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Abstract 

This article deals with the study of some qualitative properties of a harvesting Leslie-Gower predator-prey 

model. Particularly, we explore the existence, uniqueness, boundedness of positive equilibrium point and local 

stability analysis of positive equilibrium point. Moreover, it is shown that there exists period-doubling 

bifurcation and Nimark-sacker bifurcation for the unique positive steady-state of given system. In order to 

control the bifurcation we introduce a feedback strategy. For further confirmation of complexity and chaotic 

behavior largest Lyapunov exponents are plotted. 
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1 Introduction 

The dynamics of predator and its prey is considerable importance in both mathematical ecology and ecology 

(Rana, 2015). Volterra (1931) proposed the following predator-prey model: 

ௗு

ௗ௧
ൌ ሺܽ െ ܾܲሻܪ,

ௗ௉

ௗ௧
ൌ ሺܿܪ െ ݀ሻܲ,

ቑ  (1) 

where ሺܽ, ܾ, ܿ, ݀ሻ א ܴା. Moreover, Lotka (1920) obtained the same system during the chemical reaction 

observation, thus system (1) is known as Lotka-Volterra population model. The dynamics of model (1) is 

not individually reasonable as a narrative of the interface. An other serious deficiency is that the relative rate of 

increase of the predator is unbounded above in second part of system (1). In order to overcome these 

deficiencies, Leslie (1948) formulate the following set of equations: 

ௗு

ௗ௧
ൌ ሺݎ െ ܽܲ െ ,ܪሻܪܾ

ௗ௉

ௗ௧
ൌ ቀݏ െ ݀

௉

ு
ቁܲ,

ቑ (2) 
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where ܪ is the density of prey population and ܲ is the density of predator population at time ݐ. The 

Leslie-Gower system suggested for predator-prey system is consider as a classic predator-prey model 

(Elhassanein, 2014). According to the Leslie-Gower equations, there is a reciprocal relationship between 

decline of a predator population and its preferred food availability per capita. This supposition can be seen 

from the proportional relation between number of prey and the carrying capacity of predator environment. This 

result increases in the number of both prey and predator indefinitely, which are not predictable in the 

Lotka-Volterra system (1). Recently, Korobeinikov (2001) investigate the global dynamic of system (2) and 

shows that system could not admit oscillatory behavior (Kumar, 2005; Huang at el., 2006) shows that there 

exists limit cycle in the predator-prey model incorporating Holling type-II or III functional responses. Many 

scholars investigate the dynamics of model (2). Aguirre et al. (2009) discussed the existence of two limit 

cycles of system (2) with additive Allee effect. Aziz-Alaoui and Daher Okiye (2003) proposed Holling-type 

II schemes and modified Leslie-Gower model, and explored the globally stability and boundedness of model. 

Nindjin et al. (2006) further introduced a time delay scheme for the model defined by Yafia et al. (2008). The 

bifurcation analysis and limiting behavior of delay model is discussed in Nindjin et al. (2008). Moreover, 

Leslie-Gower-type food chain system is discussed in Aziz-Alaoui (2002) and Chen et al. (2009). In Huo and Li 

(2004) prey refuge is introduced and showed that the persistent property of model is independent of refuge. In 

addition, the Periodic behavior of non-autonomous case of system (2) is studied by Huo and Li (2004). 

Gakkhar and Singh (2006) explored the dynamical behavior of a Leslie-Gower predator-prey system with 

seasonally varying parameters. A further impulsive effect is considered by Song and Li (2008). The 

investigation of harvest of population and biological results are much more important for human needs, such as 

in wildlife, forestry and fishery management (Makinde, 2007). For these purposes, Zhang at el. (2011) 

proposed the following considerable predator and prey system which imperilled to constant effort harvesting 

according to both Leslie-Gower model and this hypothesis and commercial significance;  
ௗு

ௗ௧
ൌ ሺݎ െ ܽܲ െ ܪሻܪܾ െ ,ܪܿ

ௗ௉

ௗ௧
ൌ ቀݏ െ ݀

௉

ு
ቁܲ െ ݇ܲ,

ቑ (3) 

where ܲ and ܪ are, respectively, the densities of predator species and prey species at time ݐ. Moreover, ݏ 

and ݎ are the intrinsic growth rate of predator and prey, ܽ is the predation rate, ܾ measures the strength of 

competition among individual prey, ݀ is a measure of the food quantity that the prey provides converted to 

predator birth, 
௉

ு
 is the LeslieGower term which measures the loss in the predator population due to rarity of 

its favorite food, ܿ and ݇ are the constant effort harvesting of prey and predator, respectively. To ensure the 

sustainable development of both species, it is assumed that 0 ൏ ܿ ൏ and 0 ݎ ൏ ݇ ൏  Darti at el. (2015) .ݏ

discussed the local stability analysis of system (3) by introducing a nonstandard finite difference scheme. In 

order to implement the method of piecewise constant arguments for continuous systems, we assume the 

average growth at the regular time interval for both papulation. Then system (3) can be written as: 
ଵ

ுሺ௧ሻ

ௗுሺ௧ሻ

ௗ௧
ൌ ሺݎ െ ܽܲሺሾݐሿሻ െ ሿሻሻݐሺሾܪܾ െ ܿ,

ଵ

௉ሺ௧ሻ

ௗ௉ሺ௧ሻ

ௗ௧
ൌ ቀݏ െ ݀

௉ሺሾ௧ሿሻ

ுሺሾ௧ሿሻ
ቁ െ ݇,

ቑ (4) 

for 0 ൏ ݐ ൏ 1 the integer part of ݐ is ሾݐሿ. Furthermore, one can integrate system (4) for ݐ א ሾ݊: ݊ ൅ 1ሿ for 

݊ ൌ 0,1,2, .., and whence obtain the following system; 

ሻݐሺܪ ൌ ௡݁ܪ
ሾሺ௥ି௔௉೙ି௕ு೙ି௖ሻሺ௧ି௡ሻሿ,

ܲሺݐሻ ൌ ௡ܲ݁
ቂቀ௦ିௗು೙

ಹ೙
ି௞ቁሺ௧ି௡ሻቃ

.
ൡ (5) 
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Applying ݐ ՜ ݊ ൅ 1, we have the following discrete-time Leslie-Gower model:  

௡ାଵܪ ൌ ௡݁ܪ
ሺ௥ି௔௉೙ି௕ு೙ି௖ሻ,

௡ܲାଵ ൌ ௡ܲ݁
ቀ௦ିௗು೙

ಹ೙
ି௞ቁ

.
ൡ (6) 

Next, we investigate the boundedness of system (6). 

 

2 Boundedness 

In order to explore the boundedness of system (6), we need the following remark .  

Remark 2.1 [Yang, (2006) ] Let ܺ௧ exists for ݔ଴ ൐ 0, and ݔ௧ାଵ ൑ ݐ ௧݁஺ሾଵି஻௫೟ሿ for everyݔ א ሾݐଵ,∞ሿ, where 

 is positive constant. Then ܤ

lim
௡՜ஶ

௧ାଵݔ ൑
1
ܤܣ

݁ሺ஺ିଵሻ. 

Now, one can state the following theorem for the uniform boundedness of system (6), which is direct 

consequence of Remark 2.1.  

Theorem 2.1 Any positive solutionሺܪ௡, ௡ܲሻof system (6) is uniformly bounded.  

