamics are compatible with sign in Fig. 1(c-d).
Example 2 We fix the parameters r = 1.5,K =1.9,a =1.5,b =1.95,d = 2.0,a = 0.1, = 0.1; and
varying & in range 0.75 < § < 1.4. After calculation, we observe that a Neimark-Sacker (NS) bifurcation
appears at fixed point (1.19809,0.43154) for & = 8y5~0.948329. Also, we havel, A = 0.573827 +
0.818977i, g,o =0.127352 — 0.636909i, g;; = 0.699069 — 0.685987i, g¢, = 1.01789 + 1.75825i,
g21 = —0.0398675 + 0.0242444i, a(éys) = —1.50356 and (r,K,a,b,d,af,§) € NSBg,. This verifies
Theorem 3.2.

The bifurcation diagrams shown in Fig. 2(a-b) demonstrate that stability of E, happens ford <
0.948329, loses its stability at § = 0.948329 and an attracting invariant curve appears if § > 0.948329. We
dispose the maximum Lyapunov exponents in Fig. 2(c) relating bifurcation in Fig. 2(a-b), which confirm the
existences of chaos and period window as parameter § varying. When §~1.4, the sign of maximum
Lyapunov exponent confirming presence of chaos. Fig. 2(d) is local amplification of Fig. 2(a) for 6 €
[1.27,1.35].

The phase portraits of bifurcation diagrams in Fig. 2(a-b) for different values of § are displayed in Fig. 3,
which clearly illustrates the act of smooth invariant curve how it bifurcates from the stable fixed point and
increases its radius. As § grows, disappearance of closed curve occurs suddenly and a period- 6, 11, 17, and
period 51 orbits appear at §~1.075, §~1.3545, §~1.2765 and §~1.3155 respectively. We also see that a
fully developed chaos in system (2) occurs at §~1.4.

IAEES WWww.iaees.org



46 Computational Ecology and Software, 2019, 9(2): 37-57

2351

22

2051

1751

161

1 1 : 1 1 1
24 2585 27 285 3 315 24 2585 27 285 3 315

5 5
(@) (b)
0al . . . . . . . ‘ . . ‘ .
f 6] Mn
aat 1
14}
o1 1 121
c
=
2 s}
3 0 E
= £
g 08
I
a1l £ oe
a2t 04
02
N3k
s s s . . 0 . . ‘ . . ‘ .
24 255 27 285 3 315 24 25 26 27 28 23 3 R
5 5
(©) (d)

Fig. 1 Flip bifurcation and Lyapunov exponent of system (2). (a) bifurcation for prey, (b) bifurcation for predator, (¢c) maximum
Lyapunov exponents related to (a-b), (d) Fractal dimension corresponding to (a). Initial value (xq,y,) = (0.604,2.24).

With the variation of other parameter values (e.g., parameter r), the predator-prey system may exhibit
richer dynamical behaviors in the Neimark-Sacker bifurcation diagram. When we set the parameter values as
given in case (ii) with r = 1.65, a new Neimark-Sacker bifurcation diagram is obtained as disposed in Fig.
4(a-b). The system undergoes Neimark-Sacker bifurcation at § = 0.956099. Similar nonlinear characteristics
to Figures 2 and 3 are found in this case, such as route to chaos, invariant curves, chaotic attractors, and
periodic windows. The maximum Lyapunov exponent corresponding to Fig. 4(a-b) is computed and plotted in
Fig. 4(c), which confirm the existences of chaos and period window as parameter § varying. The local
amplification diagram corresponding to Fig. 4(a) for & € [1.21,1.37] is shown in Fig. 2(c). We observe from
Fig. 4(a-b) that stability of syatem (2) happens for § < 0.956099, loses its stability at § = 0.956099 and an
attracting invariant curve appears if § > 0.956099. The phase portraits of bifurcation diagrams in Fig. 4(a-b)
for different values of § are displayed in Fig. 5. Also, we observe in this case that there are period- 5, 6, 15,

16, and period 21 orbits and attracting chaotic sets.
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Fig. 2 NS bifurcation and Lyapunov exponent of system (2). (a) NS bifurcation for prey, (b) NS bifurcation for predator, (c)
maximum Lyapunov exponents related to (a-b), (d) local amplification diagram in (a) for § € [1.27,1.35], (e) Fractal dimension

associated with (a). Initial value (xg,y,) = (1.17,035).

