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Abstract 

In this paper, a nonlinear mathematical model is proposed and analyzed to study the role of cumulative 

environmental degradation on the spread of bacterial diseases. In the modeling process, it is assumed that the 

disease is not only transmitted directly from the infective population to susceptible population but also 

indirectly by the bacteria present in the conducive degraded environment. The cumulative density of the 

bacteria population is assumed to be governed by a generalized logistic model, and is also dependent on 

conducive environmental degradation. The cumulative density of environmental degradation is assumed to be 

dependent on human population-related factors. The analysis of the model is performed by using the stability 

theory of differential equations and numerical simulation. The model analysis reveals that the increased rate of 

conducive environmental degradation increases the density of bacteria population which leads to fast spread of 

the bacterial diseases. 
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1 Introduction 

Bacteria are single-cell microorganisms that flourish in various environments. They comprise a large domain 

of prokaryotic microorganisms found in soil, air, water and inside the human being. Bacteria may be beneficial 

for us, for example, in curdling milk into yogurt, in our digestion etc. The harmful bacteria which help in 

spreading the infection and cause disease are called pathogenic bacteria. In developing countries, dumping of 

solid wastes is very much responsible for ruining the environmental conditions. Environmental factors such as 

poor supply of water, sanitation facilities, food and climate spread communicable diseases that are prone to 

epidemics and increase the spread of infectious diseases. There are certain diseases caused by bacterial 

infection include tuberculosis, typhoid fever, diphtheria, measles, etc. In case of many infectious diseases, 
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infection is directly transmitted to susceptibles by infectives whereas in some diseases infection is also 

indirectly transmitted by flow of bacteria present in the environment (Gonzalez, 1989). For example, 

tuberculosis spreads from person to person as a result of direct contact with infectives by inhaling tubercle 

bacilli during breathing, talking etc. and indirectly via droplets containing tubercle bacilli released by TB 

infected person during coughing, singing or sneezing etc. These bacteria often settle down on human clothes, 

plants, flower pots etc. or remain airborne. The poor environmental conditions provide conducive environment 

to the growth of bacteria population which helps to further escalate the infectious diseases. An increase in 

bacteria population further degrades our environment leading to fast spread of infectious diseases. Due to 

continuous increase in human population and related activities, environmental degradation is more likely to 

take place. Thus, increasing demand for more food, shelter etc. results in pollution, deforestation, decline of 

natural resources which further add to environmental degradation. The degraded environmental conditions, 

caused by human activities, enhance the chances of bacteria population to grow resulting in fast spread of 

infectious diseases. 

Several studies have been made for the spread of infectious diseases where direct transmission of disease 

has been considered without taking into account the role of bacteria population and environmental aspects 

(Agarwal and Verma, 2012b; Anderson and May, 1979; Gonzalez, 1989; Hethcote, 2000; Hsu and Zee, 2004; 

Nadjafikhah and Shagholi, 2017; Ugwa et al., 2013). However, to capture the realistic dynamics, in recent 

years, the spread of infectious diseases has been modeled by considering the role of bacteria population in the 

unhygienic environmental and ecological conditions in the habitat (Agarwal and Verma, 2012a; Ghosh et al., 

2005, 2006; Naresh and Pandey, 2009a, b, 2012; Nthiiri et al., 2016; Pandey et al., 2018; Shukla et al., 2011; 

Singh et al., 2005). In particular, Ghosh et al. (2005) studied an SIS model for infectious disease spread by 

bacteria present in the degraded environment of poor people who work as service providers. They have 

assumed the growth rate and the carrying capacity of the bacteria population as constant in a structured 

population where service providers are drawn from an environmentally degraded region. Further, Ghosh et al. 

(2006) studied a model by assuming the logistic growth of both the human population and the bacteria 

population. It was shown that due to an increase in environmental discharge by human sources, the spread of 

infectious disease increases. Naresh and Pandey (2009a) proposed a mathematical model to analyze the effect 

of ecological factors in the habitat on the spread of TB in the human population. Their study shows that due to 

the increase in environmental degradation, the spread of tuberculosis is faster due to presence of bacteria in the 

conducive environment. As pointed earlier, environmental degradation is a serious issue to be considered. 