Proof Let ሺܪ௡, ௡ܲሻ be any positive solution, then from system (6) one has;  

௡ାଵܪ ൑ ௡݁ܪ
௥ሾଵି್

ೝ
ு೙ሿ, 

for all ݊ ൌ 0,1,2, . ... Assuming that ܪ଴ ൐ 0 and by applying Remark 2.1, one can get the following result.  

lim
௡՜ஶ

௡ܪ݌ݑܵ ൑
ଵ

௕
݁ሺ௥ିଵሻ ൌ ଵܷ. (7) 

Moreover, from second part of system (6), we have:  

 ௡ܲାଵ ൑ ௡ܲ݁
௦ሾଵି ೏

ೆభೞ
௉೙ሿ. 

Let ଴ܲ ൐ 0 and again by applying Remark (2.1), one can get the following result.  

lim
௡՜ஶ

݌ݑܵ ௡ܲ ൑
௎భ
ௗ
݁ሺ௦ିଵሻ ൌ ܷଶ. (8) 

Thus it follows that 

lim
௡՜ஶ

,௡ܪሺ݌ݑܵ ௡ܲሻ ൑ ܷ, 

where ܷ ൌ ሼݔܽ݉ ଵܷ, ܷଶሽ. Thus proof is completed. 

 

3 Existence of Positive Fixed Point and Local Stability 

It is easy to see that system (6) has two fixed points, the boundary fixed point ሺܪଵ, 0ሻ, where ܪଵ ൌ
௥ି௖

௕
 and 

the unique positive fixed point ሺכܪ, ሻכܲ ൌ ቀ
ௗሺ௥ି௖ሻ

௕ௗା௔ሺ௦ି௞ሻ
,
ሺ௥ି௖ሻሺ௦ି௞ሻ

௕ௗା௔ሺ௦ି௞ሻ
ቁ. Let 

69



Computational Ecology and Software, 2019, 9(3): 67-88 

 

 
 
IAEES                                                                                     www.iaees.org

,כܪ௃ሺܨ ሻכܲ ൌ ቂ
ଵଵݓ ଵଶݓ
ଶଵݓ ଶଶݓ

ቃ  

be the Jacobian matrix evaluated at ሺכܪ,  :ሻ, then characteristic polynomial of Jacobian matrix isכܲ

Զሺߣሻ ൌ ଶߣ െ ߣଵܤ ൅  ଶ, (9)ܤ

where 

ଵܤ ൌ ଵଵݓ ൅  ,ଶଶݓ

and 

ଶܤ ൌ ଶଶݓଵଵݓ െ  .ଶଵݓଵଶݓ

In order to discuss the stability of fixed points, we have the following Lemma. 

Lemma 3.1 Let ॲሺߣሻ ൌ ଶߣ െ ߣଵܤ ൅ ଶ, and ॲሺ1ሻܤ ൐ 0 moreover, ߣଵ, ሻߣଶare root of ॲሺߣ ൌ 0, then: 

ሺ݅ሻ |ߣଵ| ൏ 1and |ߣଶ| ൏ 1 ฻ ॲሺെ1ሻ ൐ 0 and ܤଶ ൏ 1; 

ሺ݅݅ሻ |ߣଵ| ൏ 1 and |ߣଶ| ൐ 1 or (|ߣଵ| ൐ 1 and |ߣଶ| ൏ 1) ฻ॲሺെ1ሻ ൏ 0; 

ሺ݅݅݅ሻ |ߣଵ| ൐ 1 and |ߣଶ| ൐ 1฻ॲሺെ1ሻ ൐ 0 and ܤଶ ൐ 1; 

ሺ݅ݒሻ ߣଵ ൌ െ1 and |ߣଶ| ് 1฻ॲሺെ1ሻ ൌ 0  and ܤଵ ് 0, 2;  

ሺݒሻ ߣଵ and ߣଶ are complex and |ߣଵ| ൌ 1 and |ߣଶ| ൌ 1฻ܤଵ
ଶ െ ଶܤ4 ൏ 0 and ܤଶ ൌ 1.  

As ߣଵ and ߣଶ are eigenvalue of (6) we have the following Topological type results.The point ሺכܪ,  ሻisכܲ

known as sink if |ߣଵ| ൏ 1 and  |ߣଶ| ൏ 1, thus the sink is locally asymptotic stable. ሺכܪ,  ሻ is known asכܲ

source if |ߣଵ| ൐ 1 and |ߣଶ| ൐ 1. Source is always unstable.ሺכܪ, |ଵߣ| ሻ is known as saddle ifכܲ ൏ 1 and 

|ଶߣ| ൐ 1or ሺ|ߣଵ| ൐ 1 and |ߣଶ| ൏ 1ሻ is known as non-hyperbolic either |ߣଵ| ൌ 1 and |ߣଶ| ൌ 1. 

At first, we explore the stability analysis of boundary fixed point ሺܪଵ, 0ሻ ൌ ሺ
௥ି௖

௕
, 0ሻ. The Jacobian 

matrix at fixed point ሺܪଵ, 0ሻ ൌ ሺ
௥ି௖

௕
, 0ሻ is given by; 

௃ܨ ቀ
ݎ െ ܿ
ܾ

, 0ቁ ൌ ൥1 െ ݎ ൅ ܿ
ܽሺݎ െ ܿሻ

ܾ
0 ݁ሺ௦ି௞ሻ

൩  

The characteristic polynomial of Jacobian matrix is given by;  

 ॲሺߣሻ ൌ ଶߣ െ ሺe௦ି௞ ൅ ܿ െ ݎ ൅ 1ሻߣ ൅ ሺ1 െ ݎ ൅ ܿሻe௦ି௞. 

Hence, ॲሺߣሻ ൌ 0 has two roots namely, ߣଵ ൌ ݁ሺ௦ି௞ሻ and ߣଶ ൌ 1 െ ሺݎ െ ܿሻ. In addition, ݎ ൐ ܿ and ݏ ൐ ݇, 

implies that |ߣଵ| ൐ 1 and |ߣଶ| ൏ 1 if and only 0 ൏ ݎ െ ܿ ൏ 2 and |ߣଶ| ൐ 1 if and only if ݎ െ ܿ ൐ 2. 

Hence the boundary fixed point ሺܪଵ, 0ሻ ൌ ሺ
௥ି௖

௕
, 0ሻ is source if and only if ݎ െ ܿ ൐ 2 and saddle point if and 

only if 0 ൏ ݎ െ ܿ ൏ 2. Next, our objective is to explore the local stability of the unique positive fixed point 
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ሺכܪ, ሻכܲ ൌ ቀ
ௗሺ௥ି௖ሻ

௕ௗା௔ሺ௦ି௞ሻ
,
ሺ௥ି௖ሻሺ௦ି௞ሻ

௕ௗା௔ሺ௦ି௞ሻ
ቁ. 

Let equation(9) be the characteristic polynomial of Jacobian matrix evaluated at 

ሺכܪ, ሻכܲ ൌ ቀ
ௗሺ௥ି௖ሻ

௕ௗା௔ሺ௦ି௞ሻ
,
ሺ௥ି௖ሻሺ௦ି௞ሻ

௕ௗା௔ሺ௦ି௞ሻ
ቁ, where 

ଵܤ ൌ 2 ൅ ݇ െ ݏ ൅
ܾ݀ሺܿ െ ሻݎ

ܾ݀ ൅ ܽሺݏ െ ݇ሻ
 

and 

ଶܤ ൌ 1 ൅ ሺ1 ൅ ܿ െ ሻሺ݇ݎ െ ሻݏ ൅
௕ௗሺ௖ି௥ሻ

௔ሺ௦ି௞ሻା௕ௗ
. 

