
Computational Ecology and Software, 2019, 9(2): 37-57 

 IAEES                                                                                     www.iaees.org

Article 
 

Bifurcation analysis and chaos control in a discrete-time predator-

prey system with Crowley-Martin functional response 

 
S. M. Sohel Rana 
University of Dhaka, Dhaka-1000, Bangladesh 
E-mail: srana.mthdu@gmail.com 

 

Received 29 December 2018; Accepted 5 February 2019; Published 1 June 2019 

 

 
Abstract 

In this paper, the dynamics of a discrete-time predator-prey system with Crowley-Martin functional response is 

examined. Via application of the center manifold theorem and bifurcation theorems, we algebraically show 

that the system undergoes a bifurcation (flip or Neimark-Sacker) in the interior of Թା
ଶ . Numerical simulations 

are presented not only to validate analytical results but also to reveal new dynamical behaviors which include 

bifurcations, phase portraits, period- 5, 6, 7, 10, 11, 15, 16, 17, 21, 28, and period- 51 orbits, invariant closed 

cycle, sudden disappearance of chaotic dynamics and abrupt emergence of chaos, and attracting chaotic sets. 

Furthermore, maximum Lyapunov exponents and fractal dimension are computed numerically to justify the 

chaotic behaviors of the system. Finally, we apply a strategy of feedback control to control chaos exists in the 

system. 

 

Keywords predator-prey system with Crowley-Martin functional response; bifurcations; chaos; Lyapunov 

exponents; feedback control. 

 

 

 

 

 

 

 

 

1 Introduction 

Predator-prey interactions have long been studied and have become one of the dominant themes in both 

biology and mathematical biology due to their universal existence and importance, such as resource-consumer, 

plant-herbivore, and phytoplankton-zooplankton forms. In recent decades, mathematical models have been 

established to analyze various complex dynamics of the predator-prey systems in various circumstances. The 

research on the Crowley-Martin functional response has now drawn great attention (Dong et al., 2015; Li et al., 

2015; Tripathi et al., 2016). 

Despite plenty and extensive results on dynamics of continuous predator-prey system, studies on discrete 

predator-prey model are relatively rare. In fact discrete predator-prey model is not a simple parallel promotion 

of continuous system. Sometimes it shows richer and more complex dynamics than the corresponding 

continuous model. Besides, for insects with non-overlapping generations, predator-prey system can be 
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modeled in a discrete-time form; and numerical computation also requires to discretize a continuous-time 

model (He and Lai, 2011; Elhassanein, 2014; He and Li, 2014; Nedorezov and Neklyudova, 2014; Rana, 

2015a-d, 2017, 2019; Zhao et al., 2016; Zhao et al., 2017). These researches have mainly focused on Gauss-

type predator-prey interaction with monotonic functional responses. They obtained many complex properties 

in discrete-time models including the possibility of bifurcations (flip and Neimark-Sacker) and chaos 

phenomenon which had been derived either by using numerical simulations or by using center manifold theory. 

In recent times, a few number of articles in literature discussed the dynamics of discrete-time predator-

prey systems with Crowley-Martin functional response (Ren et al., 2017; Zhang et al., 2018). For example, a 

discrete-time predator-prey system of Leslie type with Crowley-Martin functional response was investigated in 

Ren et al. (2017), and a discrete predator-prey system with Crowley-Martin Type functional response was 

studied in Zhang et al. (2018). In their studies, the authors paid their attention to drive the existence of flip and 

Neimark-Sacker bifurcations by using center manifold theory. In this paper, we consider the following 

predator-prey system with Crowley-Martin functional response (Crowley and Martin, 1989): 

 

ሶݔ ൌ ݔݎ ቀ1 െ
௫

௄
ቁ െ

௔௫௬

ሺଵାఈ௫ሻሺଵାఉ௬ሻ

ሶݕ ൌ
௕௫௬

ሺଵାఈ௫ሻሺଵାఉ௬ሻ
െ ݕ݀

         (1) 

 

where ݔ and ݕ stand densities of prey and predator, respectively; ݎ, ,ܭ ܽ, ܾ, ݀,  are all positive ߚ  and  ߙ

constants, and 
௔௫௬

ሺଵାఈ௫ሻሺଵାఉ௬ሻ
 denotes Crowley-Martin functional response. The parameter ݎ is the intrinsic 

growth rate of the prey, the parameter ܭ is the carring capacity of the prey and the parameter ݀ is the 

mortality rate of the predator; ܽ and 
௕

௔
 stand for the effect of capture rate and conversion factor denoting the 

newly born predators for each captured prey; the parameters ߙ and ߚ are the saturating parameters of 

Crowley-Martin functional response, ߙ  measures the magnitude of interference among prey, and ߚ 

expresses the interference among the predators. 

Forward Euler scheme is applied to system (2) to get the following discrete system 

 

ቀ
ݔ
ቁݕ հ ቌ

ݔ ൅ ݔߜ ቂݎ ቀ1 െ
௫

௄
ቁ െ

௔௬

ሺଵାఈ௫ሻሺଵାఉ௬ሻ
ቃ

ݕ ൅ ݕߜ ቂ
௕௫

ሺଵାఈ௫ሻሺଵାఉ௬ሻ
െ ݀ቃ

ቍ        (2) 

where ߜ is the step size. The objective is to study systematically the existence condition of a bifurcation (flip 

or NS bifurcation) in the interior of Թା
ଶ  using bifurcation theory and center manifold theory (Kuzenetsov, 

1998; Winggins, 2003). 

This paper is organized as follows. Section 2 deals the existence condition for fixed points of system (2) 

and their stability criterion. In Section 3, we prove that under certain parametric condition system (2) admits a 

bifurcation. In Section 4, we implement numerical simulations of the system for one or more control 

parameters which include diagrams of bifurcation, phase portraits, maximum Lyapunov exponents and Fractal 

dimensions. In Section 5, we use the method of feedback control to stabilize chaos at an unstable trajectories. 

Finally we carry out a short discussion in Section 6. 