In most of the above studies, the growth of bacteria population is taken to be directly proportional to the 

infective population or is governed by a logistic model with constant intrinsic growth rate and carrying 

capacity. However, as the human population density increases, the resulting environmental degradation leads 

to further growth in the density of bacteria population. This results in the fast spread of bacterial diseases. Thus, 

the growth rate and carrying capacity of bacteria population density must be taken as a function of cumulative 

density of environmental discharges (Naresh and Pandey, 2012).  

Our main objective, in this paper, is to model and analyze the spread of bacterial diseases due to 

cumulative environmental degradation. In the modeling process, the density of bacteria population is assumed 

to grow logistically with the growth rate and carrying capacity taken as dependent on the density of cumulative 

environmental degradation, which further depend on human population related factors enhancing the growth of 

bacteria population density. 

 

 

2 Mathematical Model 
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In this section, a nonlinear mathematical model dealing with the spread of bacterial diseases due to 

environmental degradation is proposed. Here, total human population ܰሺݐሻ is divided into two subclasses 

namely, susceptibles ܺሺݐሻ  and infectives ܻሺݐሻ  at any time ݐ . Further, ܤሺݐሻ  and ܧሺݐሻ  represent 

cumulative bacteria population density and the density of environmental degradation at any time ݐ 

respectively. 

For simplicity we use ܺሺݐሻ ൌ ܺ, ܻሺݐሻ ൌ ሻݐሺܤ ,ܻ ൌ ሻݐሺܧ and ܤ ൌ  . The model is governed byܧ

following system of nonlinear ordinary differential equations: 

 

ௗ

ௗ௧
ൌ ܣ െ ܻܺߚ െ ܺܤߣ െ ݀ܺ   ; ܻߥ

ௗ

ௗ௧
ൌ ܻܺߚ  ܺܤߣ െ ܻ݀ െ ܻߙ െ  ;ܻߥ

ௗ

ௗ௧
ൌ ሻܧሺݏ ቀ1 െ



ሺாሻ
ቁ ܤ  ଵܻݏ െ ܤݏ  ܧܤଶݏ ;           

(1) 

ௗா
ௗ௧

ൌ ܳ െ ܧߠ  ܣଵሺߠ െ ݀ܰሻ.   

where, ܺሺ0ሻ  0, ܻሺ0ሻ  0, ሺ0ሻܤ  0, ܧ  0. 

It is assumed that the infectious diseases not only spread directly from infective population to susceptibles 

but also indirectly from the bacteria present in the environment. The parameters representing the transmission 

rate are ߚ and ߣ respectively, due to direct interaction of infectives with susceptibles and indirectly by 

bacteria present in the environment. 

In the first equation of the model, the parameter ܣ is the constant rate of immigration of population in 

the region. The natural mortality rate ݀ is same for all individuals and the rate of infected individuals who 

take treatment and get themselves recovered is represented by the parameter ߥ. The parameter ߙ is the rate at 

which the infected individuals die due to disease.  

In third equation of the model system (1), the growth of bacteria population density is taken as logistic 

and its intrinsic growth ݏሺܧሻ and carrying capacity ܮሺܧሻis assumed to be dependent on the cumulative 

density of environmental degradation. 

Since the bacteria population is also assumed to grow due to its release from infective population, it is 

taken as directly proportional to infective population. The parameter ݏଵ represents the growth rate of bacteria 

population due to its release from infective population, the rate at which the bacteria population declines 

naturally or due to some other factors is represented by ݏ. The parameter ݏଶ is the rate of increase in the 

density of bacteria population due to cumulative environmental degradation. Since we assume that the growth 

rate of bacteria population increases due to the cumulative density of environmental degradation, we have, 

ሺ0ሻݏ              ൌ ݏ and ሻܧᇱሺݏ  0 .           

(2) 

where, ݏ is the value of ݏሺܧሻ at ܧ ൌ 0 and ݏᇱሺܧሻ denotes the derivative of the function with respect 

to its argument. We assume that the modified carrying capacity increases with the cumulative density of 

environmental degradation, so that 

ሺ0ሻܮ       ൌ ݈  and ܮᇱሺܧሻ  0 .           

(3) 

where, ݈ is the value of ܮሺܧሻ when ܧ ൌ 0.  