Moreover, ॲሺ1ሻ ൌ ሺܿ െ ሻሺ݇ݎ െ ሻݏ ൐ 0 and ॲሺെ1ሻ ൌ 4 ൅ ሺ2 ൅ ܿ െ ሻሺ݇ݎ െ ሻݏ ൅
ଶ௕ௗሺ௖ି௥ሻ

௔ሺ௦ି௞ሻା௕ௗ
. Hence, one has 

the following Lemma for the local stability of unique positive fixed point ሺכܪ, ሻכܲ ൌ ቀ
ௗሺ௥ି௖ሻ

௕ௗା௔ሺ௦ି௞ሻ
,
ሺ௥ି௖ሻሺ௦ି௞ሻ

௕ௗା௔ሺ௦ି௞ሻ
ቁ. 

Proposition 3.1 Let ሺכܪ, ሻכܲ ൌ ቀ
ௗሺ௥ି௖ሻ

௕ௗା௔ሺ௦ି௞ሻ
,
ሺ௥ି௖ሻሺ௦ି௞ሻ

௕ௗା௔ሺ௦ି௞ሻ
ቁ be the unique positive fixed point of (6), then the 

following results hold: 

(i) ሺכܪ,  :ሻ is interior of unit circle if the given below condition satisfiedכܲ

ሺ݇ െ ሻሺ1ݏ ൅ ܿ െ ሻݎ ൏
௕ௗሺ௥ି௖ሻ

௕ௗା௔ሺ௦ି௞ሻ
൏

ସାሺ௞ି௦ሻሺଶା௖ି௥ሻ

ଶ
. 

(ii) ሺכܪ,   :ሻ is the exterior of the unit disk if the given below conditions holdכܲ

௕ௗሺ௥ି௖ሻ

௕ௗା௔ሺ௦ି௞ሻ
൏

ସାሺ௞ି௦ሻሺଶା௖ି௥ሻ

ଶ
  ܽ݊݀  ሺ݇ െ ሻሺ1ݏ ൅ ܿ െ ሻݎ ൐

௕ௗሺ௥ି௖ሻ

௕ௗା௔ሺ௦ି௞ሻ
. 

(iii) ሺכܪ,   :ሻ is saddle point if the following condition holdsכܲ

௕ௗሺ௥ି௖ሻ

௕ௗା௔ሺ௦ି௞ሻ
൐

ସାሺ௞ି௦ሻሺଶା௖ି௥ሻ

ଶ
. 

(iv) ሺכܪ,   :ሻ is non-hyperbolic if one of the given below condition holdsכܲ

 ሺ݅ݒ. 1ሻ    ݎ ൌ 2 ൅ ܿ ൅
4ܽሺ݇ െ ሻݏ

ܽሺ݇ െ ሻଶݏ ൅ ܾ݀ሺݏ െ ݇ െ 2ሻ
ݏ  ݀݊ܽ   െ ݇ െ 2 ്

ܾ݀ሺܿ െ ሻݎ
ܾ݀ െ ܽ݇ ൅ ݏܽ

, 

ݏ െ ݇ ്
௕ௗሺ௖ି௥ሻ

௕ௗି௔௞ା௔௦
. 

ሺ݅ݒ. 2ሻሺ݇ െ ሻݏ ൏
ܾ݀ሺݎ െ ܿሻ

ܾ݀ ൅ ܽሺݏ െ ݇ሻ
൏ ሺ݇ െ ሻݏ ൅ 4  ܽ݊݀  a ൌ

ܾ݀ ቀ1 ൅ Δ ൅
ଵ

௥ିଵି௖
ቁ

Δଶ
. 

 

4 Bifurcation Analysis of Positive Equilibrium 

In this section, we explore period-doubling and Neimark-Sacker bifurcations of unique positive equilibrium 

point of system (6). For similar theory of bifurcation analysis of discrete-time systems can be found in past 
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references (Din, 2014a, b; Din, 2017; Khan, 2014; Elsadany at el., 2012; He and Lai, 2011; Liu and Xiao, 2007; 

Jing and Yang, 2006; Sun and Cao, 2007; Zhang at el., 2007; Nedorezov, 2015). According to Lemma 3.1, one 

of the characteristic root of (9) evaluated at positive fixed point is െ1 and other is neither െ1 nor 1, if part 

(iv.1) of proposition 3.1 holds. Thus (6) undergoes period-doubling bifurcation when the parameters vary in 

the least neighborhood of the following set:  

ௌଵܤ ൌ ൜ሺܽ, ,ݎ ,ݏ ݀, ݇ሻ א Ըା: ݎ ൌ 2 ൅ ܿ ൅
4ܽΔ

ܽΔଶ െ ܾ݀ሺ2 ൅ Δሻ
, ଵܣ ് 0,2 ൠ, 

where Δ ൌ ݇ െ  Moreover, the characteristic root of (9) evaluated at positive fixed point are complex .ݏ

conjugate with absolute 1 , if the condition (iv.2) of proposition 3.1 holds. Thus (6) undergoes 

Neimark-sacker bifurcation when the parameters vary in the least neighborhood of the following set: 

ௌଶܤ ൌ ቐሺܽ, ,ݎ ,ݏ ݀, ݇ሻ א Ըା: Δ ൏
ܾ݀ሺݎ െ ܿሻ

ܾ݀ െ ܽΔ
൏ 4 ൅ Δ, ܽ ൌ

ܾ݀ ቀ1 ൅ Δ ൅
ଵ

௥ିଵି௖
ቁ

Δଶ
ቑ. 

First, we study the flip bifurcation of positive equilibrium of system (6). The unique positive equilibrium point 

ሺכܪ, ሻכܲ ൌ ቀ
ௗሺ௥ି௖ሻ

௕ௗା௔ሺ௦ି௞ሻ
,
ሺ௥ି௖ሻሺ௦ି௞ሻ

௕ௗା௔ሺ௦ି௞ሻ
ቁ of system (6) undergoes flip bifurcation when parameters vary in a small 

neighborhood of ܤௌଵ . Let ݎଵ ൌ 2 ൅ ܿ ൅
ସ௔ሺ௞ି௦ሻ

௔ሺ௞ି௦ሻమା௕ௗሺ௦ି௞ିଶሻ
 and taking parameters ሺܽ, ,ଵݎ ,ݏ ݀. ݇ሻ א  ௌଵܤ

arbitrarily, then in terms of parameters ሺܽ, ,ଵݎ ,ݏ ݀. ݇ሻ, system (6) can be described by the following two 

dimensional map: ቀܪ
ܲ
ቁ ՜ ቆ

ሺ௥భି௔௉ି௕ுି௖ሻ݁ܪ

ܲ݁ቀ௦ିௗ
ು
ಹ
ି௞ቁ

ቇ .                                                                                       ሺ10ሻ 

Taking ݎ ഥas small bifurcation parameter and a perturbation of map ሺ11ሻ can be described by the following 

map: 

ቀܪ
ܲ
ቁ ՜ ቆ

ሺሺ௥భା௥ҧሻି௔௉ି௕ுି௖ሻ݁ܪ

ܲ݁ቀ௦ିௗ
ು
ಹ
ି௞ቁ

ቇ ,                                                                                ሺ12ሻ 

where |ݎҧ| ا 1, which is a small perturbation parameter. Taking ݔ ൌ ܪ െ ݕ and כܪ ൌ ܲ െ  then map ,כܲ

ሺ13ሻ is converted into the following form; 

ቀ
ݔ
ቁݕ ՜ ቀ

ܽଵଵ ܽଵଶ
ܽଶଵ ܽଶଶ

ቁ ቀ
ݔ
ቁݕ ൅ ൬ ଵ݂ሺݔ, ,ݕ ҧሻݎ

ଶ݂ሺݔ, ,ݕ ҧሻݎ
൰ ,                                                                ሺ14ሻ 

where 

ଵ݂ሺݔ, ,ݕ ҧሻݎ ൌ ܽଵଷݔଶ ൅ ܽଵସݕݔ ൅ ܽଵହݕଶ ൅ ܾଵݔଷ ൅ ܾଶݔଶݕ ൅ ܾଷݕݔଶ ൅ ܾସݕଷ ൅ ݁ଵݎҧݔ ൅ ݁ଶݎҧݕ 

