Computational Ecology and Software, 2020, 10(1): 15-43

Article

Local dynamical properties and supercritical N-S bifurcation of a
discrete-time host-parasitoid model with Allee effect

A. Q. Khan', M. Askari*, H. S. Alayachi?, M. S. M. Noorani?

!Department of Mathematics, University of Azad Jammu & Kashmir, Muzaffarabad 13100, Pakistan

2School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor,
Malaysia

E-mail: abdulgadeerkhanl@gmail.com,baltiaskari@gmail.com,HSSHAREEF@taibahu.edu.sa,msn@ukm.edu.my

Received 19 November 2019; Accepted 25 December 2019; Published 1 March 2020
[ec) B

Abstract
We explore thelocal dynamical properties and supercritical N-S bifurcation of the following Beddington model
with Allee effect in RZ:

YVt
B+y/
where x; (respectively y;) denotes densities of host (respectively parasitoid) at time t, r and m respectively
denotes number of eggs laid by host and parasitoid which survive through larvae, pupae, and adult stages, and
B is constant. More specifically, we explored that model has three equilibria namely the trivial, boundary and
positive equilibrium point. We studied the local dynamics along with topological classification about equilibria
of the under consideration model. We also explored the existence of bifurcation about equilibria of the model.
It is proved about boundary equilibrium point parasitoidgoes to extinction whilehost population undergoes a
flip bifurcation to chaos by taking r as bifurcation parameter. It is explored that aboutpositive equilibrium
point, model undergoes N-S bifurcation and in meantime invariant closed curve appears. In the perspective of
the biology, these curves correspond to periodic or quasi-periodic oscillations between host and parasitoid
populations. Finally theoretical results are verified numerically.

— 1-x)— _ -
Xep1 = X"V y = m (1 — e7e)
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1 Introduction

Recently dynamics and bifurcation analysis of two-species models are widely explored (Beddington et al.,
1975; Ufuktepe et al., 2015; Cao et al., 2013; Hu et al., 2011; Chen et al., 2013; Khan et al., 2017;
Guckenheimer and Holmes, 1983; Kuznetsov, 2004) and reference cited therein. For instance, Beddington et al.
(1975) have investigated the following discrete-time two species model:
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_Xt\_
Xt41 = xter(l ©) ayt}, (1)

Ver1 = cxe(1 —e7)

with carrying capacity is K. Ufuktepe et al. (2015) have explored the local dynamicsabout equilibria of the
following Beddington model subject to Allee effect on the parasitoid population:

— r(1—x¢)—
xt+1 — xte ( t) YVt

_ 2
Yeer =mx(1—e yt)ﬁtyt )

More precisely Ufuktepe et al. (2015) have proved that for all r,m, B, model (2) has trivial and boundary
equilibria, and also has the positive equilibria under restrictions to the parameters. Further Ufuktepe et al.
(2015) have explored local dynamics, stable and unstable manifolds for boundary equilibria of the Beddington
model, which is depicted in (2).

Here our purpose in this article is to explore the topological classification about trivial, boundary and
positive equilibrium of model (2). We also explore the necessary and sufficient condition (s) under which
positive equilibrium of (2) is a sink, repeller, saddle and non-hyperbolic. Further we explore Flip bifurcation
about boundary equilibrium point, and N-S bifurcation if parameter m vary in the neighborhood of positive
equilibrium point.

We arrange the rest of article as follows: Section 2 is about the local dynamical properties along with
topological classification about equilibria of (2).In Section 3, we explore the existence of bifurcations about
trivial, boundary and positive equilibrium of the model (2). Section 4 deals with the study of Flip bifurcation
about boundary equilibrium point and N-S bifurcation about positive equilibrium point. Theoretical results are
verified numerically in Section 5. Brief summary is given in Section 6.

