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Abstract 

In this paper we proposed a minimal model of non-toxic phytoplankton - toxic phytoplankton - zooplankton 

dynamics with Holling type-II and Holling type-IV functional responses. We carried out the analytical study of 

spatial and non-spatial model for one dimensional system in detail and found out the condition for diffusive 

instability of a locally stable equilibrium. With the help of numerical simulations, we have observed that when 

the rate of inhibition of zooplankton growth by toxic material ingested in feeding on toxic phytoplankton is 

very large, then because of high toxic effect, the zooplankton goes to extinction.  

 
keywords plankton; planktonic bloom; diffusion; spatio-temporal pattern.  

 

 

 

 

 

 

 
 
1 Introduction 

Phytoplankton are photo-synthesizing microscopic organisms of the plankton community and a key part of 

oceans, seas and freshwater basin ecosystems. The phytoplankton communities consist of accumulation of 

species with different morphological (size, shape) and physiological (nutrition mode, reproduction) 

characteristics and whose organization is a key to understand the dynamics of any ecosystem. A significant 

number of species of phytoplankton has been found that have the ability to produce toxic or inhibitory 

compounds (Chattopadhyay, 2002; Hallegrae, 1993; Sarkar, 2003; Steidinger, 1996). These are called toxin-

producing phytoplankton (TPP), and distinguish them from non-toxic phytoplankton (NTP). These TPP are 

entirely different from other phytoplankton in biochemical nature. 

Reduction in zooplankton density due to release of toxic substances by phytoplankton is one of the most 

indispensable parameters in this context (Fay, 1983; Keating, 1976; Kirk, 1992; Lefevre, 1952). Buskey and 

Stockwell (1993) have demonstrated in their field studies that micro- and meso-zooplankton populations are 

reduced during the blooms of a chrysophyte Aureococcus anophagefferens on the southern Texas coast. 

Toxicity may be a strong mediator of zooplankton feeding rate, as shown in both field studies (Estep, 1990; 

Hansen and Nielsen, 1990) and laboratory studies (Buskey, 1995; Huntley, 1986; Ives, 1987; Nejstgaard, 
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1996). With the help of field observation and mathematical modelling, Roy et al. (2006, 2007) discovered the 

role of TPP in determining the dynamics and main-taining diversity of the overall phytoplankton and 

zooplankton species in the Bay of Bengal. Roy (2008) also studied the space-time framework for promo-tion 

of plankton diversity due to the presence of TPP. These observations indicate that the toxic substance as well 

as toxic phyto-plankton plays an important role in the growth of the zooplankton population and has a great 

impact on phytoplankton-zooplankton interactions. He investigated the effects of spatial interaction on 

plankton populations in the presence of toxic species. 

In this paper, we propose and analyze a three-component mathematical model consisting of the NTP, TPP, 

and zooplankton populations for modelling the plankton dynamics in spatially distributed population with local 

diffusion. Here, we assume that the local growth of the prey is logistic and that the predator shows the Holling 

type II functional response for non-toxin-producing (NTP) and Holling type IV functional for TPP. We 

obtained the conditions for local stability of the model system in the absence and presence of diffusion. We 

also obtained the criteria for turing in-stability. We numerically simulated the model system using estimated 

parameter values. TPP provides a mechanism for switching of plankton dynamics from limit cycle to stability. 

Our observation indicates that TPP has a significant controlling command on zooplankton. 

 

2 Model System 

We formulate a mathematical model of those interacting groups: non-toxic phytoplankton, toxic phytoplankton 

and zooplankton under the following assumptions: 

 

(i) Each of non-toxic phytoplankton and toxic phytoplankton  population follow logistic growth. 

 

(ii) The groups of phytoplankton exhibit Holling type-II and Holling type-IV functional response to 

the grazer zooplankton. 

 

(iii) Toxic materials ingested on predation of Toxic Phytoplankton cause a significant inhibitory 

effect on zooplankton growth. 

 

We consider a reaction-diffusion model for non-toxic phytoplankton, toxic phytoplankton and zooplankton 

system. 

 

 

Table 1 Definition of parameters and variables. 