Fig. 6 shows the Neimark-Sacker bifurcation diagram when the parameter values are given as in case (ii)

with r = 1.85. The critical Neimark-Sacker bifurcation point is § = 0.966328, and the first chaotic point is
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at around § = 1.322 (Fig. 7). On the route to chaos, periodic windows with period- 5, 7, 10, and period 28
orbits and narrow chaotic band are found. On each branch, the predator-prey system sequentially undergoes

sub-Neimark-Sacker bifurcation, flip bifurcation and periodic window with the increase of § value.
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Fig. 3 Phase portraits (xy-plane) of bifurcation diagrams Fig. 2(a-b) for different values of &.

Example 3 We fix the parameters K = 1.9,a = 1.5,b = 1.95,d = 2.0,a = 0.1, = 0.1; and varying & in
range 0.75 <6 <14, and r in range 1.5 <r < 1.85. The dynamic complexity of system (2) can be
observed when more parameters vary. The three-dimensional bifurcation diagrams of system (2) for control
parameters 6§ € [0.75,1.4], r € [1.5,1.85] and fixing remaining parameters as in case (ii), are shown in Fig. 8
(a). The 2D projection of 3D maximum Lyapunov exponents for two control parameters onto (8,r) plane is
plotted in Fig. 8(b). It is easy to find values of control parameters for which the dynamics of system (2) is in
status of non-chaotic, periodic or chaotic. For instance, there is a chaotic dynamics for § = 1.4, r = 1.5, and
the non-chaotic dynamics for 6§ =09, r =15 (see Fig. 3), which are compatible with the signs of
maximum Lyapunov exponents in Fig. 8 (b). As shown in Fig. 8 (a), we find that, with the increase of
parameter r, the Neimark-Sacker bifurcation diagram moves toward the positive § axis. Such movement
takes the increase of Neimark-Sacker bifurcation critical point and first chaotic point and simultaneously
changes the periodic windows on the route to chaos.
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Fig. 4 NS bifurcation and Lyapunov exponent of system (2). (a) NS bifurcation for prey, (b) NS bifurcation for predator, (c)
maximum Lyapunov exponents related to (a-b), (d) local amplification diagram in (a) for § € [1.21,1.37] (e) Fractal dimension
associated with (a). Initial value (x,y,) = (1.17,035).
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Fig. 5 Phase portraits (xy-plane)of bifurcation diagrams Fig. 4(a-b) for different values of §.

Example 4 We fix the parameters r = 1.5,K = 1.9,a = 1.5,b = 1.95,d = 2.0,6 = 1.3; and varying « in
range 0.04 < a <0.2,and B inrange 0.1 < B < 0.5. The three-dimensional bifurcation diagrams of system
(2) for control parameters a € [0.04,0.2], § €[0.1,0.5] and fixing fixing r =15 K =19,a=15,b =
1.95,d = 2.0,8 = 1.3, are shown in Fig. 8 (c). The 2D projection of 3D maximum Lyapunov exponents for
two control parameters onto (&,7) plane is plotted in Fig. 8(d). We observe that the increases values of
control parameters a and B, the dynamics of system (2) changes from chaotic to non-chaotic status. Moreover,
we find that the predator-prey system experiences flip bifurcation and Neimark- Sacker bifurcation combine

together.
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Fig. 6 NS bifurcation and Lyapunov exponent of system (2). (a) NS bifurcation for prey, (b) NS bifurcation for predator, (c)
maximum Lyapunov exponents related to (a-b), (d) local amplification diagram in (a) for § € [1.14,1.27] (e) Fractal dimension
associated with (a). Initial value (xg,y,) = (1.17,035).
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Fig. 7 Phase portraits(xy-plane)of bifurcation diagrams Fig. 6(a-b) for different values of §.

The measure of fractal dimensions characterizes the strange attractors of a system. By using Lyapunov

exponents, the fractal dimension (Cartwright, 1999; Kaplan and Yorke, 1979) is defined by
Iyl |
where hy, hy, ..., h, are Lyapunov exponents and j is the largest integer such that Y/_, h; >0 and
Y h <o,
For our two-dimensional system (2), the fractal dimension takes the form

dL=]+

hy
|ha |’
With parameter values as in case (ii), the fractal dimension of system (2) is plotted in Fig. 2(e). The strange

dL=1+ h1>0>h2

attractors given in Fig. 3 and its corresponding fractal dimension illustrate that the Leslie type predator-prey

system (2) has a chaotic dynamics as the parameter § increases.

