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Abstract 

This paper represents the theoretical and experimental performances of solar collector using an array of a 

single pass – air photovoltaic (PV) cells; replacing a diffuse reflector under a bifacial PV module (with an 

acceptable distance) instead of conventional absorber plate of photovoltaic-thermal (PVT) collectors. Energy 

and exergy analysis of the solar collector is done by mathematical modeling in one-dimensional steady state 

condition (1D-SS). A collector rack was designed and fabricated to examine and verify the theoretical model. 

The steady state exergy efficiency of 4.2 – 10% and energy efficiency 17 - 62% detected for both 0.04 - 0.13 

kg/s and 0.22, 0.33, 0.50 and 0.67 of airflow rate and packing factor respectively. The prevailing output of the 

collector is thermal energy while electricity is the dominant output of exergy. In the range of 0.04 – 0.13 kg/s, 

airflow rate has no influence on the overall exergy of the collectors due to the strong dependency of the total 

exergy on electrical output rather than thermal one. Finally, as the result of increasing airflow rate, the overall 

output energy of the collector increases due to the increase of the thermal energy harvest. 
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1 Introduction 

The only difference between the photovoltaic (PV) and flat plate thermal collector is that the former has panels 

attached on the top of the metallic flat plate absorber. The PV cells are made of semi-conductor materials 

converting the high-energy photons of solar irradiation into the electricity.  

Some researches done in 1980s resulted in some innovation in solar cells making them able to absorb the 

solar radiation from the back surface (Luque et al., 1980). The type of solar cells that absorbs incident 

radiation from both front and back surface of their collectors are called (Fig. 1), which have favorable 
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advantages over the conventional (mono-facial) PV cells (Ooshaksaraei et al., 2011) in that they can produce 

up to 90% extra electricity in contract with the mono-surface cells (Joge et al., 2002). This electrical energy is 

heavily bank on the ability of reflector to provide proper radiation for the back aperture (Moehlecke et al., 

2001; Duran et al., 2011).  

 

 

Fig. 1 Cross section view of bifacial photovoltaic solar cell (Sopian et al., 2017). 

 

Reflection property of the reflector has a significant effect on the electrical energy output of the bifacial 

PV cell. In that way, white and yellow color collector surface has the largest reflection efficiency of 75% and 

61% respectively (Moehlecke et al., 2001).  

In general, a heat removal system, PV cells and an absorber plate are the three main parts of the PVT 

collector. However, the absorber plate which is installed behind the a PV cell (Sopian et al., 2002; Chow, 2009; 

Hasan and Sumathy, 2010; Kumar and Rosen, 2011; Zhang et al., 2012), can blind the back surface of the 

collector making them inappropriate for the bifacial cells (Ooshaksaraei et al., 2014). To solve this problem for 

PV cells, a reflector can be installed instead of an absorber plate and this makes the monofacial PV cell into 

bifacial one. On the other hand, the fewer number of solar cell will lead to the lower cost of a module 

(Uematsu et al., 2001). A challengeable goal can be designing a collector in that both front and rear surfaces 

receive a proper amount of solar radiation (Ooshaksaraei et al., 2013).  

A semi-transparent solar PV cell with almost a comparable transparency with bifacial solar cells, whereas 

the rear aperture cannot produce electrical energy. In this way, only a portion of irradiation is absorbed by the 

cells and the absorber plate beneath the cells will absorb the rest of the penetrating radiation (Kamthania et al., 

2011). The distance between the modules of the semi-transparent PV cells and the absorber plate can lead to a 

lower operation temperature compared to the attached absorber plate of monofacial PV cells (Park et al., 2010).  

In order to evaluate the performance of a PVT solar collector, the two foremost significant factors 

including the total energy and exergy output of the PVT collector can be evaluated, although there are many 

parameters such as airflow rate, packing factor, and the number of glazing that have influence on the 

collector’s performance. However, the energy and exergy methods are based on the first and second law of 

thermodynamics respectively. Comparing with the thermal output energy of the PVT solar collector, the 

electrical output energy has higher efficiency by efficient conversion to work regarding the second law of 

thermodynamic (Chow et al., 2009). The operating setting and single design criteria are not the necessary 

conditions in which the optimal value (maximum value) of the exergy and energy outputs takes place. To find 

the maximum values of them, Sarhaddi et al. (2010) observed the maximum exergy output at 35°C, and the 
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maximum energy output at 31°C by studying the inlet-air temperature effect on the performance of the PVT 

collector. A review on some of the energy and exergy efficiency of the previous studies is presented in Table 1.  