    Parameter                                                    Definition 
    

( , )NP x t  Concentrations of non-toxic phytoplankton at any location x  and time t . 
( , )TP x t  Concentrations of toxic phytoplankton at any location x  and time t . 
( , )Z x t  Concentrations of zooplankton at any location  x  and time t . 

1k  
Carrying capacity of phytoplankton which is shared by non-toxic 

phytoplankton. 

2k  Carrying capacity of phytoplankton which is shared by toxic phytoplankton. 

1r  Constant intrinsic growth rate of non-toxic phytoplankton population. 

2r  Constant intrinsic growth rate of toxic phytplankton population. 

1w  Rate at which non-toxic phytoplankton are consumed by zooplankton. 

2w  Rate at which toxic phytoplankton are consumed by zooplankton. 
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1  The maximum rate of gain in zooplankton growth due to 
 predation of non-toxic phytoplankton at a rate 1w . 

2  The rate of inhibition of (or reduction in) zooplankton 
 growth by toxic material ingested in feeding on toxic phytoplankton. 
         m  Half saturation constant for non-toxic phytoplankton. 
            Half saturation constant for toxic phytoplankton. 

c  Mortality rate of zooplankton due to natural death. 

1D  Diffusion coefficient of non-toxic phytoplankton. 

2D  Diffusion coefficient of toxic phytoplankton. 

3D  Diffusion coefficient of zooplankton. 
  

 

Here,
2

2
2x

 


 

Based on earlier assumptions, plankton dynamics may be written as follows: 
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(1) 

with non-zero initial conditions: 

 ( ,0) 0, ( ,0) 0, ( ,0) 0, 0, .N TP x P x Z x x R                         

(2) 

and the zero-flux boundary conditions 

0, [0, ]N TP P Z
x R

x x x

  
   

  
.                   

(3) 
 

The zero flux boundary conditions are used for modeling the dynamics of spatially bounded aquatic 

ecosystem. Here, 1r  and 2r  are the intrinsic growth rate of non toxic phytoplankton and toxic phytoplankton in 

the absence of predation respectively; 1  and 2 are the interspecific competition coefficient for non toxic 

phytoplankton and toxic phytoplankton; 1k  and 2k are the carrying capacity of phytoplankton populations; 

1w  and 2w are maximum rate of predation; m and   are half-saturation constant for non toxic phytoplankton 

and toxic phytoplankton density respectively; 1  is the rate at which non toxic phytoplankton is grazed and 

2  is the reduction rate in the growth of zooplankton due to toxic material ingested in feeding on toxic 
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phytoplankton ; c  is the mortality rate of zooplankton, 1D , 2D  and 3D  are the diffusion coefficients of non 

toxic phytoplankton, toxic phytoplankton and zooplankton density respectively. 

 
3 Stability Analysis of Non-Spatial Model System 

In this section, we restrict ourselves to the stability analysis of the model system in the absence of diffusion 

( 1 2 30, 0, 0D D D   ) in which only the interaction part of the model system is taken into account. We 

find the non-negative equilibrium states of the model system and discuss their stability properties with respect 

to variation of several parameters. In this case, the model system reduces to the form 
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Lemma 1: 1 1
1 2 1
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is 

a region of attraction for all solutions initiating in the interior of the positive octant, where 0 c  . 
The model system (4) possesses six non-negative real equilibrium points: 

(i) Plankton-free equilibrium point  0 (0,0,0)E always exists. 

(ii) TPP and zooplankton-free equilibrium point  1 1( ,0,0)E k exists on the boundary of the first octant. 

(iii) NTP and zooplankton-free equilibrium point  2 2(0, ,0)E k exists on the boundary of the first octant. 

(iv) Zooplankton-free equilibrium point 3 1 2( , ,0)E P P
 

 is the planar equilibrium point on the  N TP P -plane 

where   1 1 2

1 21N
k k
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(v) TPP-free equilibrium point 4 ( ,0, )NE P Z
 

 is the planar equilibrium point on the  N ZP - plane where 

1
N

cm
P

c



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1 1

1 ( )N
N

r P
z m P

w k

 
 
 

    if 1 c  , 1 1( )k c cm   . 