2 Local Dynamical Properties About Equilibria: 0(0,0), A(1,0) and B(6,r(1 — 8))of Model (2)
In this Section, we explore local dynamical properties about (0,0), A(1,0) and B(9,r(1 — 6)) of model (2).
From Theorem 2.1 of Ufuktepe et al. (2015), first we summarize existence result about equilibria in R2 as
follows:
Lemma 2.1. In R, model (2) has trivial, boundary and positive equilibria. Precisely

(i) vr,m and B, model (2) has trial and boundary equilibria: 0(0,0), A(1,0);

(ii) Suppose that

F(x) = —r + (r + m)x — mxe 7179 (3)
and

9 = (B+r)NT+VB+1/4m+r(4+B+71) (4)
- 2vT (m+1) !

then the following statements hold:
(ii.1) Model (2) has one positive equilibrium point B(6,7(1 — 6)) if and only if

m>1, (5)
and

B = F(6), (6)

where
0<b<1; (7
(ii.2) Model (2) has two positive equilibria C(l,r(l — l)) if and only if (5) and following inequality

hold:
B < F(6), (8)

IAEES www.iaees.org



Computational Ecology and Software, 2020, 10(1): 15-43 17

where
0<l<1. 9)
Hereafter local dynamical properties withtopological classification about 0(0,0), A(1,0) and B(B,r(l - 9))
is explored. Note that the Jacobin matrix J,,y about (x,y) of the model (2) is

(1 —rx)er@=-y —xeT(1=0)-y
Joey) = my(1—e=Y) mxe‘y(y2+3(—1+y+ey)) .(10)
B+y (B+y)?

Moreover the characteristic equation of J,,y about (x,y) is
A2 —pl+q=0,11)
where
p = trace Jixy
mxe‘y(y2+B(—1+y+ey))

(B+7)* (12)

= (1 — ‘rx)er(l_x)_y +

q= det](x,y)

_ mx(l—rx)(y2+B(—1+y+ey))er(1_x)_2y + mxy(1—e~Y)e(1-%)-y

(B+y)? B+y

In the following two Lemmas, we will state the dynamics about 0(0,0) and A(1,0) of model (2).
Lemma 2.2.For 0(0,0) one has
(i) 0(0,0) is never sink;
(i) 0(0,0) is a saddle;
(iii) 0(0,0) is never source;
(iv) 0(0,0) is never non-hyperbolic.
Lemma 2.3. For A(1,0) one has
(i) A(1,0)isasinkif 0 <r <2;
(ii) A(1,0) is never source;
(iii) A(1,0) is a saddle if r > 2;
(iv) A(1,0) is a non-hyperbolic if r = 2.
Now we will only study the local dynamics about B(B, r(l— 9))of the model (2) in the case if (5), (6) and (7)

hold. The characteristic equation of ] .(1_g)), @bout B(6,7(1 — 6)) of the model (2) is given by

2—p(6,r(1-0))2+4q(6,7(1-6)) =0, (13)
where

—r+7r0+mO-mO(1-r+r)e " T1-6)

mo(1-e~7(1-9)
_ (-10)(-r+r0+mb-mo(1-r+r)e"T(1~)
- mo(1-e-T(1-9)

p=1—-710+

. (14)
+7r(1-06)

Hereafter by utilizing Theorem 1.1.1 of Kulenovic and Ladas (2003), we will only state condition(s) for
equilibrium B(B,r(l - 9)) of the model (2) to be locally asymptotically stable(sink), repeller, saddle and
non-hyperbolic.
Lemma 2.4. For B(8,7(1 — )) of the model (2), one has

(i) B(6,r(1—0)) of the model (2) is sink if

r2(1-6) r(1-6)(2-10)
— -6)’ — -6 '(15)
2-1+7r0+(=247-10+720-1202)e~"(1=0) 9(2+r-3r0+(-2+7+10-120+1202)e "7 (1-9)

0<m<min{

and
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r(1-6)(1-10) _
0(2+r-2r0+(-2+10-120+1202)e~T(1-0))’

m> (16)

(i) B(6,7(1—6)) of the model (2) is a repeller if

r(1-6)(2-10) cm< r(1-6)(1-10)
0(247r-3r0+(-2+1+10-120+1202)e~7(1-0)) 0(2+r-2r0+(-2410-120+1262)e

(iii) B(6,7(1 — 6)) of the model (2) is a saddle if

-r(1-9)) ;(17)