 

2 Fixed Points: Existence and Their Stability 

The fixed points of system (2) are solution of   
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௫
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        (3) 

 

A simple algebraic computation shows that system (2) has a predator free fixed point ܧଵሺܭ, 0ሻ for all 

parameter values. Next, it is of great interest to find the positive fixed point of system (2). Suppose that 

,כݔଶሺܧ    are solutions of כݕ and כݔ ,ሻ is a positive fixed point of system (2). Thenכݕ

 

ቐ
ሺ1ݎ െ

௫כ

௄
ሻ ൌ

௔௬כ

ሺଵାఈ௫כሻሺଵାఉ௬כሻ
௕௬כ

ሺଵାఈ௫כሻሺଵାఉ௬כሻ
ൌ ݀

         (4) 

 

From (4), we can see that כݔ א ሺ0,    ሻ is the root of the following cubic equationܭ

 

ଷݓ଴݌ ൅ ଶݓଵ݌3 ൅ ݓଶ݌3 ൅ ଷ݌ ൌ 0, ሺ݌଴ ് 0ሻ,        (5) 

 

with coefficients ݌଴ ൌ
௕௥ఈఉ

௄
, ଵ݌3 ൌ

௕௥ሺଵି௄ఈሻఉ

௄
, ଶ݌3 ൌ ܽሺܾ െ ሻߙ݀ െ ,ߚݎܾ ଷ݌ ൌ െܽ݀. 

Now, the transformation ݖ ൌ ݓ଴݌ ൅ ଵ݌  converts the equation (5) to ݖଷ ൅ ݖܪ3 ൅ ܩ ൌ 0, whereܩ ൌ

ଷ݌଴ଶ݌ െ ଶ݌ଵ݌଴݌3 ൅ ,ଵଷ݌2 ܪ ൌ ଶ݌଴݌ െ  .ଵଶ. Using Cardano’s method, we get following result݌

 

Lemma 2.1 If ܩଶ ൅ ଷܪ4 ൐ 0, then a unique positive fixed point ܧଶሺכݔ,   ሻ of system (2) exists, whereכݕ

כݔ ൌ
ଵ

௣బ
ሺݍ െ

ு

௤
െ ,ଵሻ݌ כݕ ൌ

ିௗା௕௫ିכௗఈ௫כ

ௗሺଵାఈ௫כሻఉ
andݍ denotes one of the three values of ൤

ିீା√ீమାସுయ

ଶ
൨

భ
య
. 

 

Next, we investigate stability of system (2) at fixed points. Note that the magnitude of eigenvalues of Jacobian 

matrix evaluated at fixed point ܧሺݔ,  ሻ determines the local stability of that fixed point. The Jacobian matrixݕ

of system (2) evaluated at fixed point ܧሺݔ,  ሻ is given byݕ

 

,ݔሺܬ ሻݕ ൌ ቀ
ܽଵଵ ܽଵଶ
ܽଶଵ ܽଶଶ

ቁ           (6) 

 

where 

ܽଵଵ ൌ 1 ൅
௥ఋሺ௄ିଶ௫ሻ

௄
െ

௔ఋ௬

ሺଵାఈ௫ሻమሺଵାఉ௬ሻ
,

ܽଵଶ ൌ െ
௔ఋ௫

ሺଵାఈ௫ሻሺଵାఉ௬ሻమ

ܽଶଵ ൌ
௕ఋ௬

ሺଵାఈ௫ሻమሺଵାఉ௬ሻ
,

ܽଶଶ ൌ 1 െ
ఋሺି௕௫ାௗሺଵାఈ௫ሻሺଵାఉ௬ሻమሻ

ሺଵାఈ௫ሻሺଵାఉ௬ሻమ
.

         (7) 

 

The characteristic equation of matrix ܬ is  

ଶߣ ൅ ,ݔሺ݌ ߣሻݕ ൅ ,ݔሺݍ ሻݕ ൌ 0          (8) 

where ݌ሺݔ, ሻݕ ൌ െܬݎݐ ൌ െሺܽଵଵ ൅ ܽଶଶሻ  and  ݀݁ܬݐ ൌ ܽଵଵܽଶଶ െ ܽଵଶܽଶଵ. 

Using Jury’s criterion (Elaydi, 1996), we state the following stability conditions of fixed points. 
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Proposition 2.2 The predator free fixed point ܧଵሺܭ, 0ሻ is a sink if 0 ൏ ߜ ൏ ݉݅݊ ቄ
ଶ

௥
,

ଶሺଵା௄ఈሻ

ௗା௄ሺఈௗି௕ሻ
ቅ, source if 

ߜ ൐ ݉݅݊ ቄ
ଶ

௥
,

ଶሺଵା௄ఈሻ

ௗା௄ሺఈௗି௕ሻ
ቅ and non-hyperbolic if ߜ ൌ

ଶ

௥
  ݎ݋  

ଶሺଵା௄ఈሻ

ௗା௄ሺఈௗି௕ሻ
.  

 

It is obvious that when ߜ ൌ
ଶ

௥
  or  

ଶሺଵା௄ఈሻ

ௗା௄ሺఈௗି௕ሻ
, the two eigenvalues of ܬሺܧଵሻ  are ߣଵ ൌ 1 െ ߜݎ  and      

ଶߣ ൌ 1 െ ݀ߙ ൅
௕௄ఋ

ଵା௄ఈ
. Therefore, a flip bifurcation can occur if parameters change in small vicinity of ܤܨாభ

ଵ or 

ாభܤܨ
ଶ : 

 

ாభܤܨ
ଵ ൌ ൜ሺݎ, ,ܭ ܽ, ܾ, ݀, ,ߚߙ ሻߜ א ሺ0,൅∞ሻ: ߜ ൌ

2
ݎ
, ߜ ്

2ሺ1 ൅ ሻߙܭ
݀ ൅ ݀ߙሺܭ െ ܾሻ

ൠ 

or 

ாభܤܨ
ଶ ൌ ൜ሺݎ, ,ܭ ܽ, ܾ, ݀, ,ߚߙ ሻߜ א ሺ0,൅∞ሻ: ߜ ൌ

2ሺ1 ൅ ሻߙܭ
݀ ൅ ݀ߙሺܭ െ ܾሻ

, ߜ ്
2
ݎ
ൠ. 