 

Table 1 A short review on the result of energy and exergy efficiency of PVT solar collectors. 

Collector Type Energy efficiency Exergy efficiency 

PVT-air(Bosanac et al., 2003) 55% 13.5% 

PVT-air(Joshi and Tiwari, 2007) 55% - 66% 12% - 15% 

PVT-air(Joshi et al., 2009) 33% - 45% 11.3% - 16% 

PVT-air(Sarhaddi et al., 2010) 45% 10.75% 

 

At steady state condition and regarding the first and the second laws of thermodynamics, the current 

study evaluates the theoretical and experimental performance of an air-based, bifacial PVT solar collector with 

single path. 

 

2 Mathematical Model 

The main application of the single-path air-based PVT solar collectors is in hybrid. Whereas, the most of the 

available collector designs are inappropriate for bifacial PV modules. Fig. 2 displays a newly designed bifacial 

PVT collector. A reflector with 5 cm separation is installed beneath the PV panel instead of the traditional 

absorber plate; in which it has 75% reflection and 25% absorption. 

 

 
 

Fig. 2 Cross section schematic of the single path bifacial PVT collector (Ooshaksaraei et al., 2017). 

 

Energy and exergy balance equations are proposed to show an analytical model for the all thermal, 

electrical as well as hybrid performance of the PVT panel. 

2.1 Energy balance method  

Regarding the first law of thermodynamics, energy balance method and equations are applied to calculate the 

performance of the bifacial photovoltaic thermal collector (Fig. 3).  
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3 Experimental Setup 

A bifacial PVT collector rack was designed, fabricated, and tested under halogen lamp solar simulator. The 

objective of the experiment is to study the performance of newly designed bifacial PVT collector in a 

controlled environment with its specifications; and prove the validity of the mathematical model. The 

experimental setup and the related components are shown in Fig. 4. The main components which are shown in 

Fig. 4 include: thermal collector, titling mechanism, support structure, air flow sensor, sensor for temperature 

and radiation measurement, data acquisition device, DC current voltage and IV curve plotter.  

The “air-based bifacial photovoltaic thermal solar collector” is made of stainless steel sheet with 

elastomeric nitrile rubber stuck to both body of collector and inlet/outlet air channels. The conventional flat 

aluminum sheet is placed with specific separation beneath bifacial PV panel while the top surface of the PV 

panel is covered with glass (Table 2). 

 

Table 2 dimensions of different parts of the setup. 

Specification Dimension 

stainless steel sheet 0.001m thickness 

elastomeric nitrile rubber 3/8 in 

aluminum sheet 0.002 m thickness 

Separation of PV panel 0.050m 

tempered glass 0.008m 

 

 

Fig. 4 The bifacial PVT collector give (Ooshaksaraei et al., 2017). 

Inlet duct 

Inlet Manifold 

Outlet Manifold 

Fan controllers 

Fan 
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The interface of data acquisition system was developed in the well-known “Labview” program. 

Photovoltaic panels as the main part of the system can absorb solar radiation and play the role of a simple solar 

collector in this setup. Four different configurations are designed to evaluate the effect of packing factor (P) on 

performance of the photovoltaic collectors (Table 3) under the STC conditions of 1000 W/m2 and 25ºC cell 

temperature.  

 

Table 3 PVT collector design parameters and characteristics. 

Parameters Value 

The number of cells in the panel 4 6 9 12 

The electrical efficiency at the reference conditions 0.16 

Material Mono-crystalline silicon 

The thickness of the PV panel glass cover 0.003m tempered 

The packing factor 0.22 0.33 0.50 0.67 

 

 

4 Results and Discussion 

4.1 Verification and mathematical model 

Under steady state condition the mathematical model simulated the air based PVT system in order to compare 

the experimental and theoretical results using energy analysis method. All values of absorptivity, emissivity, 

and transmissivity for various surfaces are applied using the measurements in previous studies. However, by 

modifying those values, the trivial temperature difference of 1°C or less for the thermal collector could be 

obtained (Sopian, 1997). This means that this model does not have a tight dependency on these values. On the 

experimental side, the values of Tin , Tout ,Tr ,TPV ,Vair , P max,PV and Ir are measured. Fig. 5 shows the behavior 

of the fluid temperature along the length of the panel which is one meter and is divided in to 100 points. The 

air temperature increased 1.7°C under 800 watts solar radiation, while the air flow rate is 0.083 kg/sec and the 

packing factor is 0.5. The total efficiency was 39%.  

 

 
Fig. 5 Experimental result of the airflow temperature gradient along the length of the thermal collector. 