The last equation of model system (1) represents the cumulative density of environmental degradation 
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which is taken to increase at a constant rate ܳ and it is also assumed to be directly proportional to the growth 

of human population. Further, the parameter ߠ represents the rate of decrease of cumulative density of 

environmental degradation due to some factors. 

Since ܰሺݐሻ ൌ ܺሺݐሻ  ܻሺݐሻ, the above model system (1) can be rewritten as follows,  

ௗ

ௗ௧
ൌ ሺܰߚ െ ܻሻܻ  ሺܰܤߣ െ ܻሻ െ ሺ݀  ߙ    ;ሻܻߥ

ௗே

ௗ௧
ൌ ܣ െ ݀ܰ െ   ;ܻߙ

ௗ

ௗ௧
ൌ ሻܧሺݏ ቀ1 െ



ሺாሻ
ቁ ܤ  ଵܻݏ െ ܤݏ  ܧܤଶݏ ;           

(4) 

ௗா
ௗ௧

ൌ ܳ െ ܧߠ  ܣଵሺߠ െ ݀ܰሻ.  

 

To show the feasibility of the model system (1), we show that all the variables are non-negative for all time 

 From the first equation of model system (1), we have .ݐ

ௗ

ௗ௧
ൌ ܣ  ܻߥ െ ሺܻߚ  ܤߣ  ݀ሻܺ.  

The above equation can be written as 

ௗሺ௧ሻ

ௗ௧
exp ሺ ଵ݂ሺሻ݀ሻ  ଵ݂ሺݐሻܺሺݐሻexpሺ ଵ݂ሺሻ݀ሻ ൌ ሺܣ  ሺݔሻܻ݁ߥ ଵ݂ሺሻ݀ሻ,

௧
  

௧
  

௧
   

where, ଵ݂ሺሻ ൌ ሻሺܻߚ  ሻሺܤߣ  ݀. 

֜ 
ௗ

ௗ௧
ሺܺሺݐሻexp ሺ ଵ݂ሺሻ݀ሻሻ ൌ ൫ܣ  ሻ൯exp ሺݐሺܻߥ ଵ݂ሺሻ݀ሻ

௧


௧
 , 

and hence, we obtain, 

ܺሺݐሻ ൌ ܺሺ0ሻexp ሺെ ଵ݂ሺሻ݀ሻ  exp ሺെ ଵ݂ሺሻ݀ሻሾ ൫ܣ  ሻ൯exp ሺሺܻߥ ଵ݂ሺݑሻ݀ݑሻ݀ሿ
௧


௧


௧


௧
 .  

This shows that ܺሺݐሻ  ݐ  0  0. 

Similarly, it can be shown that ܻሺݐሻ  0, ሻݐሺܤ  ሻݐሺܧ & 0  0, ݐ   0.  

Boundedness: From the second equation of model system (4), we have 

ௗே

ௗ௧
 ܣ െ ݀ܰ,  

From above, we get, 

ௗ

ௗ௧
ሺܰ݁ௗ௧ሻ    ,ௗ௧݁ܣ

Now, integrating above equation from 0 to ݐ, we obtain 

ܰሺݐሻ 


ௗ
 ቀܰሺ0ሻ െ



ௗ
ቁ ݁ିௗ௧,  

Therefore, by using the theory of differential inequality (Lakshmikantham and Leela, 1969), we have 

lim௧՜ஶ ሻݐሺܰݑݏ 


ௗ
 .      

and thus, 0  ܰሺݐሻ   


ௗ
 for large ݐ  0. 

From the third equation of model system (4), and using the fact that ܻሺݐሻ ൏ ܰሺݐሻ 


ௗ
 for large ݐ  0, we 
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have  

ௗሺ௧ሻ

ௗ௧
െ ቀݏሺܧሻ ቀ1 െ



ሺாሻ
ቁ െ ݏ  ܤሻቁܧଶሺݏ  ଵݏ



ௗ
 , 

From the theory of differential inequality, we obtain 

lim௧՜ஶ ሻݐሺܤݑݏ    . (say)ܤ

where,  

ܤ ൌ
ሺாሻ
ଶ௦ሺாሻ

ݏሺܧሻ െ ݏ  ሻܧଶሺݏ  ටሺݏሺܧሻ െ ݏ  ሻሻଶܧଶሺݏ 
ସ௦ሺாሻ
ሺாሻ

௦భ

ௗ
൨ .          