At ܧଶሺכݔ,   ሻ, we write equation (7) asכݕ

ሻ:ൌߣሺܨ ଶߣ െ ሺ2 ൅ Δߜሻߣ ൅ ሺ1 ൅ Δߜ ൅ Ωߜଶሻ ൌ 0, 

where 

Δ ൌ ݎ െ
כݔݎ2

ܭ
൅

כݕܽ

ሺ1 ൅ ሻଶሺ1כݔߙ ൅ ሻכݕߚ
൅
כݔܾ െ ݀ሺ1 ൅ ሻሺ1כݔߙ ൅ ሻଶכݕߚ

ሺ1 ൅ ሻሺ1כݔߙ ൅ ሻଶכݕߚ
,
Ω ൌ

1
ሺ1 ൅ ሻଶሺ1כݔߙ ൅ ሻଷכݕߚ

൫ܾܽכݕכݔ െ כݕܽ

        ൅
1

ሺ1ܭ ൅ ሻଶሺ1כݔߙ ൅ ሻଷכݕߚ
൫ݎሺܭ െ 2

 

Then ܨሺ1ሻ ൌ Ωߜଶ ൐ 0 and ܨሺെ1ሻ ൌ 4 ൅ 2Δߜ ൅ Ωߜଶ. 

We state following Proposition about stability criterion of ܧଶ.  

 

Proposition 2.3 Suppose that fixed point ܧଶሺכݔ,   ሻ of system (2) exists. Then it is aכݕ

 (i) sink if one of the following conditions holds  

  (i.1) Δଶ െ 4Ω ൒ 0    and    ߜ ൏
ି୼ି√୼మିସΩ

Ω
;  

  (i.2) Δଶ െ 4Ω ൏ ߜ    ݀݊ܽ    0 ൏ െ
୼

Ω
;  

 (ii) source if one of the following conditions holds  

  (ii.1) Δଶ െ 4Ω ൒ 0    and    ߜ ൐
ି୼ା√୼మିସΩ

Ω
;  

  (ii.2) Δଶ െ 4Ω ൏ ߜ    ݀݊ܽ    0 ൐ െ
୼

Ω
;  

 (iii) non-hyperbolic if one of the following conditions holds  

  (iii.1) Δଶ െ 4Ω ൒ 0    and    ߜ ൌ
ି୼േ√୼మିସΩ

Ω
;  

  (iii.2) Δଶ െ 4Ω ൏ ߜ    ݀݊ܽ    0 ൌ െ
୼

Ω
;  
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 (iv) saddle if otherwise.  

 

From Proposition 2.3, we see that two eigenvalues of ܬሺܧଶሻ are ߣଵ ൌ െ1 and ߣଶ ് െ1,1 if condition 

(iii.1) holds. We rewrite the term (iii.1) as follows  

ாమܤܨ
ଵ ൌ ቊሺݎ, ,ܭ ܽ, ܾ, ݀, ,ߚߙ ሻߜ א ሺ0,൅∞ሻ: ߜ ൌ

െΔ െ √Δଶ െ 4Ω
Ω

, Δଶ െ 4Ω ൒ 0ቋ, 

or 

ாమܤܨ
ଶ ൌ ቊሺݎ, ,ܭ ܽ, ܾ, ݀, ,ߚߙ ሻߜ א ሺ0,൅∞ሻ: ߜ ൌ

െΔ ൅ √Δଶ െ 4Ω
Ω

, Δଶ െ 4Ω ൒ 0ቋ. 

Therefore, a flip bifurcation can appear at ܧଶ if parameters vary arround the set ܤܨாమ
ଵ   or ܤܨாమ

ଶ . 

Also we rewrite the term (iii.2) as follows  

ாమܤܵܰ ൌ ൜ሺݎ, ,ܭ ܽ, ܾ, ݀, ,ߚߙ ሻߜ א ሺ0, ൅∞ሻ: ߜ ൌ െ
Δ
Ω
, Δଶ െ 4Ω ൏ 0ൠ, 

and if the parameters change in small vicinity of ܰܵܤாమ, two eigenvalues ߣଵ,ଶ of ܬሺܧଶሻ are complex having 

magnitude one and then NS bifurcation can emerge from fixed point ܧଶ. 

 

3 Bifurcation Analysis  

In this section, we will give attention to recapitulate bifurcations (flip and Neimark-Sacker) of system (2) 

around ܧଶ by using the theory of bifurcation (Kuzenetsov, 1998; Winggins, 2003). We set ߜ as a bifurcation 

parameter. 

3.1 Flip bifurcation 
Consider the system (2) at the fixed point ܧଶሺכݔ, ,ݎሻ with arbitrary parameter ሺכݕ ,ܭ ܽ, ܾ, ݀, ,ߚߙ ሻߜ א ாమܤܨ

ଵ . 

Similar fashion for the case of ܤܨாమ
ଶ . Since the parameters lie in ܤܨாమ

ଵ , let ߜ ൌ ிߜ ൌ
ି୼ି√୼మିସΩ

Ω
, then the 

eigenvalues of positive fixed point ሺכݔ,  ሻ areכݕ

 

ிሻߜଵሺߣ ൌ െ1    and    ߣଶሺߜிሻ ൌ 3 ൅ Δߜி. 

 

The condition |ߣଶሺߜிሻ| ് 1 leads to  

Δߜி ് െ2,െ4           (9) 

 

Using the transformation ݔ෤ ൌ ݔ െ ෤ݕ    ,כݔ ൌ ݕ െ ሻߜሺܣ and writing כݕ ൌ ,כݔሺܬ  ሻ, we shift the fixedכݕ

point ሺכݔ,  ሻ of system (2) to the origin. After Taylor expansion, system (2) reduces toכݕ

 

൬
෤ݔ
෤൰ݕ ՜ ሻߜሺܣ ൬

෤ݔ
෤൰ݕ ൅ ൬

,෤ݔଵሺܨ ,෤ݕ ሻߜ
,෤ݔଶሺܨ ,෤ݕ ሻߜ

൰         (10) 

where ܺ ൌ ሺݔ෤,   ෤ሻ் andݕ
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௝,௞,௟ୀଵ