(vi)   The existence of interior equilibrium point 5 ( , , )N TE P P Z   . 
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In this case, 
*,N TP P 

 and *Z  are the positive solutions of the following three equations: 
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From Eq.(5) ,we get 
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Clearly, 0Z   if  1 1( )N Tk P P 
.
 

Putting the value of  Z  from Eq.(8) in Eqs.(6) and (7), we obtain: 
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(10)  

From Eq.(9), when 0TP   then 
aN NP P  where 

0,
aNP   if 2 1 1 2r w r w   

                                                                                                            (11)    

Putting 0NP   in Eq.(9), we note that 1(0, )TF P  has a unique positive root 
aTP , which is the solution of the 

following equation: 
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3 2 1 2 2 1 2 1 1 2 1 2 2
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It may be noted here that Eq.(12) has one or three positive roots. Eq. (12) can be re-written as 
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From Eq.(10), when  0TP   then  
bN NP P  where: 
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Let  2PN
F  and  2PT

F are the partial derivatives of  2F  with respect to NP  and TP  respectively. Now we have  
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From the above analysis, we note that the isoclines (9) and (10) intersect at  a unique point 
* *( , )N TP P , if in 

addition to conditions (14), (15) and (17) the following condition holds: 

abN NP P . 

Knowing the values of  NP  and  TP , the value of  *Z  can be calculated from Eq.(8). This completes the 

existence of equilibrium point   * * *
5 , ,N TE P P Z . 

Now, in order to investigate local behavior of the model system (1)-(3) at each equilibrium points, the 

variational matrix of the point  is  , ,N TP P Z  computed as 
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Let  , 0,1,2,3, 4,5jV j    denotes the variational matrix at , 0,1, 2,3, 4,5jE j   respectively. 

For 0 (0,0,0)E  we have  
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The eigenvalues of matrix 0V  are 1 2, ,r r c . There is unstable manifold along NP , TP direction and stable 

manifold along Z direction. Therefore, the equilibrium point 0E  is a saddle point. 

The variational matrix for  11( ,0,0)E k  is given by  
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The equilibrium point  3( , ,0)N TE P P  is stable or unstable in the positive di-rection orthogonal to the  NP

TP  plane, i.e. Z-direction depending on whether  1 2
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c

P m m PP P P P

P

V



   
   

      
   

        


     


 

    

 

   








 
 
 
 



 

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
   
 
 

 

In the following theorem, we are able to find conditions for the positive equilibrium point  

5 * *( , , *)TNE P P Z to be locally asymptotically stable. 
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Theorem 2.1. Suppose that the positive equilibrium point  5 * *( , , *)TNE P P Z  of the model system (4) exists. 

The equilibrium point  5 * *( , , *)TNE P P Z  is locally asymptotically stable if the following conditions hold: 

2 2* * * *2 * 2 * * 2
1 1 1 2 2 2 2( ) ( * ) , ( ) ( )N T T T Ti r P m w k Z r P P P k w Z P w Z          

 2

2 2

** 2 *
* * * ** *2 2 *1 1 2 1 2 22 1 1

* *2* * * *2
2 1 21 1

( )
( ) , ,

( ) ( )( ) ( )

T
T N N TT

N

N NT T T T

w Z w Z P r w P m P w r P Pr P r w Z
ii P

k k P m k m PP P k w P P

    
   

  
     

      

2

2

2

2** * 2
* 2 2

* 3 1 2 1 1 1 2 2
1 2 1 2 1 1 1 2 * * *

21 2

* ** * 2 * *
* *1 1 2 2 2 1 1

* 2 * * 2
1 2 1

( ) ( ) , ,
( ) ( )

( )

( ) (( )

N

N

N T T

T T
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N T T

Z P Zm Z w r w r
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 

     
  

    
         

         
2

2

2

* 2

* * * ** * 2
2 2 2 1 2 1 2

* * 3
1 2

)

( )

( )

N

T N N T
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m

w P Z P Z r r P P

k kP P

      
 

  
  

   




 

 

 
3 Stability Analysis of Spatial Model System 

In this section, we study the effect of diffusion on the model system about the interior equilibrium point. In 

order to derive the condition of stability for the equilibrium point with diffusion, we have considered the 

linearized form of the model system (1) about  5 * *( , , *)TNE P P Z  with small perturbations U(x; t), V(x; t) 

and W(x; t) as  
* * *, ,N N T TP P U P P V Z Z W      . 