—r+7r04+ml —mO(1l—r+rf)e "0 2
mo(1 — e-7(1-9) +

(1—r9+

4 ((1—r9)(—r+r9 +mO-mé(1-r+r)e T(1~0))

mb(1-e-T1-0)) +r(1l- 9)) >0, (18)

and

r(1-6)(2-r0) .
m< 9(2+r—3r9+(—2+r+r9—r29+r2Gz)e—r(l—e)) ’ (19)

(iv) B(6,7(1 — 6)) of the model (2) is a non-hyperbolic if

r(1-8)(2-76)

m= 6(2+r-3r0+(-2+r+10-120+71262)e~T(1-0))’ (20)
or
_ r(1-6)(1-r0)
m= 0(2+r-2r0+(-2+18-120+1r202)e~T1-0))’ (21)
and
m> r(1-6) 22)

~ 0(2-10+(-2-1+210)e"T1-0))

In the rest of the section, we explore the topological classification about B(@,r(l — 9)) of (2). Note that roots

of the characteristic equations of (g ,(;_gy) about B(6,7(1—6))are

P L (23)

where
A= p? — 4q,

= (1 —10 + mB(1—e-T1-0))
_po—1r(1-6)
mo(1—e ) r(1—0)
Now in the following two Lemmas, we will further classifying dynamics of (2) aboutB(@,r(l—B))
according to sign of discriminant A.
Lemma 2.5. If A= 0 then for B(6,7(1 — 6)), one has

(i) B(6,r(1—0)) is locally asymptotically stable node if

(1-10)(~r+r0+mo-mo(1-r+r@)e T(1-)
_ _ _ —r(1-6)\ 2
r+rf+mO-meO(1-r+rb)e ) _4< +)_ (24)

r(1-6)(2-10) _
0(4+7-310+(—4+T+10-120+1202)e~T(1-0))’

0<m< (25)

(i) B(6,7(1 — 0)) is unstable node if

r(1-6)(2-10)
0(4+7r-3r0+(—4+7+10-120+120%)e

m > —r(1—9)) 1(26)

(i) B(6,r(1 — 0)) is a non-hyperbolic if

r(1-6)(2-10)
m = .
0(447-310+(—4+7+10-120+1202)e~71-0))

(27)
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Lemma 2.6. If A< 0 then for B(8,r(1— 8)) one has
(i) B(6,7(1—6)) is locally asymptotically stable focus if
r(1-6)(1-16)

O0<m< 9(r(1—29)+r9(1—r+r9)e‘r(l‘e)); (28)
(i) B(6,7(1—6)) is unstable focus if
r(1-6)(1-16) _
m > 0(r(1-20)+r8(1-r+r0)e-T1-0))’ (29)
@iy B(6,7(1—0)) isnon-hyperbolic if
r(1-6)(1-16) (30)

m= 0(r(1-20)+r0(1-r+r6)e-T1-0))’

3 Existence of Bifurcations

Based on above theoretical discussion, the existence of bifurcations about 0(0,0), A(1,0) and B(@,r(l —
6)) is explored in this Section. From Lemmas 2.2-2.3 and 2.5-2.6, one can conclude about the existence of
bifurcations as follows:

(i) From Lemma 2.2, 0(0,0) is never non-hyperbolic and so no bifurcation exists about this
equilibrium.
(i) From Lemma 2.3, one can observe that J,(;) has one eigenvalue equal to —1 but other is not

equal to 1 or —1if r = 2. Hence flip bifurcation exist about A(1,0) and we can write the non-
hyperbolic condition as follows:
Fp100 = {(r,m):r = 2,7,m > 0}. (31)

r(1-8)(2-716)

0(4+7-3r0+(—4+7+10-120+1202)e-7(1-0)) then none of the real

(iii) From Lemma 2.5, if m=

eigenvalues of Jp(g,(1_gy) about B(6,r(1—6)) is -1. So no Flip bifurcation exists

about B(8,7(1— 6)).

r(1-6)(1-10)
8(r(1-20)+10(1-r+1r8)e~T(1-0)