(5) 

This implies that 0 ൏ ሻݐሺܤ  ݐ  for largeܤ   0. 

Further, from the fourth equation of model system (4), we obtain 

ௗா
ௗ௧

 ܧߠ   ܳ    ,ܣଵߠ

and hence, 

lim௧՜ஶ ሻݐሺܧݑݏ  ሺܧሻ  (say).  

where, 

ሺܧሻ  ൌ
ொబାఏభ

ఏబ
 .           

(6) 

Now the following lemma is stated which is required for stability analysis of the equilibria of model system (4). 

Lemma 

The region of attraction for the solution of the model system (4) is given as follows: 

Ω ൌ ቄሺܻሺݐሻ, ܰሺݐሻ, ,ሻݐሺܤ ሻሻݐሺܧ א ܴାସ: 0 ൏ ܻ ൏ ܰ ൏


ௗ
, 0 ൏ ܤ ൏ ,ܤ 0 ൏ ܧ ൏ ሺܧሻቅ. 

which is positively invariant and all solutions stay in Ω, (Freedman and So, 1985). Here, ܤ and ሺܧሻ are 

defined in eqns. (5) and (6) respectively. 

 

3 Equilibrium Analysis 

To study the qualitative behavior of the model system (4), we carry out the equilibrium analysis of the model. 

Two non-negative equilibria are found to be feasible, which are given below: 

ܧ .1 ቀ0,


ௗ
, 0,

ொబ
ఏబ
ቁ. This is disease-free equilibrium. 

,כሺܻכܧ .2 ,כܰ ,כܤ כܧ ሻ. This is endemic equilibrium.  

The existence of ܧ is obvious. 

We prove the existence of endemic equilibrium כܧ by setting right hand side of equations in model (4) to 

zero and solving the resulting algebraic equations, 

ሺܰߚ െ ܻሻܻ  ሺܰܤߣ െ ܻሻ െ ሺ݀  ߙ  ሻܻߥ ൌ 0 ,                                                       

(7)                       

ܣ െ ݀ܰ െ ܻߙ ൌ 0,                                                                                    

(8)    

ሻܧሺݏ ቀ1 െ


ሺாሻ
ቁ ܤ  ଵܻݏ െ ܤݏ  ܧܤଶݏ ൌ 0,                                                    

(9) 
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ܳ െ ܧߠ  ܣଵሺߠ െ ݀ܰሻ ൌ 0.                                                                          

(10) 

From (8) we have, 

ܰ ൌ
ିఈ

ௗ
.                                                                                           

(11) 

From (10) and (11) we get, 

ܧ ൌ
ொబାఏభఈ

ఏబ
.                                                                                         

(12) 

Now, using (11) in (7) 

ሺܣ െ ሺߙ  ݀ሻܻሻሺܻߚ  ሻܤߣ െ ݀ሺ݀  ߙ  ሻܻߥ ൌ 0.                                                   

(13) 

Using (12) in (9) we get, 

ܻ ൌ 
ఏబ

௦మఏభఈା௦భഇబ
൨ ቂ

௦ሺாሻఏ

ሺாሻ
ଶܤ െ ቀݏሺܧሻ െ ݏ  ଶݏ

ொబ
ఏబ
ቁ                                           .ቃܤ

(14) 

Now we show the existence of ܻכand כܤ from (13) and (14) , and the corresponding values of ܰכand ܧכ  

can be obtained from (11) and (12). 

From (13), we have 

(i) For 0 =ܤ, 

We get, ܻ ൌ 0 or ܻ ൌ
ఉିௗሺௗାఈାఔሻ

ఉሺఈାௗሻ
ൌ ෨ܻ  (say), 

෨ܻ   is positive, if ܣߚ  ݀ሺ݀  ߙ   .ሻ and negative otherwiseߥ

(ii) At (0, 0), the slope of (13) is given by, 

ௗ

ௗ
ൌ െ

ఒ

ఉିௗሺௗାఈାఔሻ
.  

which is positive or negative depending upon ෨ܻ  being negative or positive, respectively. 

(iii) At ሺ0, ෨ܻሻ, the slope of (13) is given by,  

 
ௗ

ௗ
ൌ

ఒௗሺௗାఈାఔሻ

ఉሺఉିௗሺௗାఈାఔሻሻ
. 

which is positive or negative depending upon ෨ܻ  being  positive or negative, respectively. 