 ൅݁ଷݎҧݕݔ ൅ ݁ସݎҧݕଶ ൅ ݁ହݎҧݔଶ ൅ ܱሺሺ|ݔ| ൅ |ݕ| ൅  ,ҧ|ሻସሻݎ|

ଶ݂ሺݔ, ,ݕ ҧሻݎ ൌ ܽଶଷݔଶ ൅ ܽଶସݔଷ ൅ ܽଶହݕݔ ൅ ݀ଵݔଶݕ ൅ ݀ଶݕଶ ൅ ݀ଷݕݔଶ ൅ ݀ସݕଷ ൅ ݁଺ݎҧݕݔ ൅ ݁଻ݎҧݕଶ 

 ൅଼݁ݎҧݔଶ ൅ ܱሺሺ|ݔ| ൅ |ݕ| ൅  ,ҧ|ሻସሻݎ|
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 ܽଵଵ ൌ 1 ൅
௕ௗሺ௖ି௥భሻ

௔ሺ௦ି௞ሻା௕ௗ
, ܽଵଶ ൌ

௔ௗሺ௖ି௥భሻ

௔ሺ௦ି௞ሻା௕ௗ
, ܽଶଵ ൌ

ሺ௦ି௞ሻమ

ௗ
, ܽଶଶ ൌ 1 ൅ ݇ െ  ,ݏ

 ܽଵଷ ൌ
ଵ

ଶ
ܾ ቀ

௕ௗሺ௥భି௖ሻ

௔ሺ௦ି௞ሻା௕ௗ
െ 2ቁ , ܽଵସ ൌ ܽ ቀ

௕ௗሺ௥భି௖ሻ

௔ሺ௦ି௞ሻା௕ௗ
െ 1ቁ , ܽଵହ ൌ

ௗ௔మሺ௥భି௖ሻ

ଶ௔ሺ௦ି௞ሻାଶ௕ௗ
, 

 ܽଵହ ൌ
ௗ௔మሺ௥భି௖ሻ

ଶ௔ሺ௦ି௞ሻାଶ௕ௗ
, ܾଵ ൌ

௕మሺ௕ௗሺଷା௖ି௥భሻାଷ௔ሺ௦ି௞ሻሻ

଺௔ሺ௦ି௞ሻା଺௕ௗ
, 

 ܾଶ ൌ
ଵ

ଶ
ܾܽ ቀ2 ൅

௕ௗሺ௖ି௥భሻ

௔ሺ௦ି௞ሻା௕ௗ
ቁ , ܾଷ ൌ

௔మሺ௕ௗሺଵା௖ି௥భሻା௔ሺ௦ି௞ሻሻ

ଶ௔ሺ௦ି௞ሻାଶ௕ௗ
, 

 ܾସ ൌ
௔యௗሺ௖ି௥భሻ

଺௔ሺ௦ି௞ሻା଺௕ௗ
, ܽଶଷ ൌ

ሺ௞ି௦ሻమሺଶା௞ି௦ሻሺ௔ሺ௦ି௞ሻା௕ௗሻ

ଶௗమሺ௖ି௥భሻ
, 

 ܽଶସ ൌ
ሺ௞ି௦ሻమሺ଺ା଺௞ା௞మିଶሺଷା௞ሻ௦ା௦మሻሺ௔ሺ௦ି௞ሻା௕ௗሻమ

଺ௗయሺ௖ି௥ሻమ
, 

 ܽଶହ ൌ
ሺ௞ି௦ሻሺଶା௞ି௦ሻሺ௔ሺ௦ି௞ሻା௕ௗሻ

ௗሺ௖ି௥భሻ
, ݀ଶ ൌ

ሺଶା௞ି௦ሻሺ௔ሺ௦ି௞ሻା௕ௗሻ

ଶ௖ିଶ௥భ
, 

 ݀ଵ ൌ
ሺ௞ି௦ሻሺଵି௦ା௞ሻሺସା௞ି௦ሻሺ௔ሺ௦ି௞ሻା௕ௗሻమ

ଶௗమሺ௖ି௥భሻమ
, 

 ݀ଷ ൌ
ሺଶାସ௞ା௞మିଶሺଶା௞ሻ௦ା௦మሻሺ௔ሺ௦ି௞ሻା௕ௗሻమ

ଶௗሺ௖ି௥భሻమ
, 

 ݀ସ ൌ
ሺଷା௞ି௦ሻሺ௔ሺ௦ି௞ሻା௕ௗሻమ

଺ሺ௖ି௥భሻమ
, ݁ଵ ൌ

௕ௗ

௔ሺ௞ି௦ሻି௕ௗ
, 

 ݁ଶ ൌ
ௗ௔

௔ሺ௞ି௦ሻି௕ௗ
, ݁ଷ ൌ

௕ௗ௔

௔ሺ௦ି௞ሻା௕ௗ
, ݁ସ

௔మௗ

ଶ௔ሺ௦ି௞ሻାଶ௕ௗ
, 

 ݁ହ ൌ
௕మௗ

ଶ௔ሺ௦ି௞ሻାଶ௕ௗ
, ݁଺ ൌ

௔మఱ
௖ି௥భ

, ݁଻ ൌ
ௗమ
௖ି௥భ

, ଼݁ ൌ
௔మయ
௖ି௥భ

. 

Next, we consider the following translation:  

ቀ
ݔ
ቁݕ ൌ ܶ ቀ

ݑ
 ቁ, (15)ݒ

where ܶ ൌ ቀ
ܽଵଶ ܽଵଶ

െ1 െ ܽଵଵ ଶߣ െ ܽଵଵ
ቁ be a nonsingular matrix along with transformation (15), the map ሺ16ሻ 

can be written as:  