 

 

The electrical and thermal efficiencies of the thermal collector are calculated using the static simulation 

and compared with the experimental results with respect to airflow rate and packing factor. The efficiencies of 

the PVT collector for two packing factors 0.22 and 0.67 are shown in Fig. 6 in that the efficiency would 
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increase with increase of air mass flow rate as reported by other researchers (Sopian et al., 2000; Tiwari and 

Sodha, 2007).  

 

 

 

Fig. 6 Theoretical and experimental photovoltaic thermal efficiency comparison for packing factors 0.22 and 0.67. 

 

The simulation and experimental results have similar trend, as shown in Fig. 6. However, the 

experimental results are slightly lower than that of the simulation one. It is attributed to possible air leakage 

into the airflow system and collector from clearance in between components. This air intake can turn the 

output air temperature cold and have impact on data reading. A high rate of airflow confirms that the thermal 

collector can operate at lower temperatures that will lead to less thermal dissipation into air making high rate 

preferable over the low rate airflow. The similar results have been proved for a mono-facial single-pass PVT 

air heater (Sarhaddi et al., 2010). 
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4.2 Exergy method 

There are six equations, 8 through 13, and six unknowns that can be solved by exergy simulation method. The 

total exergy output for different packing factor of the photovoltaic thermal collector in this study is shown in 

Fig. 7. 

 

Fig. 7 The total exergy efficiency of bifacial PVT collector. 

 

Fig. 7 shows that increase in mass flow rate has no considerable effect on increase of exergy efficiency of 

the thermal collector and the higher packing factors have higher exergy efficiency. For example, the maximum 

and minimum exergy efficiency of 10% and 4.2% are achieved for the packing factor of 1 and 0.3 respectively. 

Comparing Figs 6 and 7, it can be seen that by increasing the mass flowrate the energy efficiency improves the 

energy efficiency and achieved the maximum value of almost 60% for packing factor of 0.67. The main reason 

is that the thermal energy is the dominant form of energy output of the thermal collector while electrical output 

is the dominant exergy output of a PVT panel. In other words, when packing factor decreases from 0.67 to 0.3, 

practically the number of silicon wafers increase up to 133%, while it generates the same amount of additional 

exergy (100%). In this research, the reflector is located beneath the bifacial PV panel, which indicates that the 

rear aperture of the bifacial PV panel with packing factor 1 has no impact on the electrical energy of the whole 

system. 

 

5 Conclusion 

A flat plate bifacial photovoltaic thermal collector was designed by installing a diffuse reflector beneath the 

PV lamination. The mathematical model was developed based on the first law and second laws of 

thermodynamic at one-dimensional under steady state conditions. An experimental rack has been developed to 

verify the mathematical model at indoor test condition under halogen lamp solar simulator. The simulation 

result is in accordance to the experimental ones. The total efficiency 17% - 62% observed for the airflow rate 

0.04kg/s - 0.13 kg/s, and packing factor 0.22 - 0.67. While the exergy efficiency is 4.2 – 10%. The energy 

efficiencies increase by increasing the packing factor. High packing factor results into a higher solar energy 

absorption and a higher PV cell temperature consequently, which has impact on both, energy and exergy 

outputs. In addition, high packing factors causes less vacant space between the PV cells, which culminates into 

less solar radiation absorbed by the rear surface of the cells, and less energy and exergy production resulted 

from the rear PV cell surface consequently. 
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6 Nomenclatures, Abbreviation and Acronyms 

A  collector area (m2) 

Cp  specific heat capacity of Air (kj/kg.K) 

En  energy rate (W) 

Ex  exergy rate (W) 

h  heat transfer coefficient W/m2K 

m   Flow rate (kg/s) 

PF  packing factor 

S  solar radiation intensity (W/m2) 

T  temperature (°C) 

Tin  Inlet air temperature (°C)   

Tout  Outlet air temperature(s) (°C) 

Tr  Room temperature (°C) 

TPV  PV panel temperature (°C) 

Vair  Air velocity (m/s) 

P max,PV  Maximum power production by PV panel (W) 

Ir  Radiation intensity (W/m2)  

 

Greek Symbols 

   efficiency (%) 

 

Superscript 

a  ambient 

c  convection 

front  front aperture of the PV cell 

i  Inlet 

l  laminate 

El  electrical 

F  air stream 

o  outlet 

PV  photovoltaic 

ref  reference condition (25°C) 

r  radiation 

rear  rear aperture of the PV cell 

R  reflector 

s  Sky 

Th  thermal 

PVT  Photovoltaic thermal 
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