From (14), we observe the following points, 

(i) When ܻ ൌ 0, 

We get, ܤ ൌ 0 or ܤ ൌ
ሺாሻ

௦ሺாሻ
ቀݏሺܧሻ െ ݏ 

௦మொబ
ఏబ
ቁ ൌ ෨ܤ  (say).  

(ii) At (0, 0), the slope of (14) is given by, 

 
ௗ

ௗ
ൌ െ

ଵ

௦భ
ቀݏሺܧሻ െ ݏ 

௦మொబ
ఏబ
ቁ ൏ 0. 

(iii) At ሺܤ෨ , 0ሻ, the slope of (14) is given by, 

 
ௗ

ௗ
ൌ

మሺாሻఏబቀ௦ሺாሻି௦బା
ೞమೂబ
ഇబ

ቁ

௦భఏబమሺாሻାఈఏభ෨ቂమሺாሻ௦మାሺாሻᇲሺாሻ௦ሺாሻାቀ௦బି
ೞమೂబ
ഇబ

ቁቃ
 0. 

provided ݎ  0 where, ݎ ൌ
ሺாሻ

௦ሺாሻ
ሺܮሺܧሻݏᇱሺܧሻ െ  .ሻሻܧᇱሺܮሻܧሺݏ
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Thus, after plotting ܻ and ܤ corresponding to (13) and (14) in Figs 1 & 2, we see that there are two 

intersecting points ሺ0,0ሻ and ሺܻכ, כܧ and כܰ we can calculate ,כܤ and כܻ ሻ. After findingכܤ  using (11) 

and (12). 

 

 
Fig. 1 Existence of endemic equilibrium when Y > 0. 

 

 

 

Fig. 2 Existence of endemic equilibrium when Y < 0. 
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4 Stability Analysis 

4.1 Local stability analysis 

The local stability behavior of the equilibrium ܧ is presented here after computing the variational matrix 

about ܧ. However, for stability of כܧ, Lyapunov's method is used in the linearized system. 

Theorem-1 The equilibrium ܧ is unstable and the endemic equilibrium כܧ is locally asymptotically stable 

provided the following conditions are satisfied, 

ሺߣሺܰכ െ ሻכܻ  ଵሻଶݏ ൏ ቀכܻߚ 
ఒכேכ

כ
ቁ ቀ

௦భכ

כ


௦ሺாכ ሻ

ሺா
כ ሻ
ቁכܤ .           

(15) 

ଵߠ
ଶ ቀݏᇱሺܧכ ሻכܤ െ

ሺாכ ሻ௦ᇲሺாכ ሻିᇲሺாכ ሻ௦ሺாכ ሻ

మሺா
כ ሻ

ቁ
ଶ
൏

ఏబ
మ

ఈௗ
ሺכܻߚ   ሻ.                         (16)כܤߣ

(For proof see Appendix-A) 

4.2 Nonlinear stability analysis 

The result of nonlinear stability analysis of endemic equilibrium כܧ is presented in the following theorem.  

Theorem-2 The endemic equilibrium כܧ is nonlinearly asymptotically stable in the region Ω provided the 

following conditions are satisfied, 

ቀߣ ቀ
ேିככ

כ
ቁ  ଵቁݏ

ଶ
൏ ,כܤሺ߰ߚ כܧ ሻ .           

(17) 

ଵߠ
ଶ ቆቀܤ െ

మ

ሺா
כ ሻ
ቁ   ଶܤ ሻሻܧሺሺݏ



బ
మ  ቇܤଶݏ

ଶ

൏
ఏబ
మ

ఈௗ
ቀߚ 

ఒ
כ
ቁ߰ሺכܤ, כܧ ሻ,            (18) 

where, ߰ሺכܤ, כܧ ሻ ൌ ቀ
௦ሺாכ ሻכ

ሺா
כ ሻ

 ݏ െ כܧଶݏ െ כܧሺݏ ሻቁ. 

(For proof see Appendix-B) 

 

5 Numerical Experiments 

We give here the numerical simulation of the model system (4) to show the existence of equilibrium values 

and to check the feasibility of stability conditions. 