(iv) From Lemma 2.6, if m = then eigenvalues of Jp(1-g)) about

B(G,r(l —9)) are complex conjugates having modulus 1. So, there exist a N-S bifurcation
when m varies in a neighborhood ofB(@,r(l — 9)) and we can also rewrite the non-hyperbolic
condition as follows:

r(1-6)(1-r8)
0(r(1-20)+r0(1-r+r@)e (1=} (32)
rm>00<6<1

(r,m,0): A< 0 and m =

NB(B,r(l—G)) =

4 Bifurcations Analysis

The detail analysis regarding flip bifurcation about A(1,0) and N-S bifurcation aboutB(B,r(l—@))of
system (2) are given in this Section. First we will study the flip bifurcation about A(1,0) as follows: Recall
Lemma 2.3, we can see that J,(;0y has one eigenvalue equal to —1 but other is not equal to 1 or —1, when

the parameters of the model (2) satisfying (31). So, about A(1,0) model undergoes flip bifurcation if
parameters of model (2) go through F 1 o). If (r,m) € Fy(1 0 then its center manifold is y = 0 and thus (2)
becomes

Xpyq = xpe" A%, (33)

This indicates that parasitoid goes to extinction while host population undergoes a flip bifurcation to chaos by
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takingr as bifurcation parameter.
Hereafter N-S bifurcation is explored about B(6,r(1—6)) when (r,m,6) € Ny, 1-gy) - BY

considering m in the neighborhood ofm*, i.e., m = m* + & where |¢| « 1 then model (2) becomes:

— r(1—-x¢)—
xt+1 — xte ( t) Yt

X _ . 34
Verr = (M" +&)x (1 —e yt)%tyt (34)
e auxiliary equation of Jp (4 ,.(1_gy) abou ,7r(1-06))o is given by
Th | tion of J bout B(8,7(1 — 6)) of (34) b
k2 —p(e)k + q(e) =0, (35)
with
_ —r4+7r0+(m*+£)0—(m*+€)0(1-r+10)e~T1-6)
p(e)=1—-716+ (m+£)8(1_e-T0-9) (36)
_ (1-10)(~r+r0+(m*+£)0—(m"+£)8(1-1+10)e"T10)) _
q(e) = (m*+£)0(1-e~70-0) +r(1-9)
The roots of auxiliary equations of Jp(; -y, about B(6,7(1—6)) are
_ p(e) £ 1/4q(e) — p?(e)
1,2 - 2 4
110 | —r+r0+(m*+&)—(m*+£)0(1-r+10)e 710 VQ
==t 2(m*+6)0(1-e 70 9) e 37)
where
Q=
1-10)(~r+7r0+(m"+£)0—(m*+£)0 (1-1+1r8)e T1~-N)
4( (m*+€)60(1—e-7(1-6)) tr(1-6))-
_ —1+70+(Mm*+€)0—(Mm*+£)0 (1-1+10)e~T(1-0) z
<1 o + (m*+&)0(1—e-7(1-9)) ) (38)
and

|K1,2| = m ) d':;'zl le=0 = % # 0. (39)
Additionally it is required that when & = 0,7, # 1,n = 1,2,3,4, which is equivalent to p(0) # —2,0,1,2.
Because p(0)2 — 4q(0) < 0 and q(0) = 1. Thus p(0)? <4 and hence p(0) # +2. So we only need to
require that p(0) # 0,1. By computation one gets
r#2—10+1r20% 1+126° (40)
Let u, =x, —x*, v, =y, —y" then transforming equilibrium B(6,7(1 — 6))to 0(0,0) where x* = 6, y* =
r(1 — 6). By calculating one gets

Uppq = (ut + x*)erl(l_ut_x*)_vt_y* —x*

. * (41
Vegr = (M* + &) (u; + x*)(l —e VY )%_ y*}( )

Hereafter normal form of (41) is studied when ¢ = 0. Expanding (41) as a Taylor series up to third-order
about (u;, v,) = (0,0) one gets:
Upy1 = MyqUy + My + Myzuf + MUV + mysvE +mygui + myufve +)
magiteof + masud + 0((luel + Iyl | @
Vg1 = Mpqly + MapVp + MyzUyVp + MpaVF + MysU U + MygVf + [
o((luel + v )