ቀ
ݑ
ቁݒ ՜ ൬

െ1 0
0 ଶߣ

൰ ቀ
ݑ
ቁݒ ൅ ൬

݂ሺݑ, ,ݒ ҧሻݎ
݃ሺݑ, ,ݒ  ҧሻ൰, (17)ݎ

where 

 ݂ሺݑ, ,ݒ ҧሻݎ ൌ ቀ
థ ௕భ
௔భమఝ

െ
௔మర
ఝ
ቁ ଷݔ ൅ ቀ

థ ௕మ
௔భమఝ

െ
ௗభ
ఝ
ቁ ଶݔݕ ൅ ቀ

థ ௕య
௔భమఝ

െ
ௗయ
ఝ
ቁ  ଶݕݔ

 ൅ቀ
థ ௕ర
௔భమఝ

െ
ௗర
ఝ
ቁ ଷݕ ൅ ቀ

థ ௔భఱ
௔భమఝ

െ
ௗమ
ఝ
ቁ ଶݕ ൅ ቀ

థ ௔భర
௔భమఝ

െ
௔మఱ
ఝ
ቁ  ݕݔ

 ൅ቀ
థ ௔భయ
௔భమఝ

െ
௔మయ
ఝ
ቁ ଶݔ ൅

థ ௘భ௥ҧ௫

௔భమఝ
൅

థ ௘మ௥ҧ௬

௔భమఝ
൅ ቀ

థ ௘య
௔భమఝ

െ
௘ల
ఝ
ቁ  ݔݕҧݎ

 ൅ቀ
థ ௘ర
௔భమఝ

െ
௘ళ
ఝ
ቁ ଶݕҧݎ ൅ ቀ

థ ௘ఱ
௔భమఝ

െ
௘ఴ
ఝ
ቁ ଶݔҧݎ ൅ ܱሺሺ|ݑ| ൅ |ݒ| ൅  ,ҧ|ሻସሻݎ|

 ݃ሺݑ, ,ݒ ҧሻݎ ൌ െቀ
ట ௕భ
௔భమఝ

െ
௔మర
ఝ
ቁ ଷݔ െ ቀ

ట ௕మ
௔భమఝ

െ
ௗభ
ఝ
ቁ ଶݔݕ െ ቀ

ట ௕య
௔భమఝ

െ
ௗయ
ఝ
ቁ  ଶݕݔ
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 െቀ
ట ௕ర
௔భమఝ

െ
ௗర
ఝ
ቁ ଷݕ െ ቀ

ట ௔భర
௔భమఝ

െ
௔మఱ
ఝ
ቁ ݕݔ െ ቀ

ట ௔భఱ
௔భమఝ

െ
ௗమ
ఝ
ቁ  ଶݕ

 െቀ
ట ௔భయ
௔భమఝ

െ
௔మయ
ఝ
ቁ ଶݔ െ

ట ௘భ௥ҧ௫

௔భమఝ
െ

ట ௘మ௥ҧ௬

௔భమఝ
െ ቀ

ట ௘య
௔భమఝ

െ
௘ల
ఝ
ቁ  ݔݕҧݎ

 െቀ
ట ௘ర
௔భమఝ

െ
௘ళ
ఝ
ቁ ଶݕҧݎ െ ቀ

ట ௘ఱ
௔భమఝ

െ
௘ఴ
ఝ
ቁ ଶݔҧݎ ൅ ܱሺሺ|ݑ| ൅ |ݒ| ൅  ,ҧ|ሻସሻݎ|

where,  

ݔ  ൌ ܽଵଶሺݑ ൅ ,ሻݒ ݕ ൌ ݑ߰ ൅ ,ݒ߶ ଶߣ ൅ 1 ൌ ߮. 

Let ܹ௖ሺ0,0,0ሻ be the center manifold of (17) evaluated at ሺ0,0ሻ in a small neighborhood of ݎҧ ൌ 0, then 

ܹ௖ሺ0,0,0ሻ can be approximated as follows:  

 ܹ௖ሺ0,0,0ሻ ൌ ሼሺݑ, ,ݒ ҧሻݎ א Թଷ: ݒ ൌ ݉ଵݑଶ ൅ ݉ଶݎݑҧ ൅ ݉ଷݎҧଶ ൅ ܱሺሺ|ݑ| ൅  ,ҧ|ሻଷሻሽݎ|

where  

 ݉ଵ ൌ
టయ௔భఱି௔భమయ௔మయାట ௔భమమሺ௔భయି௔మఱሻାటమ௔భమሺ௔భరିௗమሻ

ఝ ௔భమሺିଵାఒమሻ
, 

 ݉ଶ ൌ
ట ሺట ௘మା௔భమ௘భሻ

ఝ ௔భమሺିଵାఒమሻ
,݉ଷ ൌ 0. 

Hence, the map restricted to the center manifold ܹ௖ሺ0,0,0ሻ is given by  

:ܨ  ݑ ՜ െݑ ൅ ݇ଵݑଶ ൅ ݇ଶݎݑҧ ൅ ݇ଷݑଶݎҧ ൅ ݇ସݎݑҧଶ ൅ ݇ହݑଷ ൅ ܱሺሺ|ݑ| ൅  ,ҧ|ሻସሻݎ|

where  

 ݇ଵ ൌ ቀ
థ ௔భయ
௔భమఝ

െ
௔మయ
ఝ
ቁ ܽଵଶଶ ൅ ቀ

థ ௔భర
௔భమఝ

െ
௔మఱ
ఝ
ቁ߰ ܽଵଶ ൅ ቀ

థ ௔భఱ
௔భమఝ

െ
ௗమ
ఝ
ቁ߰ଶ, 

 ݇ଶ ൌ
థ ௘భ
ఝ
൅

థ ௘మట

௔భమఝ
, 

 ݇ଷ ൌ 2 ቀ
థ ௔భయ
௔భమఝ

െ
௔మయ
ఝ
ቁ ܽଵଶଶ݉ଶ ൅ ቀ

థ ௘ఱ
௔భమఝ

െ
௘ఴ
ఝ
ቁ ܽଵଶଶ ൅ ቀ

థ ௔భర
௔భమఝ

െ
௔మఱ
ఝ
ቁ߰ ܽଵଶ݉ଶ 

 ൅2ቀ
థ ௔భఱ
௔భమఝ

െ
ௗమ
ఝ
ቁ߰ ߶ ݉ଶ ൅ ቀ

థ ௘ర
௔భమఝ

െ
௘ళ
ఝ
ቁ߰ଶ ൅

థమ௘మ௠భ

௔భమఝ
 

 ൅ቆቀ
థ ௔భర
௔భమఝ

െ
௔మఱ
ఝ
ቁ߶ ݉ଶ ൅ ቀ

థ ௘య
௔భమఝ

െ
௘ల
ఝ
ቁ߰ቇܽଵଶ, 

 ݇ସ ൌ 2 ቀ
థ ௔భయ
௔భమఝ

െ
௔మయ
ఝ
ቁ ܽଵଶଶ݉ଷ ൅ ቀ

థ ௔భర
௔భమఝ

െ
௔మఱ
ఝ
ቁ߰ ܽଵଶ݉ଷ ൅

థమ௘మ௠మ

௔భమఝ
൅

థ ௘భ௠మ

ఝ
 

 ൅ቀ
థ ௔భర
௔భమఝ

െ
௔మఱ
ఝ
ቁ߶ ݉ଷܽଵଶ ൅ 2 ቀ

థ ௔భఱ
௔భమఝ

െ
ௗమ
ఝ
ቁ߰ ߶ ݉ଷ, 

 ݇ହ ൌ ቀ
థ ௕య
௔భమఝ

െ
ௗయ
ఝ
ቁ߰ଶܽଵଶ ൅ ቀ

థ ௔భర
௔భమఝ

െ
௔మఱ
ఝ
ቁ߰ ܽଵଶ݉ଵ ൅ ቀ

థ ௔భర
௔భమఝ

െ
௔మఱ
ఝ
ቁ߶ ݉ଵܽଵଶ 

 ൅ቀ
థ ௕భ
௔భమఝ

െ
௔మర
ఝ
ቁ ܽଵଶଷ ൅ ቀ

థ ௕మ
௔భమఝ

െ
ௗభ
ఝ
ቁ߰ ܽଵଶଶ ൅ 2 ቀ

థ ௔భయ
௔భమఝ

െ
௔మయ
ఝ
ቁ ܽଵଶଶ݉ଵ 

 ൅ቀ
థ ௕ర
௔భమఝ

െ
ௗర
ఝ
ቁ߰ଷ ൅ 2 ቀ

థ ௔భఱ
௔భమఝ

െ
ௗమ
ఝ
ቁ߰ ߶ ݉ଵ. 
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Next, we define the following two nonzero real numbers:  

 ݈ଵ ൌ ቀ
డమ௙

డ௨డ௥ҧ
൅

ଵ

ଶ

డி

డ௥ҧ

డమி

డ௨మ
ቁ
ሺ଴,଴ሻ

ൌ
థ ௘భ
ఝ
൅

థ ௘మట

௔భమఝ
് 0, 

 ݈ଶ ൌ ൬
ଵ

଺

డయி

డ௨య
൅ ቀ

ଵ

ଶ

డమி

డ௨మ
ቁ
ଶ
൰
ሺ଴,଴ሻ

ൌ ݇ହ ൅ ݇ଵ
ଶ ് 0. 