In the model, ݏሺܧሻ and ܮሺܧሻ are the growth rate and modified carrying capacity of the bacteria 

population as a function of cumulative density of environmental degradation ܧ . Thus, for numerical 

simulation it is assumed that ݏሺܧሻ and ܮሺܧሻ are linear functions of ܧ, i.e., ݏሺܧሻ ൌ ݏ    andܧܽ

ሻܧሺܮ ൌ ݈   , satisfying conditions (2) and (3). We integrate the system (4) by fourth-order Runge-Kuttaܧܾ

method using MATLAB with the following set of parameter values, 

ܣ ൌ 100, ߚ ൌ 0.002, ߣ ൌ 0.000005, ߥ ൌ 0.02, ݀ ൌ 0.15, ߙ ൌ 0.2, ݏ ൌ 0.85, ݏ ൌ 0.3, ଵݏ ൌ 0.0001, ଶݏ ൌ

0.001, ܳ ൌ 25, ଵߠ ൌ 0.001, ߠ ൌ 0.1, ܽ ൌ 0.001, ܾ ൌ 0.01 ܽ݊݀ ݈ ൌ 10000.  

The equilibrium values of endemic equilibrium are computed as, 

כܻ  ൌ כܰ,214.37 ൌ 380.83, כܤ ൌ 9551.94, כܧ ൌ 250.4. 

The eigenvalues of the variational matrix corresponding to the endemic equilibrium are െ0.0977,െ0.3327 േ

0.2513݅, െ1.0513. 

It can be seen that all the eigenvalues are either negative or have negative real part, therefore, for the above set 

of parameter values the endemic equilibrium is locally asymptotically stable. The results of the model are 

displayed graphically in Figures 3-10. Figure 3 shows that the endemic equilibrium כܧ is nonlinearly 

asymptotically stable. The figure shows that the total human population ܰ, infective population ܻ and the 

density of bacteria population ܤ approach to the equilibrium point regardless of the initial values of ܰ, ܻ 
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and ܤ. The initial starts of all trajectories to reach the equilibrium point are given below: 

(1) ܻሺ0ሻ ൌ 100, ܰሺ0ሻ ൌ 300, ሺ0ሻܤ ൌ 7000, ሺ0ሻܧ ൌ 250. 

(2) ܻሺ0ሻ ൌ 300, ܰሺ0ሻ ൌ ሺ0ሻܤ ,600 ൌ 5500, ሺ0ሻܧ ൌ 250. 

(3) ܻሺ0ሻ ൌ 300,ܰሺ0ሻ ൌ ሺ0ሻܤ ,350 ൌ 5000, ሺ0ሻܧ ൌ 250. 

(4) ܻሺ0ሻ ൌ 100, ܰሺ0ሻ ൌ ሺ0ሻܤ ,550 ൌ 4000, ሺ0ሻܧ ൌ 250. 

 

 

 

Fig. 3 Variation of total human population with infective population and bacteria population. 

 

 

 

 

Fig. 4 Variation of infective population with time for distinct values of ߣ. 
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Fig. 5 Variation of bacteria population with time for distinct values of ݏଵ. 

 

 

Fig. 6 Variation of infective population with time for distinct values of ݏଵ. 

 

 

Fig. 7 Variation of bacteria population with time for distinct values of ݏଶ. 
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Fig. 8 Variation of infective population with time for distinct values of ݏଶ. 

 

 

Fig. 9 Variation of bacteria population with time for distinct values of ܳ. 

 

 

 

 

Fig. 10 Variation of infective population with time for distinct values of Q0. 
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Fig. 4 shows the variation of infective population with time for different values of ߣ, the transmission rate 

due to density of bacteria population present in the environment. It is seen from the figure that with increase in 

the value of ߣ infective population increases. 

   Figs 5 and 6 show the role of release of bacteria from the infected individual at a rate ݏଵ on infectives and 

bacteria population density respectively with time. It is seen from the figure that the bacteria population 

increases in the environment as ݏଵ increases (Fig. 5). This increase in the bacteria population ultimately 

increases the infective population (Fig. 6). This implies that higher infective population releases more bacteria 

enhancing the density of bacteria population which further helps in inducing fast spread of bacterial diseases.  

In Figs 7 and 8, the effect of ݏଶ , the rate of increase in the bacteria population density due to 

environmental degradation is shown on the bacteria population and infective population respectively with time. 