IAEES www.iaees.org



Computational Ecology and Software, 2020, 10(1): 15-43 21

where
-r(2-rx*) i
My =1-7x7 myy = —X7, my3=——— ,Myy =71x" —1,my5 = x%,
_ 1r*(3-rx") _r(2-rx") 1—rx* ok
Mie =% » M7 = ) Myg =——, Mg =——,
* B(1-e7Y %=y
- _y * Lk ( ) ye
= 1-— y —
my;;=m ( e )B+y*: My, =mx Gy 5 )
B 1—e‘y* *e_y*
Mmy3 = m* ( - 2) + y —),
(B+y™) B+y @)
Mos = Sm*x* 2Be=y’  2B(1-e") ey
24 — 2 (B+y*)2 (B+y*)3 B+y* ]
1, [28e  2B(1-e7V") ey’
Mmys =-m — — ,
2 (B+y*)? (B+y*)3 B+y*
Mor = Lmx* -3Be™  eBe™ 6B(1-e7")  yre-y"
276 (B+y)?  (B+y*)?  (B+y")* B+y* |’
Now let
_1-10 | —r+r0+m*0-m*9(1-r+r0)e 719 )
n= 2 Zm*g(l_e—r(l—e)) )
and
Va
{=5 (45)

And an invertible matrix T defined by

m 0
T= ( 12 ) 46
n—my; —§ (46)
By computing T~! one gets:
1

— 0
— m
= m o (47)
§my, 3
Using following transformation
(vt) - (77 -my; —§/\YV ) (48)
equation (42) gives
Xt+1) (77 _f) (Xt) (G(Xt' Yt))
= + , 49
(Yt+1 § Y, H(X.,Y) (49)
where
G(Xpe, Vo) = Lin X2 + Lo XeYe + LaV2 + 1 XP + LsXPYe + Le X Y2 + 15 Y8 +)
o((luel + 1ve)?) (50)
H(Xe,Y) = i XE + LpXeYe + L Y2 + LaXP + LsXEY, + L X Y2 + 1Y + |’
o((luel + v D?)
and
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m 2(n-mqy)m
lig = mypmyz + (n —my)my, + m—”(n —myy)% iy = =& (m14 + m—nls):
12 12

&m m

liz = ?215. lig = Mygmyp? + mypymy, (1 —myp) + myg(n —myq)% + m_Z(U -myp)?
(n-mq,)*m
lis = —¢ (m12m17 +2myg(n —myq) + 377"11—11219)
3

I = &2 (m + 3m19(n—mn)) Ay, = — & m19’
16 =§ w8t = — )l T,

n-m (n-myy)*
l1 = : = (m12m13 + (M —my)my, + My + mypymys — () — m11)m24).

2(n-my)?

lry = —( —my)myy — m—nm15 + mypmyz + 2my,(n — myq),

§(m-myy) ».(51
ls = m—um15 — &My, (51)

12

— MygMyz? + (1 — My Imyy(my; —mys) + (n — myg)? (Mg — mae) +

lZ4 = < (n—m11)3 m ’
T, o

3(n—my,)?
—Mmyymy; — 2(n — myy)myg — T,

)

2
Ls=m— m11)( Mag + 2My2Mas +>
3(n — myy)mye
3(n—my,)?

—_— Myg — MypyMys — 3(n — m11)m25>:

lie=¢ ((Tl —my)myg +

_ 2 n—myqq
l; =¢ (m26 i

” m19):
In addition,
Gxtxt|(0,0) =24, Gxtyt|(0,0) =l Gytyt|(o,0) = 2ly3, GXtXtth(O,O) = 6ly4, GXtXthI(O,O) = 2l5.
Gxtytyt|(0,0) = 26, Gytytyt|(0,o) = 6117:thxt|(0,0) = 2121;thyt|(0,0) = lZZ'HYthl(O,O) = 2ly3 (52)
thxtxtko,o) = 6l54, HXtXthl(O,O) = ZlZSIHXthYtl(O,O) = 2Ly, HYthYtl(O,O) = 6l,;
Now it is required that ¥ # 0, if (49) undergo N-S bifurcation (see Cao et al., 2013; Huet al., 2011; Chen et al.,
2013; Khan et al., 2017; Guckenheimer and Holmes, 1983; Kuznetsov, 2004):