,ߦଵሺܨଶߜ ሻߜ

௟ߦߜ௞ߦߜ௝ߦߜ
ቤ
కୀ଴

௟ݑ௞ݕ௝ݔ

ൌ െ
כݔଶߚܽߜ6

ሺ1 ൅ ሻሺ1כݔߙ ൅ ሻସכݕߚ
ଶݑଶݕଶݔ െ

כݕଶߙܽߜ6

ሺ1 ൅ ሻସሺ1כݔߙ ൅ ሻכݕߚ
ଵݑଵݕଵݔ

൅
ߙܽߜ2

ሺ1 ൅ ሻଷሺ1כݔߙ ൅ ሻଶכݕߚ
ሺݔଵݕଶݑଵ ൅ ଵݑଵݕଶݔ ൅ ଶሻݑଵݕଵݔ ൅

ߚܽߜ2
ሺ1 ൅ ሻଶሺ1כݔߙ ൅ ሻଷכݕߚ

ሺݔଵݕଶݑଶ

൅ ଶݑଵݕଶݔ ൅  ଵሻݑଶݕଶݔ

,ݔଶሺܥ ,ݕ ሻݑ ൌ ෍  

ଶ

௝,௞,௟ୀଵ

,ߦଶሺܨଶߜ ሻߜ
௟ߦߜ௞ߦߜ௝ߦߜ

ቤ
కୀ଴

௟ݑ௞ݕ௝ݔ

ൌ
כݔଶߚܾߜ6

ሺ1 ൅ ሻሺ1כݔߙ ൅ ሻସכݕߚ
ଶݑଶݕଶݔ ൅

כݕଶߙܾߜ6

ሺ1 ൅ ሻସሺ1כݔߙ ൅ ሻכݕߚ
ଵݑଵݕଵݔ

െ
ߙܾߜ2

ሺ1 ൅ ሻଷሺ1כݔߙ ൅ ሻଶכݕߚ
ሺݔଵݕଶݑଵ ൅ ଵݑଵݕଶݔ ൅ ଶሻݑଵݕଵݔ െ

ߚܾߜ2
ሺ1 ൅ ሻଶሺ1כݔߙ ൅ ሻଷכݕߚ

ሺݔଵݕଶݑଶ

൅ ଶݑଵݕଶݔ ൅  ଵሻݑଶݕଶݔ

and ߜ ൌ   .ிߜ

 

Therefore, we obtain the following symmetric multilinear vector functions of ݔ, ,ݕ ݑ א Թଶ: 

,ݔሺܤ ሻݕ ൌ ൬
,ݔଵሺܤ ሻݕ
,ݔଶሺܤ ሻݕ

൰and ሺݔ, ,ݕ ሻݑ ൌ ൬
,ݔଵሺܥ ,ݕ ሻݑ
,ݔଶሺܥ ,ݕ ሻݑ

൰ . 

 

Let ݌, ݍ א Թଶ  be two eigenvectors of ܣ for eigenvalue ߣଵሺߜிሻ ൌ െ1 such that ܣሺߜிሻݍ ൌ െݍ and 

݌ிሻߜሺ்ܣ ൌ െ݌. Then by direct calculation we get  

൬2~ݍ െ ிߜ݀ ൅
כݔிߜܾ

ሺ1 ൅ ሻሺ1כݔߙ ൅ ሻଶכݕߚ
, െ

כݕிߜܾ

ሺ1 ൅ ሻଶሺ1כݔߙ ൅ ሻכݕߚ
൰
்

, 
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൬2~݌ െ ிߜ݀ ൅
כݔிߜܾ

ሺ1 ൅ ሻሺ1כݔߙ ൅ ሻଶכݕߚ
,

כݔிߜܽ

ሺ1 ൅ ሻሺ1כݔߙ ൅ ሻଶכݕߚ
൰
்

. 

 

We set ݌ ൌ ଵߛ ቀ2 െ ிߜ݀ ൅
௕ఋಷ௫כ

ሺଵାఈ௫כሻሺଵାఉ௬כሻమ
,

௔ఋಷ௫כ

ሺଵାఈ௫כሻሺଵାఉ௬כሻమ
ቁ
்
, where  

ଵߛ ൌ
1

ቀ2 െ ிߜ݀ ൅
௕ఋಷ௫כ

ሺଵାఈ௫כሻሺଵାఉ௬כሻమ
ቁ
ଶ
െ

௔௕ఋಷ
మ௫כ௬כ

ሺଵାఈ௫כሻయሺଵାఉ௬כሻయ

. 

 

Then by the standard scalar product in Թଶ defined by ݌ۃ, ۄݍ ൌ ଵݍଵ݌ ൅ ,݌ۃ ଶ, we show thatݍଶ݌ ۄݍ ൌ 1. The 

direction of the flip bifurcation is obtained by the sign ܿሺߜிሻ, the coefficient of critical normal form 

(Kuzenetsov, 1998) and is given by 

ܿሺߜிሻ ൌ
ଵ

଺
,݌ۃ ,ݍሺܥ ,ݍ ۄሻݍ െ

ଵ

ଶ
,݌ۃ ,ݍሺܤ ሺܣ െ ,ݍሺܤሻିଵܫ  (12)      ۄሻሻݍ

We state the following result on flip bifurcation according to above analysis. 

 

Theorem 3.1 If (9) holds, ܿሺߜிሻ ് 0 and the parameter ߜ changes its value around ߜி , then system (2) 

undergoes a flip bifurcation at positive fixed point ܧଶሺכݔ,  ሻ. Moreover, the period-2 orbits that bifurcateכݕ

from ܧଶሺכݔ, ிሻߜሻ are stable (resp., unstable) if ܿሺכݕ ൐ 0 (resp., ܿሺߜிሻ ൏ 0).  

 

3.2 Neimark-Sacker bifurcation 

Next, we consider system (2) at fixed point ܧଶሺכݔ, ,ݎሻ with arbitrary ሺכݕ ,ܭ ܽ, ܾ, ݀, ,ߚߙ ሻߜ א  ாమ. Fromܤܵܰ

equation (7), the eigenvalues are given by  

,ߣ ҧߣ ൌ
െ݌ሺߜሻ േ ඥ݌ሺߜሻଶ െ ሻߜሺݍ4

2
. 