Due to aforemention analysis, we have the following result about period-doubling bifurcation of system (6).  

Theorem 4.1 If ݈ଶ ് 0, then system (6) undergoes period-doubling bifurcation at the unique positive 

equilibrium ሺכܪ, ଵ. Furthermore, if ݈ଶݎ varies in small neighborhood of ݎ ሻ, when parameterכܲ ൐ 0, then the 

period-two orbits that bifurcate from ሺכܪ, ሻ) are stable and if ݈ଶכܲ ൏ 0, then these orbits are unstable. 

 Next, we discuss the Neimark-Saker bifurcation for system (6) at unique positive fixed point 

ሺכܪ,  ሻ. We explore the conditions for which system (6) have a non-hyperbolic positive fixed point alongכܲ

with a pair of complex conjugate root of (9) with |ߣଵ,ଶ| ൌ 1. Զሺߣሻ ൌ 0 has two complex conjugate roots 

with |ߣଵ,ଶ| ൌ 1 if the condition(iv.2) of proposition 3.1 is satisfied: In order to observe the Neimark-Sacker 

bifurcation, one can choose the parameters ሺܽ, ,ݎ ,ݏ ݀, ݇ሻ from the set ܤௌଶ, whence the variation of parameters 

in the neighborhood of ܤௌଶ, results in the Neimark-Sacker bifurcation for unique positive equilibrium point 

ሺכܪ, ,ሻ. Assuming system (6) with parameters ሺܽଵכܲ ,ݎ ,ݏ ݀, ݇ሻ, which refers to the following map:  

ቀܪ
ܲ
ቁ ՜ ቆ

ሺ௥ି௔భ௉ି௕ுି௖ሻ݁ܪ

ܲ݁ቀ௦ିௗ
ು
ಹ
ି௞ቁ

ቇ. (18) 

It is trivial to see that mapping (18) has a unique positive equilibrium point ሺכܪ, ,כܪሻ such that ሺכܲ  ሻ isכܲ

unique positive equilibrium fixed of system (3). Since ሺܽଵ, ,ݎ ,ݏ ݀, ݇ሻ א ௌଶ and ܽଵܤ ൌ
௕ௗቀଵା୼ା

భ
ೝషభష೎

ቁ

୼మ
. Taking 

෤ܽ as bifurcation parameter and considering the perturbation of (18) as follows: 

ቀܪ
ܲ
ቁ ՜ ቆ

ሺ௥ିሺ௔భା௔෤ሻ௉ି௕ுି௖ሻ݁ܪ

ܲ݁ቀ௦ିௗ
ು
ಹ
ି௞ቁ

ቇ, (19) 

where | ෤ܽ| ا 1 is taken as small perturbation parameter. Next we consider the transformationݔ ൌ ܪ െ

ௗሺ௖ି௥ሻ

௕ௗା௔ሺ௦ି௞ሻ
, ݕ ൌ ܲ െ

ሺ௖ି௥ሻሺ௞ି௦ሻ

௕ௗା௔ሺ௦ି௞ሻ
 so that map (18) is transferred into the following form:  

ቀ
ݔ
ቁݕ ՜ ቀ

ܽଵଵ ܽଵଶ
ܽଶଵ ܽଶଶ

ቁ ቀ
ݔ
ቁݕ ൅ ൬

݃ଵሺݔ, ሻݕ
݃ଶሺݔ, ሻݕ

൰, (20) 

where 

݃ଵሺݔ, ሻݕ ൌ ܽଵଷݔଶ ൅ ܽଵସݕݔ ൅ ܽଵହݕଶ ൅ ܾଵݔଷ ൅ ܾଶݔଶݕ ൅ ܾଷݕݔଶ ൅ ܾସݕଷ ൅ ܱሺሺ|ݔ| ൅  ,ሻ|ݕ|

݃ଶሺݔ, ሻݕ ൌ ܽଶଷݔଶ ൅ ܽଶସݔଷ ൅ ܽଶହݕݔ ൅ ݀ଵݔଶݕ ൅ ݀ଶݕଶ ൅ ݀ଷݕݔଶ ൅ ݀ସݕଷ ൅ ܱሺሺ|ݔ| ൅  ,ሻ|ݕ|

and ܽଵଵ, ܽଵଶ, ܽଶଵ, ܽଶଶ, ܽଵଷ, ܽଵସ, ܽଵହ, ܾଵ, ܾଶ, ܾଷ, ܾସ, ܽଶଷ, ܽଶସ, ܽଶହ, ݀ଵ, ݀ଶ, ݀ଷ, ݀ସare given in ሺ21ሻ by replacing ݎ 

into ݎଵ ൅  The characteristic equation of variational matrix of system (20) valued at the equilibrium ሺ0,0ሻ .ݎ̃
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can be described as follows:  

ଶߣ െ ሺ݌ ෤ܽሻߣ ൅ ሺݍ ෤ܽሻ ൌ 0, (22) 

where  

ሺ݌ ෤ܽሻ ൌ 2 ൅ ݇ െ ݏ ൅
ܾ݀ሺܿ െ ሻݎ

ܾ݀ െ ሺܽଵ ൅ ෤ܽሻሺ݇ െ ሻݏ
, 

ሺݍ ෤ܽሻ ൌ 1 ൅ ݇ሺ1 ൅ ܿ െ ሻݎ ൅ ሺݎ െ ܿ െ 1ሻݏ ൅
ܾ݀ሺܿ െ ሻݎ

ܾ݀ െ ሺܽଵ ൅ ෤ܽሻሺ݇ െ ሻݏ
. 

Since ሺܽଵ, ,ݎ ,ݏ ݀, ݇ሻ א ,ଵߣ ௌଶ, the zeros of (22) are complex numbersܤ ଵߣ ଶ such thatߣ ൌ |ଵ,ଶߣ| ଶ andߣ ൌ 1. 

Then it follows that: 

,ଵߣ  ଶߣ ൌ
௣ሺ௔෤ሻ

ଶ
േ

௜

ଶ
ඥ4ݍሺ ෤ܽሻ െ ଶሺ݌ ෤ܽሻ. 

Then we obtain  

|ଵߣ|  ൌ |ଶߣ| ൌ ඥݍሺ ෤ܽሻ, ൬
ௗඥ௤ሺ௔෤ሻ

ௗ௔෤
൰
௔෤ୀ଴

ൌ
௕ௗሺ௖ି௥ሻሺ௞ି௦ሻ

ଶ൫௕ௗି௔భሺ௞ି௦ሻ൯
మ

ଵ

ටଵାሺ௞ି௦ሻሺଵା௖ି௥ሻା
್೏ሺ೎షೝሻ

್೏షሺೖషೞሻೌభ

൐ 0. 