The linearized form of the equations is obtained as 

2

11 12 13 1 2

2

21 22 23 2 2

2

31 32 33 3 2

U U
a U a V a W D

t x

V V
a U a V a W D

t x

W W
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t x

 
   

 
 

   
 
 

   
 

                                                                                                                    

(20) 

where 

2

2 2

2

2

* * * **
1 1 1 1 1
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2 2 2 2 2 2
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1 2 2
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( ) ( )

, ,
( ) ( )

N N N N

N N

T T T T
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Let us suppose that the model system (20)  has the solution which  is of the form 

                                                   exp( )cos( / ),

U A

V B t n x R

W C

 
   
      
   
   

                                                        

(21) 
where  A, B and C are sufficiently small constants. /R n  is the critical wave-length and /k n R  is wave 

number, R is the length of the system, 2 / n  is the period of cosine and    is the frequency respectively. The 

characteristic equation of the linearized system is given by 

3 2
1 2 3 0                                                                                                              

(22) 

where 

2
1 1 2 3( ) ( )Tr M D D D k       

 4 2
2 1 2 1 3 3 2 11 2 3 22 1 3 33 1 3( ) ( ) ( ) ( ) ( ) ,R M D D D D D D k a D D a D D a D D k                               

(23) 

2
3 ( )P k   

With 

2 6 4 2
0 1 2( ) ( ),P k b k b k b k Det M     

where 

0 1 2 3

1 11 2 3 22 1 3 33 1 2

2 1 22 33 23 32 2 11 33 13 31 3 11 22

,

( ) ( ) ,

b D D D

b a D D a D D a D D

b D a a a a D a a a a D a a


  
    

                                                                            

(24) 

and 

11 12 13

21 22 23 11 22 33

31 32 33

, ( ) ,

a a a

M a a a Tr M a a a

a a a

 
     
 
 

 

11 22 33 13 31 22 33 23 32

11 22 33 23 32 22 13 31

( ) ( ) ,

( ) ( )

R M a a a a a a a a a

Det M a a a a a a a a

    
  

                                                                                          

(25) 

 

Theorem 3.1 The positive equilibrium point 5 * *( , , *)TNE P P Z   is locally asymptotically stable in the 

presence of diffusion if and only if:  
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1 0                                                                                                                                                                        

(26) 

                                                                                                                                                                                

(27) 

1 2 3 0                                                                                       (28) 

 

From Eq. (22) and using the Routh-Hurwitz criterion, the above theorem follows immediately. 

 

4 Turing Instability 

The Turing instability occurs if at least one of the roots of the above Eq.(22) has a positive root or positive real 

part or in other words, Re( ) 0   for some k > 0. Irrespective of the sign of 1 and 2 , the diffusion-driven 

instability occurs when  2
3 ( ) 0P k   . Hence the condition for diffusive instability is given by 

2 6 4 2
0 1 2( ) ( ) 0P k b k b k b k Det M                                                                                                            .

(29) 
                                            

P is a cubic polynomial in 2k . The critical values of  2( )P k  occurs at 
22

crk k , where 

2
2 1 1 0 2

0

3

3cr

b b b b
k

b

 
                                                                    (30) 

For positive value of critical points 
22

crk k  we require: 

2
1 0 13 0b b b   and 1 0b   or 2 0b                                                (31) 

1 2 1 2 1 2

1 2 1 2

r  = 0.4632; r  = 0.4425; = 0.002; = 0.001; k = 505; k = 505;

w = 0.6625;w = 0.435; = 0.516; = 0.198; m = 45;  = 30; c = 0.109

 
  

                  (32) 

For this set of parameter values given in Eq.(32), we have obtained the equi-librium point 
* * *( , , )N TP P Z

=(37.2907; 15.6704; 53.2830). For 1 2 30.0001, 10D D D   , and the above set of parameter values given 

in Eq.(32), we have obtained the critical values 
2 (-17.01; 8.798)crk  and corresponding 

2( ) (6.497;-2.441)crP k   (cf. Fig. 1). The graph of 2( )P k  versus 2k has been plotted for different values 

of 3D . The positive values of  2k  for which 2
3 ( ) 0P k   , the plankton system (1) is unstable. 