Since the parameters belong to ܰܵܤாమ, so the eigenvalues will be complex and 

 

,ߣ ҧߣ ൌ 1 ൅
Δߜ
2
േ
ߜ݅
2
ඥ4Ω െ Δଶ, 

 Let  

ߜ ൌ ேௌߜ ൌ െ
୼

Ω
           (13) 

 

Therefore, we have 

 

|ߣ| ൌ ඥݍሺߜሻ,    ݍሺߜேௌሻ ൌ 1,    
ௗ|ఒሺఋሻ|

ௗఋ
ቚ
ఋୀఋಿೄ

ൌ െ
୼

ଶ
് 0      (14) 

 

Moreover, if ݌ሺߜேௌሻ ് 0,1, then  

୼మ

Ω
് 2,3           (15) 

which obviously satisfies  
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ேௌሻߜ௞ሺߣ ് 1    for  ݇ ൌ 1,2,3,4         (16) 

 

Suppose ݍ, ݌ א ԧଶ are two eigenvectors of ܣሺߜேௌሻ and ்ܣሺߜேௌሻ for eigenvalues ߣሺߜேௌሻ and ߣҧሺߜேௌሻ such 

that  

ݍேௌሻߜሺܣ ൌ തݍேௌሻߜሺܣ      ,ݍேௌሻߜሺߣ ൌ  തݍேௌሻߜҧሺߣ

and 

݌ேௌሻߜሺ்ܣ ൌ ҧ݌ேௌሻߜሺ்ܣ      ,݌ேௌሻߜҧሺߣ ൌ  .ҧ݌ேௌሻߜሺߣ

 

Then by direct computation we obtain  

൬1~ݍ െ ߣ െ ேௌߜ݀ ൅
כݔேௌߜܾ

ሺ1 ൅ ሻሺ1כݔߙ ൅ ሻଶכݕߚ
, െ

כݕேௌߜܾ

ሺ1 ൅ ሻଶሺ1כݔߙ ൅ ሻכݕߚ
൰
்

, 

 

൬1~݌ െ ҧߣ െ ேௌߜ݀ ൅
כݔேௌߜܾ

ሺ1 ൅ ሻሺ1כݔߙ ൅ ሻଶכݕߚ
,

כݔேௌߜܽ

ሺ1 ൅ ሻሺ1כݔߙ ൅ ሻଶכݕߚ
൰
்

. 

 

We set ݌ ൌ ଶߛ ቀ1 െ ҧߣ െ ேௌߜ݀ ൅
௕ఋಿೄ௫כ

ሺଵାఈ௫כሻሺଵାఉ௬כሻమ
,

௔ఋಿೄ௫כ

ሺଵାఈ௫כሻሺଵାఉ௬כሻమ
ቁ
்
, where  

ଶߛ ൌ
1

ቀ1 െ ҧߣ െ ேௌߜ݀ ൅
௕ఋಿೄ௫כ

ሺଵାఈ௫כሻሺଵାఉ௬כሻమ
ቁ
ଶ
െ

௔௕ఋಿೄ
మ ௫כ௬כ

ሺଵାఈ௫כሻయሺଵାఉ௬כሻయ

. 

 

Then it is clear that ݌ۃ, ۄݍ ൌ 1 where ݌ۃ, ۄݍ ൌ ଶݍҧଵ݌ ൅ ,݌ ଵforݍҧଶ݌ ݍ א ԧଶ.  Now, we decompose vector 

ܺ א Թଶ as ܺ ൌ ݍݖ ൅ തݍҧݖ , for ߜ  close to ߜேௌ  and ݖ א ԧ . Obviously, ݖ ൌ ,݌ۃ ۄܺ . Thus, we obtain the 

following transformed form of system (10) for |ߜ| near ߜேௌ:  

ݖ հ ݖሻߜሺߣ ൅ ݃ሺݖ, ,ҧݖ  ,ሻߜ

whereߣሺߜሻ ൌ ሺ1 ൅ ߮ሺߜሻሻ݁௜ఏሺఋሻ  with ߮ሺߜேௌሻ ൌ 0  and ݃ሺݖ, ,ҧݖ ሻߜ  is a smooth complex-valued function. 

After Taylor expression of ݃ with respect to ሺݖ,   ҧሻ, we obtainݖ

݃ሺݖ, ,ҧݖ ሻߜ ൌ ෍  
௞ା௟ஹଶ

1
݇! ݈!

݃௞௟ሺߜሻݖ௞ݖҧ௟,    with    ݃௞௟ א ԧ, ݇, ݈ ൌ  .ڮ,0,1

According to multilinear symmetric vector functions, the coefficients ݃௞௟ are  

݃ଶ଴ሺߜேௌሻ ൌ ,݌ۃ ,ݍሺܤ ேௌሻߜଵଵሺ݃    ,ۄሻݍ ൌ ,݌ۃ ,ݍሺܤ  ۄതሻݍ

݃଴ଶሺߜேௌሻ ൌ ,݌ۃ ,തݍሺܤ ேௌሻߜଶଵሺ݃    ,ۄതሻݍ ൌ ,݌ۃ ,ݍሺܥ ,ݍ  ,ۄതሻݍ

The invariant closed curve appear in the direction which is determined by the coefficient ܽሺߜேௌሻ and 

calculated via 

ܽሺߜேௌሻ ൌ R݁ ቆ
݁ି௜ఏሺఋಿೄሻ݃ଶଵ

2
ቇ െ R݁ ቆ

ሺ1 െ 2݁௜ఏሺఋಿೄሻሻ݁ିଶ௜ఏሺఋಿೄሻ

2ሺ1 െ ݁௜ఏሺఋಿೄሻሻ
݃ଶ଴݃ଵଵቇ െ

1
2
|݃ଵଵ|ଶ െ

1
4
|݃଴ଶ|ଶ, 

where ݁௜ఏሺఋಿೄሻ ൌ   .ேௌሻߜሺߣ

 

It is clear that the conditions (14) and (16) known as transversal and nondegenerate for system (2) hold well. 

We obtain the following result. 
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Theorem 3.2 If (15) holds, ܽሺߜேௌሻ ് 0 and the parameter ߜ changes its value in small vicinity of ܰܵܤாమ, 

then system (2) passes through a Neimark-Sacker bifurcation at positive fixed point ܧଶ . Moreover, if 

ܽሺߜேௌሻ ൏ 0  (resp.,൐ 0 ), then there exists a unique attracting (resp., repelling) invariant closed curve 

bifurcates from ܧଶ.  

 

4 Numerical Simulations 

Here, bifurcation diagrams, phase portraits, maximum Lyapunov exponents and fractal dimension of system (2) 

will be drawn to validate our theoretical results using numerical simulation. We assume that ߜ is a bifurcation 

parameter unless stated. We consider parameter values in the following examples for bifurcation analysis: 

 

Example 1 We fix the parameters ݎ ൌ 1.75, ܭ ൌ 1.0, ܽ ൌ 1.0, ܾ ൌ 1.1, ݀ ൌ 0.2, ߙ ൌ 0.98, ߚ ൌ 0.5  and 

varying ߜ  in range 2.4 ൑ ߜ ൑ 3.15 . By calculation, we find that the fixed point ystem (2) is 

ߜ ଶሺ0.623837,2.25864ሻ, and the critical point for flip bifurcationa isܧ ൌ  ி~2.54621. At the criticalߜ

bifurcation point, the two eigenvalues are ଵߣ ൌ െ1, ଶߣ ൌ 0.586109 , ܽሺߜிሻ ൌ 28.7908  and 

ሺݎ, ,ܭ ܽ, ܾ, ݀, ,ߚߙ ሻߜ א ாమܤܨ
ଵ . This verifies Theorem 3.1. 