Since ሺܽଵ, ,ݎ ,ݏ ݀, ݇ሻ א ௌଶ, it follows that െ2ܤ ൏ ሺ0ሻ݌ ൌ 2 ൅ ݇ െ ݏ ൅
௕ௗሺ௖ି௥ሻ

௕ௗିሺ௞ି௦ሻ௔భ
൏ 2. Next, assuming that 

ሺ0ሻ݌ ് 0,1, that is, ܽଵ ്
௕ௗሺଶା௖ା௞ି௥ି௦ሻ

ሺ௞ି௦ሻሺଶା௞ି௦ሻ
 and ܽଵ ്

௕ௗሺଵା௖ା௞ି௥ି௦ሻ

ሺ௞ି௦ሻሺଵା௞ି௦ሻ
. Thus ݌ሺ0ሻ ് േ2,0,െ1 gives ߣଵ

௠, ଶߣ
௠ ് 1 

for all ݉ ൌ 1,2,3,4 at ෤ܽ ൌ 0. Hence, zeros of (22) do not lie in the intersection of the unit circle with the 

coordinate axes when ෤ܽ ൌ 0 and if the following conditions are satisfied:  

ܽଵ ്
௕ௗሺଶା௖ା௞ି௥ି௦ሻ

ሺ௞ି௦ሻሺଶା௞ି௦ሻ
, ܽଵ ്

௕ௗሺଵା௖ା௞ି௥ି௦ሻ

ሺ௞ି௦ሻሺଵା௞ି௦ሻ
. (23) 

The canonical form of (20) at ෤ܽ ൌ 0  can be obtain by taking ߛ ൌ
௣ሺ଴ሻ

ଶ
ߜ , ൌ

ଵ

ଶ
ඥ4ݍሺ0ሻ െ ଶሺ0ሻ݌  and 

assuming the following transformation: 

ቀ
ݔ
ቁݕ ൌ ൬

ܽଵଶ 0
ߛ െ ܽଵଵ െߜ൰ ቀ

ݑ
 ቁ. (24)ݒ

By using transformation (24), one has the following canonical form of system (20):  

ቀ
ݑ
ቁݒ ՜ ቀߛ െߜ

ߜ ߙ
ቁ ቀ
ݑ
ቁݒ ൅ ൬

ሚ݂ሺݑ, ሻݒ
෤݃ሺݑ, ሻݒ

൰, (25) 

where  

ሚ݂ሺݑ, ሻݒ ൌ
ܽଵଷ
ܽଵଶ

ଶݔ ൅
ܽଵସ
ܽଵଶ

ݕݔ ൅
ܽଵହ
ܽଵଶ

ଶݕ ൅
ܾଵ
ܽଵଶ

ଷݔ ൅
ܾଶ
ܽଵଶ

ݕଶݔ ൅
ܾଷ
ܽଵଶ

ଶݕݔ ൅
ܾସ
ܽଵଶ

ଷݕ ൅ ܱሺሺ|ݑ| ൅  ,ሻସሻ|ݒ|

෤݃ሺݑ, ሻݒ ൌ ቆ
ሺߛ െ ܽଵଵሻܽଵଷ

ܽଵଶߜ
െ
ܽଶଷ
ߜ
ቇ ଶݔ ൅ ቆ

ሺߛ െ ܽଵଵሻܽଵସ
ܽଵଶߜ

െ
ܽଶହ
ߜ
ቇ ݕݔ ൅ ቆ

ሺߛ െ ܽଵଵሻܽଵହ
ܽଵଶߜ

െ
݀ଶ
ߜ
ቇ  ଶݕ

൅ቆ
ሺߛ െ ܽଵଵሻܾଵ

ܽଵଶߜ
െ
ܽଶସ
ߜ
ቇ ଷݔ ൅ ቆ

ሺߛ െ ܽଵଵሻܾଶ
ܽଵଶߜ

െ
݀ଵ
ߜ
ቇ ݕଶݔ ൅ ቆ

ሺߛ െ ܽଵଵሻܾଷ
ܽଵଶߜ

െ
݀ଷ
ߜ
ቇ  ଶݕݔ

൅ቆ
ሺߛ െ ܽଵଵሻܾସ

ܽଵଶߜ
െ
݀ସ
ߜ
ቇ ଷݕ ൅ ܱሺሺ|ݑ| ൅  ,ሻସሻ|ݒ|
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ݔ ൌ ܽଵଶݑ and ݕ ൌ ሺߛ െ ܽଵଵሻݑ െ   :whence, one has the following nonzero real number .ݒߜ

ܮ  ൌ ቀቂെܴ݁ ቀ
ሺଵିଶఒభሻఒమ

మ

ଵିఒభ
ଵଵቁߦଶ଴ߦ െ

ଵ

ଶ
ଵଵ|ଶߦ| െ ଴ଶ|ଶߦ| ൅ ܴ݁ሺߣଶߦଶଵሻቃቁ

௔෤ୀ଴
, 

where  

ଶ଴ߦ  ൌ
ଵ

଼
ൣ ሚ݂௨௨ െ ሚ݂

௩௩ ൅ 2 ෤݃௨௩ ൅ ݅൫ ෤݃௨௨ െ ෤݃௩௩ െ 2 ሚ݂௨௩൯൧, 

ଵଵߦ  ൌ
ଵ

ସ
ൣ ሚ݂௨௨ ൅ ሚ݂

௩௩ ൅ ݅ሺ ෤݃௨௨ ൅ ෤݃௩௩ሻ൧, 

଴ଶߦ  ൌ
ଵ

଼
ൣ ሚ݂௨௨ െ ሚ݂

௩௩ െ 2 ෤݃௨௩ ൅ ݅൫ ෤݃௨௨ െ ෤݃௩௩ ൅ 2 ሚ݂௨௩൯൧, 

ଶଵߦ  ൌ
ଵ

ଵ଺
ൣ ሚ݂௨௨௨ ൅ ሚ݂

௨௩௩ ൅ ෤݃௨௨௩ ൅ ෤݃௩௩௩ ൅ ݅൫ ෤݃௨௨௨ ൅ ෤݃௨௩௩ െ ሚ݂
௨௨௩ െ ሚ݂

௩௩௩൯൧. 

One can notice that, the sufficient condition for existence of Neimark-Sacker bifurcation is that ܮ must be 

nonzero Kuznetsov (1997). Due to aforemention analysis, we have the following significance for direction and 

existence of Neimark-Sacker bifurcation, see Guckenheimer and Holmes (1983), Robinson (1999), and 

Wiggins (2003). 

Theorem 4.2 There exists Neimark-Sacker bifurcation at ሺכܪ,  ሻ whenever ܽvaries in a least neighborhoodכܲ

of ܽଵ ൌ
௕ௗቀଵା௞ା

భ
షభష೎శೝ

ି௦ቁ

ሺ௞ି௦ሻమ
. In addition, if ܮ ൏ 0, ሺܮ ൐ 0ሻ, respectively, then an attracting or repelling invariant 

closed curve bifurcates from the equilibrium point for ܽ ൐ ܽଵ,  

ሺܽ ൏ ܽଵሻ, respectively. 

 

5 Hybrid Control of Period-Doubling Bifurcation 

In order to control the period-doubling bifurcation in the system (6), we apply the method of hybrid control. 

This method is considered as control strategy see also Luo at el. (2003, 2004), Chen and Yu (2005), and 

Elabbasy at el. (2007). 

Consider the following controlled system corresponding to system (6); 

൬
௡ାଵܪ
௡ܲାଵ

൰ ՜ ൭
௡݁ܪ൫ ߠ

ሺ௥ି௔௉೙ି௕ு೙ି௖ሻ൯ ൅ ሺ1 െ ௡ܪሻߠ

ሺߠ ௡ܲ݁
ቀ௦ିௗು೙

ಹ೙
ି௞ቁ

ሻ ൅ ሺ1 െ ሻߠ ௡ܲ

൱,(26) 

where 0 ൏ ߠ ൏ 1. The original system (6) and the corresponding controlled system(26) has the same fixed 

point, the variational matrix at positive fixed point ሺכܪ,   :ሻ of controlled system can be written asכܲ

 ቌ
1 ൅

௕ௗሺ௖ି௥ሻఏ

௕ௗା௔ሺି௞ା௦ሻ

௔ௗሺ௖ି௥ሻఏ

௕ௗା௔ሺି௞ା௦ሻ

ሺ௞ି௦ሻమఏ

ௗ
1 െ ሺ݇ െ ߠሻݏ

ቍ. 