IAEES WWww.iaees.org



Computational Ecology and Software, 2019, 9(2): 37-57 53

5
15 075 & 075 0.85 095 1.08 115 125 135

@) (b)

© (d)

Fig. 8 Diagnostic of system (2) for control parameters § and r. (a) bifurcation for prey covering § € [0.75,1.4], r = 1.5,1.65
and 1.85 in (6§ —r —x) space (b) The 2D projection of 3D maximum Lyapunov exponents onto (§,7) plane. (c) bifurcation
for prey covering « € [0.04,0.2], B = 0.1,0.2,0.3,0.4 and 0.5 in (@ — B — x) space (d) The 2D projection of 3D maximum
Lyapunov exponents onto (&,7) plane. Initial value (x,,y,) = (1.17,035).

5 Chaos Control
To stabilize chaos at the state of unstable trajectories of system (2), a state feedback control method (Elaydi,
1996) is applied. By adding a feedback control law as the control force w,, to system (2), the controlled form

of system (2) becomes

_ _Xn)_ W
Xny1 = Xp+0xy [r (1 K) (1+axn)(1+ﬁJ’n)] i (7)
bxy _
Ynt1 = Yo+ OWn [m ]

and
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Up = =k (X —x7) = ko(Yn — ¥")
where the feedback gains are denoted by k,and k, and (x*,y™*) represent positive fixed point of system (2).
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Fig. 9 Control of chaotic trajectories of system (17). (a) Stability region in (k4,k,) plane (b-c) Time series for states x and y
respectively.

The Jacobian matrix J. of the controlled system(17) is given by

- a1 — ki a,—k
ey = (g T g2 (18)

az;
where a;;,i,j = 1,2 givenin (7) are evaluated at (x*,y*). The characteristic equation of (18) is
A2 — (tr])A+det], =0 (19

Whel’e tT]C = aq + Ayp — kl and det]c = azz(all - kl) - a21(a12 - kz) Let 2,1 and /12 be the roots Of
(19). Then

IAEES WWww.iaees.org



Computational Ecology and Software, 2019, 9(2): 37-57 55

/11 + 2,2 = all + azz - kl (20)
and
MAy = azz(agg — ky) — aze(ag, — k) (21)

The solution of the equations 1; = £1 and 4,4, = 1 determines the lines of marginal stability. These
conditions confirm that |4, ,| < 1. Suppose that A;4, = 1, then from (21) we have
Litazzky — azik; = a11a3; — @205, — 1.
Assume that A; = 1, then from (20) and (21) we get
Li (1 —ax)ky + aziky = arq + az; — 1 —ag1az; + a12a:;.
Next, assume that 1, = —1, then from (20) and (21) we obtain

l3: (1 + azp)ky — aziky = agq + azp + 1+ ag1a;3; — a42051.

Then the lines [;,1;,and I3 (see Fig. 9(a)) in the (kq,k;) plane determine a triangular region which keeps
eigenvalues with magnitude less than 1.

In order to check how the implementation of feedback control method works and controls chaos at
unstable state, we have performed numerical simulations. Parameter values are fixed as § = 1.35 and rest as
in case (ii). The initial value is (x, y,) = (1.17,0.35), and the feedback gains are k; = 0.9 and k, = —0.08.
Figures 9(b) and 9(c) show that at the fixed point (1.9809,0.431542), the chaotic trajectory is stabilized.

6 Discussion

We investigate the dynamics of a discrete-time predator-prey system with Crowley-Martin functional response
in the closed first quadrant RZ%. We prove via center manifold theorem and bifurcation theory, the system (2)
can undergo a bifurcation (flip or NS) at unique positive fixed point if § varies around the sets FB,%2 or
FB,§2 and NSBg,. Numerical simulations present unpredictable behaviors of the system through a flip
bifurcation which include orbits of period- 2, 4, 8 orbits and through a NS bifurcation which include an
invariant cycle, orbits of period- 5, 6, 7, 10, 11, 15, 16, 17, 21, 28, and period- 51 orbits and chaotic sets
respectively. These indicate that at the state of chaos, the system is unstable and particularly, the predator goes
to extinct or goes to a stable fixed point when the dynamic of prey is chaotic. We confirm about the existence
of chaos through the computation of maximum Lyapunov exponents and fractal dimension. Moreover, system
(2) exhibits very rich nonlinear dynamical behaviors by the variation of two control parameters and one can
directly observe the chaotic phenomenon from the two-dimensional parameter spaces. We observe that the
increases values of control parameters a and g, can stabilize the dynamical system (2), but the small values
may destabilize the system producing more complex dynamical behaviors. Finally, the chaotic trajectories at
unstable state are controlled by implementing the strategy of feedback control. However, it is still a
challenging problem to explore multiple parameter bifurcation in the system. We expect to obtain some more

analytical results on this issue in the future.
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