According to bifurcation diagrams shown in Fig. 1(a-b), we see that stability of fixed point ܧଶ happens 

for ߜ ൏ 2.54621, loses its stability at ߜ ൌ 2.54621 and a period doubling phenomena lead to chaos for 

ߜ ൐ 2.54621. The maximum Lyapunov exponents and fractal dimension related to Fig. 1(a-b) are computed 

and shown in Fig. 1(c-d). We observe that the period -2,- 4, -8 orbits occur for ߜ א ሾ2.4,3.026ሿ, chaotic set for 

ߜ א ሾ3.026,3.15ሿ. As determined by the maximum Lyapunov exponent, the status of stable, periodic or chaotic 

dynamics are compatible with sign in Fig. 1(c-d).  

Example 2 We fix the parameters ݎ ൌ 1.5, ܭ ൌ 1.9, ܽ ൌ 1.5, ܾ ൌ 1.95, ݀ ൌ 2.0, ߙ ൌ 0.1, ߚ ൌ 0.1;  and 

varying ߜ in range 0.75 ൑ ߜ ൑ 1.4. After calculation, we observe that a Neimark-Sacker (NS) bifurcation 

appears at fixed point ሺ1.19809,0.43154ሻ  for ߜ ൌ ேௌ~0.948329ߜ . Also, we haveߣ, ҧߣ ൌ 0.573827 േ

0.818977݅ , ݃ଶ଴ ൌ 0.127352 െ 0.636909݅ , ݃ଵଵ ൌ 0.699069 െ 0.685987݅ , ݃଴ଶ ൌ 1.01789 ൅ 1.75825݅ , 

݃ଶଵ ൌ െ0.0398675 ൅ 0.0242444݅ , ܽሺߜேௌሻ ൌ െ1.50356  and ሺݎ, ,ܭ ܽ, ܾ, ݀, ,ߚߙ ሻߜ א ாమܤܵܰ . This verifies 

Theorem 3.2. 

The bifurcation diagrams shown in Fig. 2(a-b) demonstrate that stability of ܧଶ  happens forߜ ൏

0.948329, loses its stability at ߜ ൌ 0.948329 and an attracting invariant curve appears if ߜ ൐ 0.948329. We 

dispose the maximum Lyapunov exponents in Fig. 2(c) relating bifurcation in Fig. 2(a-b), which confirm the 

existences of chaos and period window as parameter ߜ  varying. When 1.4~ߜ, the sign of maximum 

Lyapunov exponent confirming presence of chaos. Fig. 2(d) is local amplification of Fig. 2(a) for ߜ א

ሾ1.27,1.35ሿ. 

The phase portraits of bifurcation diagrams in Fig. 2(a-b) for different values of ߜ are displayed in Fig. 3, 

which clearly illustrates the act of smooth invariant curve how it bifurcates from the stable fixed point and 

increases its radius. As ߜ grows, disappearance of closed curve occurs suddenly and a period- 6, 11, 17, and 

period 51 orbits appear at 1.2765~ߜ ,1.3545~ߜ ,1.075~ߜ and 1.3155~ߜ respectively. We also see that a 

fully developed chaos in system (2) occurs at 1.4~ߜ. 
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 (a)                                      (b) 

 

 (c)                                    (d) 

 

Fig. 1 Flip bifurcation and Lyapunov exponent of system (2). (a) bifurcation for prey, (b) bifurcation for predator, (c) maximum 
Lyapunov exponents related to (a-b), (d) Fractal dimension corresponding to (a). Initial value ሺݔ଴, ଴ሻݕ ൌ ሺ0.604,2.24ሻ. 

 

 

With the variation of other parameter values (e.g., parameter ݎ), the predator-prey system may exhibit 

richer dynamical behaviors in the Neimark-Sacker bifurcation diagram. When we set the parameter values as 

given in case (ii) with ݎ ൌ 1.65, a new Neimark-Sacker bifurcation diagram is obtained as disposed in Fig. 

4(a-b). The system undergoes Neimark-Sacker bifurcation at ߜ ൌ 0.956099. Similar nonlinear characteristics 

to Figures 2 and 3 are found in this case, such as route to chaos, invariant curves, chaotic attractors, and 

periodic windows. The maximum Lyapunov exponent corresponding to Fig. 4(a-b) is computed and plotted in 

Fig. 4(c), which confirm the existences of chaos and period window as parameter ߜ varying. The local 

amplification diagram corresponding to Fig. 4(a) for ߜ א ሾ1.21,1.37ሿ is shown in Fig. 2(c). We observe from 

Fig. 4(a-b) that stability of syatem (2) happens for ߜ ൏ 0.956099, loses its stability at ߜ ൌ 0.956099 and an 

attracting invariant curve appears if ߜ ൐ 0.956099. The phase portraits of bifurcation diagrams in Fig. 4(a-b) 

for different values of ߜ are displayed in Fig. 5. Also, we observe in this case that there are period- 5, 6, 15, 

16, and period 21 orbits and attracting chaotic sets. 
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   (a)                                      (b) 

 
  (c)                            (d) 

 

(e) 

 

Fig. 2 NS bifurcation and Lyapunov exponent of system (2). (a) NS bifurcation for prey, (b) NS bifurcation for predator, (c) 
maximum Lyapunov exponents related to (a-b), (d) local amplification diagram in (a) for ߜ א ሾ1.27,1.35ሿ, (e) Fractal dimension 
associated with (a). Initial value ሺݔ଴, ଴ሻݕ ൌ ሺ1.17,035ሻ. 

 

 

Fig. 6 shows the Neimark-Sacker bifurcation diagram when the parameter values are given as in case (ii) 

with ݎ ൌ 1.85. The critical Neimark-Sacker bifurcation point is ߜ ൌ 0.966328, and the first chaotic point is 
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at around ߜ ൌ 1.322 (Fig. 7). On the route to chaos, periodic windows with period- 5, 7, 10, and period 28 

orbits and narrow chaotic band are found. On each branch, the predator-prey system sequentially undergoes 

sub-Neimark-Sacker bifurcation, flip bifurcation and periodic window with the increase of ߜ value.  