3 0 
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Fig. 1 The graph of the function  
2( )P k  verses 

2k  for the set of parametric values given in Eq.(32) With 

1 2 0.0001D D   for (a) 3 10D   and (b) 3 10,20,30D    

 

5 Numerical Simulation 

In this section, we perform numerical simulations to understand the mechanism that will control the growth of 

TPP. For that purpose, we have plotted the spatio-temporal patterns and time series to observe the controlling 

parameters of TPP growth. The dynamics of the model sys-tem (1) is studied with the help of numerical 

simulation for one-dimensional case. To investigate the spatio-temporal dynamics of the model system (1), we 

have solved it numerically using semi-implicit (in time) finite difference method. The step lengths x  and t  

of the numerical grid are chosen sufficiently small so that the results are numerically stable. We choose the 

following set of parameters (other set of parameters may also exists) for the model system (1): 

1 2 1 2 1 2 1 2

1 2 1 2 3

r  = 0.3; r  = 0.2; = 0; = 0; k = 300; k = 250;w = 0.6625;w = 0.435;

 = 0.516; = 0.198; m = 45;  = 30; c = 0.109, D 0.001, 0.01D D

 
     

                                       

(33) 

with initial condition 

* 0
1 1 1

* 0
2 2 1

* 0
1

2 ( )
( ,0) sin ,

2 ( )
( ,0) sin ,

2 ( )
( ,0) sin ,

x x
P x P

S

x x
P x P

S

x x
Z x Z

S







    
 

    
 

    
 

                                                                                                     

(34) 

where 

4
1 05 10 , 0.1, 0.2x S       and 

* * *( , , )N TP P Z  = (28.3728, 34.7472,30.0831). 

 

The model system (1) with a fixed set of parameter values given in Eq.(33) and initial condition (34) asserting 

that the density of TPP remain high in whole domain and system shows the limit cycle behavior (cf. Fig. 2 & 

3). 
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Fig. 2 Time Series of the model system (1) for the fixed set of parameter values given in Eq. (33). 
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Fig. 3 Spatio-temporal pattern of NTP, TPP and zooplankton of the model system (1) for the fixed set of  parameter values 

given in Eq. (33).  

 

 

When the rate of inhibition of zooplankton growth by toxic material ingested in feeding on TPP is very 

large 2( 5)  , then because of high toxic effect,  the zooplankton  goes to extinction. 

 

                                              

Fig. 4 Time series of the model system (1) when 2 5   and rest of the parametric values are same as Eq.(33). 
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Fig. 5 Spatio-temporal pattern of NTP, TPP and zooplankton of the model system (1) for the fixed set of  parameter values 

given in Eq. (33). 
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6 Discussions and Conclusions  

In this paper, a simple mathematical model of NTP-TPP-zooplankton sys-tem in which zooplankton 

population reduces due to release of toxic chemical by phytoplankton or due to toxic phytoplankton being 

eaten by zooplankton has been proposed and analysed. We have investigated the model both analytically and 

numerically. We have investigated the effects of spatial interaction and spatio-temporal pattern formation. 

Numerical analysis demonstrates the following conclusions: 

(i)  The model system (1) with a fixed set of parameter values given in Eq.(33) and initial condition (34) 

asserting that the density of TPP remain high in whole domain and system shows the limit cycle behaviour. 

 (ii) When the rate of inhibition of zooplankton growth by toxic material ingested in feeding on TPP is very 

large 2 5  , then because of high toxic effect the  zooplankton goes to extinction. 

The results obtained suggest that toxic substances or toxic phytoplankton may serve as a key factor in the 

termination of planktonic blooms. Here we conclude that TPP has an inhibitory effect on zooplankton and high 

abundance of TPP is not favorable for the persistence of zooplankton. 
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