The following result gives condition for local asymptotic stability of positive equilibrium ሺכܪ,  ሻ of theכܲ

77



Computational Ecology and Software, 2019, 9(3): 67-88 

 

 
 
IAEES                                                                                     www.iaees.org

controlled system (26).  

Theorem 5.1 The equilibrium population ሺכܪ,  ሻ of control system (26) is locally asymptotically stable ifכܲ

and only if the following condition hold: 

ฬ2 ൅ ሺ݇ െ ߠሻݏ ൅
ܾ݀ሺܿ െ ߠሻݎ

ܾ݀ ൅ ܽሺݏ െ ݇ሻ
ฬ ൏ 1 ൅ ݎଶሺߠ െ ܿሻሺݏ െ ݇ሻ ൅

ܾ݀ሺܿ ൅ ݇ െ ݎ െ ߠሻݏ െ ܽሺݏ െ ݇ሻଶ

ܾ݀ ൅ ܽሺݏ െ ݇ሻ
൅ 1 ൏ 2. 

 

6 Numerical Simulation 

Example 6.1 Consider the particular values of the parameters,ܿ ൌ 2, ݏ ൌ 6, ݇ ൌ 5, ݀ ൌ 29.4, ܾ ൌ 60, ܽ ൌ

4 and ݎ א ሾ3.5, 6ሿ, in this case we have the following form of system (6); 

௡ାଵܪ ൌ ௡݁ܪ
ሺ௥ିସ௉೙ିସ଴ு೙ିଶሻ,

௡ܲାଵ ൌ ௡ܲ݁
ቀ଺ିଶଽ.ସು೙

ಹ೙
ି଺ቁ

.
ൡ (27) 

Moreover, according to aforemention particular values of biological constants, system (27) has unique 

positive equilibrium point ሺכܪ,   ሻכܲ ൌ ሺ0.02494343891, 0.0008484162896ሻ . Thus both the papulation 

undergoes period-doubling bifurcation and the bifurcation diagrams are given in (Fig. 1 and Fig. 2). In addition, 

the maximum lypunov exponent is shown in (Fig. 3). 

 

 

Fig. 1 Bifurcation diagram for ܪ௡. 
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Fig. 2 Bifurcation diagram for ௡ܲ. 

 

 

Fig. 3 MLE. 

 

Example 6.2 Let ܾ ൌ 1.8, ܿ ൌ 0.99, ݀ ൌ 0.4, ݏ ൌ 6, ݇ ൌ 5, ݎ ൌ 3 and ܽ א ሺ0.1,2.9ሻ. Then, the system (6) 

has the following mathematical form: 

௡ାଵܪ ൌ ௡݁ܪ
ሺଷି௔௉೙ିଵ,଼ு೙ି଴.ଽଽሻ,

௡ܲାଵ ൌ ௡ܲ݁
ቀ଺ି଴.ସು೙

ಹ೙
ିହቁ

.
ൡ (28) 

In this case ሺכܪ, ሻכܲ ൌ ሺ0.5289473684,1.322368421ሻ. According to these parametric values, the plots of 

 ௡ and ௡ܲ are given in (Fig. 4 and Fig. 5), which shows that both papulation undergoes Neimark-sackerܪ

bifurcation. Moreover, the maximum lypunov exponents are shown in (Fig. 6). Moreover, phase portrait for 

different values of the bifurcation parameter ܽ are shown in (Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11, Fig. 12, 

Fig. 13 and Fig. 14), which confirm the existence of the Neimark-sacker bifurcation when ܽ passes through 

ܽ ൌ 0.51063 (see Fig. 8) and for ܽ ൌ 2.87 a chaotic attractor shows that there exist chaos in system (6), 

( see Fig. 13 and Fig. 14). 
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Fig. 4 Bifurcation diagram for ܪ௡. 

 

 

Fig. 5 Bifurcation diagram for ௡ܲ. 

Fig. 6 MLE 
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Fig. 7 Phase portrait for ܽ ൌ 0.5103 

 

 

 

Fig. 8 Phase portrait for ܽ ൌ 0.51063 

 

 

Fig. 9 Phase portrait for ܽ ൌ 0.5107 
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Fig. 10 Phase portrait for ܽ ൌ 0.5207 

 

 

Fig. 11 Phase portrait for ܽ ൌ 0.5407 

 

 

Fig. 12 Phase portrait for ܽ ൌ 0.5508 
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Fig. 13 Phase portrait for ܽ ൌ 1.870 

 

 

Fig. 14 Phase portrait for ܽ ൌ 2.87 

 

Example 6.3 Let ܿ ൌ 2, ݏ ൌ 6, ݇ ൌ 5, ݀ ൌ 29.4, ܾ ൌ 60, ܽ ൌ 4, ݎ ൌ 5 and ߠ  א ሾ0,1ሿ , the controlled 

system (26) is locally asymptotically stable if and only if 0 ൏ ߠ ൏ 0.668941. Moreover, one can see that the 

uncontrolled system (6) undergoes period-doubling bifurcation (see Fig. 1 and Fig.2) for aforemention 

parametric values, but on other hand in the controlled system (26) the period-doubling bifurcation is 

controlled (see Fig. 15). 
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Fig. 15 Bifurcation diagram for ܪ௡. 

 

 

Example 6.4  In order to explore the controllability of Neimark-sacker bifurcation, we fixed the parameters 

b ൌ 1.8, c ൌ 0.99, d ൌ 0.4, s ൌ 6, k ൌ 5, r ൌ 3, a ൌ 1.8 and θ א ሺ0,1ሻ, then controlled system (26) is 

locally asymptotically stable if and only if 0 ൏ ߠ ൏ 0.8. Moreover, Neimark-saker bifurcation is controlled 

for the maximum range of controlled parameter ߠ (see Fig. 16 and Fig. 17). Moreover, In order to confirm the 

stability of system (26), the plot of ܪ௡ and ௡ܲ along with a phase portrait are shown in (Fig. 18, Fig. 19 and 

Fig. 20). 

 

 

Fig. 16 Bifurcation diagram for ܪ௡ 
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Fig. 17 Bifurcation diagram for ௡ܲ 

 

 

Fig. 18 Plot of ܪ௡ for controlled system (26) 

 

Fig. 19 Plot of ௡ܲ for controlled system (26) 
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Fig. 20 Phase portrait for controlled system (26) 

 

 

7 Concluding Remarks 

In this paper, we study aharvesting Leslie-Gower predator-prey model. We discretize the system of differential 

equations by implemented the method of piecewise constant arguments for continuous systems. In particular, 

we discuss the boundedness and existence of unique positive equilibrium point of discrete time version of a 

harvesting Leslie-Gower predator-prey model (3). Parametric conditions are successfully calculated for local 

asymptotic stability of model (6), existence and direction of Neimark-sacker and period-doubling bifurcation 

are computed explicitly and it is shown that system (6) undergoes period-doubling and Neimark-sacker 

bifurcations when parameter ݎ varies in the neighborhood of ݎଵ ൌ 2 ൅ ܿ ൅
ସ௔ሺ௞ି௦ሻ

௔ሺ௞ି௦ሻమା௕ௗሺ௦ି௞ିଶሻ
 and parameter 

ܽ varies in the neighborhood of ܽଵ ൌ
௕ௗቀଵା୼ା

భ
ೝషభష೎

ቁ

୼మ
. Moreover, in order to control the bifurcations we have 

implemented the hybrid control technique, hence stability of fixed point is restored for wide range of both 

parameters ܽ and ݎ. Finally, some numerical computations with graphical analysis are provided to shows the 

correctness of theoretical investigation. 
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