 

 
 

 
 

 
Fig. 3 Phase portraits (ݕݔ-plane) of bifurcation diagrams Fig. 2(a-b) for different values of ߜ. 

 

 

Example 3 We fix the parameters ܭ ൌ 1.9, ܽ ൌ 1.5, ܾ ൌ 1.95, ݀ ൌ 2.0, ߙ ൌ 0.1, ߚ ൌ 0.1; and varying ߜ in 

range 0.75 ൑ ߜ ൑ 1.4, and ݎ in range 1.5 ൑ ݎ ൑ 1.85. The dynamic complexity of system (2) can be 

observed when more parameters vary. The three-dimensional bifurcation diagrams of system (2) for control 

parameters ߜ א ሾ0.75,1.4ሿ, ݎ א ሾ1.5,1.85ሿ and fixing remaining parameters as in case (ii), are shown in Fig. 8 

(a). The 2D projection of 3D maximum Lyapunov exponents for two control parameters onto ሺߜ,  ሻ plane isݎ

plotted in Fig. 8(b). It is easy to find values of control parameters for which the dynamics of system (2) is in 

status of non-chaotic, periodic or chaotic. For instance, there is a chaotic dynamics for ߜ ൌ ݎ    ,1.4 ൌ 1.5, and 

the non-chaotic dynamics for ߜ ൌ ݎ    ,0.9 ൌ 1.5 (see Fig. 3), which are compatible with the signs of 

maximum Lyapunov exponents in Fig. 8 (b). As shown in Fig. 8 (a), we find that, with the increase of 

parameter ݎ, the Neimark-Sacker bifurcation diagram moves toward the positive ߜ axis. Such movement 

takes the increase of Neimark-Sacker bifurcation critical point and first chaotic point and simultaneously 

changes the periodic windows on the route to chaos.  
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 (a)                                      (b) 

 

  (c)                                   (d) 

 

(e) 

 

Fig. 4 NS bifurcation and Lyapunov exponent of system (2). (a) NS bifurcation for prey, (b) NS bifurcation for predator, (c) 
maximum Lyapunov exponents related to (a-b), (d) local amplification diagram in (a) for ߜ א ሾ1.21,1.37ሿ (e) Fractal dimension 
associated with (a). Initial value ሺݔ଴, ଴ሻݕ ൌ ሺ1.17,035ሻ. 
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Fig. 5 Phase portraits (ݕݔ-plane)of bifurcation diagrams Fig. 4(a-b) for different values of ߜ. 

 

 

Example 4 We fix the parameters ݎ ൌ 1.5, ܭ ൌ 1.9, ܽ ൌ 1.5, ܾ ൌ 1.95, ݀ ൌ 2.0, ߜ ൌ 1.3; and varying ߙ in 

range 0.04 ൑ ߙ ൑ 0.2, and ߚ in range 0.1 ൑ ߚ ൑ 0.5. The three-dimensional bifurcation diagrams of system 

(2) for control parameters ߙ א ሾ0.04,0.2ሿ, ߚ א ሾ0.1,0.5ሿ and fixing fixing ݎ ൌ 1.5, ܭ ൌ 1.9, ܽ ൌ 1.5, ܾ ൌ

1.95, ݀ ൌ 2.0, ߜ ൌ 1.3, are shown in Fig. 8 (c). The 2D projection of 3D maximum Lyapunov exponents for 

two control parameters onto ሺߜ,  ሻ plane is plotted in Fig. 8(d). We observe that the increases values ofݎ

control parameters ߙ and ߚ, the dynamics of system (2) changes from chaotic to non-chaotic status. Moreover, 

we find that the predator-prey system experiences flip bifurcation and Neimark- Sacker bifurcation combine 

together.  
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   (a)                                   (b) 

 

   (c)                                    (d) 

 

(e) 
Fig. 6 NS bifurcation and Lyapunov exponent of system (2). (a) NS bifurcation for prey, (b) NS bifurcation for predator, (c) 
maximum Lyapunov exponents related to (a-b), (d) local amplification diagram in (a) for ߜ א ሾ1.14,1.27ሿ (e) Fractal dimension 
associated with (a). Initial value ሺݔ଴, ଴ሻݕ ൌ ሺ1.17,035ሻ. 
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Fig. 7 Phase portraits(ݕݔ-plane)of bifurcation diagrams Fig. 6(a-b) for different values of ߜ. 

 

 

 

   The measure of fractal dimensions characterizes the strange attractors of a system. By using Lyapunov 

exponents, the fractal dimension (Cartwright, 1999; Kaplan and Yorke, 1979) is defined by 

݀௅ ൌ ݆ ൅
∑  ௝
௜ୀଵ ݄௜
| ௝݄|

 

where݄ଵ, ݄ଶ, . . . , ݄௡  are Lyapunov exponents and ݆  is the largest integer such that ∑  ௝
௜ୀଵ ݄௜ ൒ 0  and 

∑  ௝ାଵ
௜ୀଵ ݄௜ ൏ 0. 

For our two-dimensional system (2), the fractal dimension takes the form  

݀௅ ൌ 1 ൅
݄ଵ
|݄ଶ|

,    ݄ଵ ൐ 0 ൐ ݄ଶ. 

With parameter values as in case (ii), the fractal dimension of system (2) is plotted in Fig. 2(e). The strange 

attractors given in Fig. 3 and its corresponding fractal dimension illustrate that the Leslie type predator-prey 

system (2) has a chaotic dynamics as the parameter ߜ increases. 
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                (a)                                       (b) 

 

                (c)                                      (d) 

 

Fig. 8 Diagnostic of system (2) for control parameters ߜ and ݎ. (a) bifurcation for prey covering ߜ א ሾ0.75,1.4ሿ,    ݎ ൌ 1.5,1.65 

and 1.85 in ሺߜ െ ݎ െ ,ߜሻ space (b) The 2D projection of 3D maximum Lyapunov exponents onto ሺݔ  ሻ plane. (c) bifurcationݎ

for prey covering ߙ א ሾ0.04,0.2ሿ,    ߚ ൌ 0.1,0.2,0.3,0.4 and 0.5 in ሺߙ െ ߚ െ  ሻ space (d) The 2D projection of 3D maximumݔ

Lyapunov exponents onto ሺߜ, ,଴ݔሻ plane. Initial value ሺݎ ଴ሻݕ ൌ ሺ1.17,035ሻ. 