1-2K)K? 1 _
¥ = —Re (%Tu’fzo) -3 ||T11||2 - ||T02||2 + Re(ity1), (53)

where
To2 = % [Gxx, = Grey, + 2Hx,y, + W(Hxx, — Hyyy, + 2G|
T11 = i[GXtXt + GYth + L(HXtXt + HYtY‘)“(O,O)

_1 r
T20 =3 [GXtXt = Gyy, + 2Hxy, + l(HXtXt — Hyy, — ZGXth)]l(o_o) (54)

1 GXtXtXt + GYthYt + HXtXth + HYthYt +
T21 = 1¢ . )

(0,0)

(HXtXtXt + HXthYt - GXtXth o GYthYt (0,0) J

By calculating one gets

Top = i[lll — l13 + l22 + l(lzl - l23 + llZ)]
1
T11 = E [lll + ll3 + 1(121 + l23)]
1
Tyo = Z [lll — ll3 + lZZ + l(lzl - lz3 - 112)]
_ 1[3114 + 3117 + l25 + 3l27 +]
T21 = 8 l(3l24 + 126 - 115 - 3l17)

By bifurcation theory given Guckenheimer and Holmes (1983); Kuznetsov (2004), one has the following result:
Theorem 4.1. If W # 0 then model (2) undergoes N-S bifurcation about B(@,r(l — 9)) as parameters m
goes through Npg g »(1-g))- Additionally attracting (respectively repelling) close invariant curve bifurcates from

.. (55)
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B(0,r(1—0)) if ¥ <0 (respectively ¥ > 0).

5 Numerical Simulations

Here we will provide simulations in order to verify obtained results. Fixing parameters r = 0.8,1 = 0.41 then
from (iii) of Lemma 2.6 one getsm = 3.0696247901516025. From theoretical point of view equilibrium
B(6,7(1—6))of (2) is locally asymptotically sable focus if m < 3.0696247901516025. For example if
m = 1.9 < 3.0696247901516025 then it is clear from Fig. 1A that B(6,r(1 — 0)) is locally asymptotically
focus. Similarly for chosen bifurcation values, if m = 1.9 < 3.0696247901516025 then one can easily see
that B(L, (1 — 1)) is locally asymptotically sable focus (see Fig. 1B-N). But if m > 3.0696247901516025
then B(6,r(1 — 6)) is unstable focus and meanwhile stable invariant close curves appear. The appearance of
these curve implies that (2) undergoes a supercritical N-S bifurcation if m varies in neighborhood
of B(e,r(l — 9)) (see Fig. 2A-N). Moreover bifurcation diagrams along with Maximum Lyapunov Exponent
are presented in Fig. 3. Finally, bifurcation diagrams in 3D are presented in Fig. 4.

(A) m = 1.9 with (0.4,0.09)
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(B)m = 1.978987 with (0.54,0.09)
(C) m = 2.1 with (0.74,0.09)
IAEES www.iaees.org
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(D) m = 2.43 with (0.04,0.09)

(E) m = 2.47 with (0.4,0.09)
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(F) m = 2.479 with (0.4,0.39)
(G) m = 2.5 with (0.54,0.9)
IAEES www.iaees.org
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(H) m = 2.587 with (0.54,0.09)

(I) m = 2.587987 with (0.9,0.000009)
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(3) m = 2.6 with (0.4,2.9)
(K) m = 2.6 with (0.72,0.9)
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(L) m = 2.676 with (0.2,0.9)

(M) m = 2.676987 with (0.2,0.09)
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(N) m = 2.71 with (0.6,0.92)
Fig. 1 Phase portraits for model (2).
(A) m = 3.1 with (0.9987,0.02)
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(B) m = 3.1 with (0.1,0.2)

(C) m = 3.102 with (0.79,0.002)
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(D) m = 3.13 with (0.97,1.92)
(E) m = 3.139 with (1.7,0.92)
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(F) m = 3.2 with (0.07,0.2)

(G)m = 3.276 with (0.4,0.4)

(G)
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(H) m = 3.277 with (0.5,0.4)

(I)m = 3.2769 with (0.5,0.4)
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() m = 3.3 with (0.5,0.7)

(K) m = 3.387 with (0.95,0.47)
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(L) m = 3.38798 with (0.95,0.89)
(M) m = 4.1 with (0.95,1.9)
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(N) m = 4.2 with (0.05, 1.9)

Fig. 2 Phase portraits for model (2).