 

 

5 Chaos Control 

To stabilize chaos at the state of unstable trajectories of system (2), a state feedback control method (Elaydi, 

1996) is applied. By adding a feedback control law as the control force ݑ௡ to system (2), the controlled form 

of system (2) becomes 

 

௡ାଵݔ ൌ ௡ݔ ൅ ௡ݔߜ ቂݎ ቀ1 െ
௫೙
௄
ቁ െ

௔௬೙
ሺଵାఈ௫೙ሻሺଵାఉ௬೙ሻ

ቃ ൅ ௡ݑ

௡ାଵݕ ൌ ௡ݕ ൅ ௡ݕߜ ቂ
௕௫೙

ሺଵାఈ௫೙ሻሺଵାఉ௬೙ሻ
െ ݀ቃ

      (17) 

 

and 
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௡ݑ ൌ െ݇ଵሺݔ௡ െ ሻכݔ െ ݇ଶሺݕ௡ െ  ሻכݕ

where the feedback gains are denoted by ݇ଵand  ݇ଶ and ሺכݔ,  .ሻ represent positive fixed point of system (2)כݕ

 

(a) 

 

                      (b)                                         (c) 

 

Fig. 9 Control of chaotic trajectories of system (17). (a) Stability region in ሺ݇ଵ, ݇ଶሻ plane (b-c) Time series for states ݔ and ݕ 
respectively. 

 

 

The Jacobian matrix ܬ௖ of the controlled system(17) is given by 

,כݔ௖ሺܬ ሻכݕ ൌ ൬
ܽଵଵ െ ݇ଵ ܽଵଶ െ ݇ଶ
ܽଶଵ ܽଶଶ

൰        (18) 

 

where ܽ௜௝, ݅, ݆ ൌ 1,2 given in (7) are evaluated at ሺכݔ,  ሻ. The characteristic equation of (18) isכݕ

 

ଶߣ െ ሺܬݎݐ௖ሻߣ ൅ ௖ܬݐ݁݀ ൌ 0         (19) 

where ܬݎݐ௖ ൌ ܽଵଵ ൅ ܽଶଶ െ ݇ଵ and ݀݁ܬݐ௖ ൌ ܽଶଶሺܽଵଵ െ ݇ଵሻ െ ܽଶଵሺܽଵଶ െ ݇ଶሻ. Let ߣଵ  and  ߣଶ be the roots of 

(19). Then 
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ଵߣ ൅ ଶߣ ൌ ܽଵଵ ൅ ܽଶଶ െ ݇ଵ         (20) 

 

and 

ଶߣଵߣ ൌ ܽଶଶሺܽଵଵ െ ݇ଵሻ െ ܽଶଵሺܽଵଶ െ ݇ଶሻ        (21) 

 

The solution of the equations ߣଵ ൌ േ1  and  ߣଵߣଶ ൌ 1 determines the lines of marginal stability. These 

conditions confirm that |ߣଵ,ଶ| ൏ 1. Suppose that ߣଵߣଶ ൌ 1, then from (21) we have  

݈ଵ: ܽଶଶ݇ଵ െ ܽଶଵ݇ଶ ൌ ܽଵଵܽଶଶ െ ܽଵଶܽଶଵ െ 1. 

Assume that ߣଵ ൌ 1, then from (20) and (21) we get  

݈ଶ: ሺ1 െ ܽଶଶሻ݇ଵ ൅ ܽଶଵ݇ଶ ൌ ܽଵଵ ൅ ܽଶଶ െ 1 െ ܽଵଵܽଶଶ ൅ ܽଵଶܽଶଵ. 

Next, assume that ߣଵ ൌ െ1, then from (20) and (21) we obtain  

݈ଷ: ሺ1 ൅ ܽଶଶሻ݇ଵ െ ܽଶଵ݇ଶ ൌ ܽଵଵ ൅ ܽଶଶ ൅ 1 ൅ ܽଵଵܽଶଶ െ ܽଵଶܽଶଵ. 

 

Then the lines ݈ଵ, ݈ଶ, and  ݈ଷ (see Fig. 9(a)) in the ሺ݇ଵ, ݇ଶሻ plane determine a triangular region which keeps 

eigenvalues with magnitude less than 1. 

In order to check how the implementation of feedback control method works and controls chaos at 

unstable state, we have performed numerical simulations. Parameter values are fixed as ߜ ൌ 1.35 and rest as 

in case (ii). The initial value is ሺݔ଴, ଴ሻݕ ൌ ሺ1.17,0.35ሻ, and the feedback gains are ݇ଵ ൌ 0.9  and  ݇ଶ ൌ െ0.08. 

Figures 9(b) and 9(c) show that at the fixed point ሺ1.9809,0.431542ሻ, the chaotic trajectory is stabilized.  

 

6 Discussion 

We investigate the dynamics of a discrete-time predator-prey system with Crowley-Martin functional response 

in the closed first quadrant Թା
ଶ . We prove via center manifold theorem and bifurcation theory, the system (2) 

can undergo a bifurcation (flip or NS) at unique positive fixed point if ߜ varies around the sets ܤܨாమ
ଵ  or 

ாమܤܨ
ଶ  and ܰܵܤாమ . Numerical simulations present unpredictable behaviors of the system through a flip 

bifurcation which include orbits of period- 2, 4, 8 orbits and through a NS bifurcation which include an 

invariant cycle, orbits of period- 5, 6, 7, 10, 11, 15, 16, 17, 21, 28, and period- 51 orbits and chaotic sets 

respectively. These indicate that at the state of chaos, the system is unstable and particularly, the predator goes 

to extinct or goes to a stable fixed point when the dynamic of prey is chaotic. We confirm about the existence 

of chaos through the computation of maximum Lyapunov exponents and fractal dimension. Moreover, system 

(2) exhibits very rich nonlinear dynamical behaviors by the variation of two control parameters and one can 

directly observe the chaotic phenomenon from the two-dimensional parameter spaces. We observe that the 

increases values of control parameters ߙ and ߚ, can stabilize the dynamical system (2), but the small values 

may destabilize the system producing more complex dynamical behaviors. Finally, the chaotic trajectories at 

unstable state are controlled by implementing the strategy of feedback control. However, it is still a 

challenging problem to explore multiple parameter bifurcation in the system. We expect to obtain some more 

analytical results on this issue in the future.   
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