(A)
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(B)

(©)

Fig. 3 Bifurcation diagram and their corresponding Maximum Lyapunov Exponent of the model (2) about B(8,r(1 — 6)). (A-
B)Bifurcation diagram of (2) if 1.9 <m < 4.35 and (0.4,0.09). (C) Maximum Lyapunov Exponent corresponding to (A-B).
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(A)

(B)
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(D)
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(E)

(F)

Fig. 4 Bifurcation diagrams in 3D of the model (2).
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6 Conclusion

This work is about local dynamical properties and supercritical N-S bifurcations of a Beddington model with
Allee effect in RZ. We have studiedlocal dynamical properties along withtopological classification about
0(0,0), A(1,0) and B(6,r(1 — 8)) of model (2), and conclusions are presented in Table 1. We have
exploredthat aboutA(1,0), parasitoidgoes extinction while host population undergoes a flip bifurcation to
chaos when parameters are in theset: Fy(; o) = {(r,m):r = 2,7,m > 0}. Further, we also explored that
about B(8,r(1 — 8), model (2) undergoes N-S bifurcation, if (r,m,8) € Np(6,r(1-0)) i.e., Ngo.r(1-0)) =

r(1-6)(1-10)
0(r(1-20)+r0(1-r+rf)e-"(1-0))

{(r, m,0): A< 0 and m = ,r,m>00<0< 1}. Finally theoretical results are

verified numerically.

Table 1 Equilibria with corresponding behavior of model (2).

E.P Corresponding behavior
0(0,0) Saddle but never sink; source and non-hyperbolic.
A(1,0) Sink if 0 < r < 2; never source; saddle if r > 2; non-hyperbolic if r = 2.
B(6,r(1 sink if
—6)) . 2(1-6) r(1-6)(2-76)
m < min {2—r+r9+(—2+r—r6+r29—r292)e"’(1‘9) ’ 9(2+r—3r6+(—2+r+r9—r26+r262)e—r(1—9))}’
and
r(1-6)(1-r0) .
m > 0(2+r-2r0+(-2+10-120+1202)e"T(1-0))’
Repeller if

r(1—6)(2 - r6)

0QR+7r—3r0 + (=2 +71+710 — 120 +1r262)e7(1-0) sm
< r(1-0)(1 —r8o) _
02 +1r—2r0+ (=2+716 —1r20 +r202)e r1-0))’

Saddle if
1—rg 4T +704+ml —mO(1l —r +re "1 2
Tres mo(1 — e 7(1-0)) *
(1-70)(-r+r0+mo-mb (1-r+rf)e~"1-N)
4( m8(1=e TG0 +r(1-6))>0,
and
0<m< r(1-6)(2-76)

0(2+7-370+(=2+1+1r8-120+1202)e T(1-0))’

Non-hyperbolic if

_ r(1-6)(2-r0)
T 0(2+7—-3r0+(=2+1+16-120+1262)e~T(1-0))’

m

or

_ r(1-0)(1-76)
T 0247 -2r0+(—2+70-120+1202)eT(1-0))’

m

and

r(1-9)
> .
m= 6(2-16+(—2—-r+2r)e-T1-0))’
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locally asymptotically node if

r(1-6)(2—16) _
0(4+7-370+(—4+1+7r0-120+1202)e T(1-0))’

O<m<

unstable node if

r(1-6)(2—76) .
0(4+1-37r0+(—4+1+7r0-120+1202)e 710’

m>

non-hyperbolic if

. r(1-6)(2-16) _
T 0(4+r—-3r0+(—4+r+16-120+1262)e~T(1-0))’

locally asymptotically focus if

r(1-6)(1-16)

0<m< 6(r(1-20)+r0(1-r+rf)e"T(1-0))’

unstable focus if

r(1-0)(1-10) _
0(r(1-26)+r6(1-r+76)e=T(1-0))’

m>

Non-hyperbolic if

m = r(1-6)(1-16)
T 0(r(1-20)+r8(1-T+10)e~T1-0))’
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