It is seen that as the environment degrades due to some environmental factors, the bacteria population increase 

in the environment (Fig. 7), which ultimately increases the infective population (Fig. 8). Thus, the conducive 

environmental degradation helps in increasing the bacteria population in the environment leading to fast spread 

of bacterial diseases. 

The variation of bacteria population and infective population is shown in Figs 9 and 10 with time for 

distinct values of ܳ, respectively. It is seen that as the growth rate of environmental degradation increases, 

bacteria population also increases (Fig. 9). This increment in bacteria population, increases the spread of 

bacterial diseases in infective population (Fig. 10). 

It is, therefore, concluded that the environmental degradation plays an important role in increasing the 

density of bacteria population in the environment. This increase in bacteria population further contributes in 

enhancing the spread of infectious diseases. 

 

6 Conclusion 

In the present study, a nonlinear SIS model is proposed and analyzed to study the spread of bacterial diseases 

due to cumulative environmental degradation. In the model, the total human population is divided into two 

subclasses viz susceptibles and infectives. The direct and indirect interaction of susceptibles with infectives 

and with the bacteria present in the environment is considered here. The intrinsic growth rate and carrying 

capacity of bacteria population is assumed to be dependent on cumulative environmental degradation. It is also 

assumed that the growth rate of bacteria population density is directly proportional to the infective population. 

The cumulative density of environmental degradation depends upon human population-related factors. The 

model has been analyzed using the stability theory of differential equations and numerical simulation. The 

analysis of the model shows that the cumulative environment degradation helps in increasing the bacteria 

population in the environment which leads to fast spread of the infectious bacterial diseases. Thus, if the 

environment remains clean the density of bacteria population may decline and hence the spread of bacterial 

infectious diseases can be slowed down. 

 

Appendix-A 

The general variational matrix M for model system (4) is computed as follows: 

ܯ  ൌ ൦

ܰߚ െ ܻߚ2 െ ܤߣ െ ሺ݀  ߙ  ሻߥ ܻߚ  ܤߣ ܰߣ െ ܻߣ
െߙ െ݀ 0
ݏ 0 െሺݏ െ ሻܧଵݏ

            
0
0
ܤଵݏ

                            0                                 െߠଵ݀                   0                    െߠ

൪. 
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The variational matrix M0 of model (4) corresponding to ܧ ቀ0,


ௗ
, 0,

ொబ
ఏబ
ቁ is 

   

  ܯ ൌ

ۏ
ێ
ێ
ێ
ۍ

ఉ

ௗ
െ ሺ݀  ߙ          ሻߥ 0

ఒ

ௗ
െߙ െ݀ 0
ݏ 0     െ ቀݏ െ ଵݏ

ொబ
ఏబఏ

ቁ
                        

0
0
0

                     0                   െߠଵ݀                      0                              െߠے
ۑ
ۑ
ۑ
ې

  . 

The characteristics polynomial of above matrix is given by, 

ሺ݀  ߠሻሺߤ  ଶߤሻሺߤ െ ݄ଵߤ െ ݄ଶሻ ൌ 0,  

where, 

݄ଵ ൌ   ൬
ఉ

ௗ
െ ሺ݀  ߙ  ሻ൰ߥ െ ቀݏ െ ଵݏ

ொబ
ఏబ
ቁ,  

݄ଶ ൌ   ൬
ఉ

ௗ
െ ሺ݀  ߙ  ሻ൰ߥ . ቀݏ െ ଵݏ

ொబ
ఏబ
ቁ 

ఒ௦

ௗ
 .  

Using Routh-Hurwitz criteria, we get that ܧ is unstable if ൬
ఉ

ௗ
െ ሺ݀  ߙ  ሻ൰ߥ  1 and stable if              

൬
ఉ

ௗ
െ ሺ݀  ߙ  ሻ൰ߥ ൏ 1. 

To compute the local stability of endemic equilibrium כܧ, we linearize the model system (4) using small 

perturbation ݕ, ݊, ܾ, ݁ about כܧ, defined as  

ܻ ൌ ݕ  ,כܻ ܰ ൌ ݊  ,כܰ ܤ ൌ ܾ  ܧ  and כܤ ൌ ݁  כܧ  . 

Consider the following positive definite function: 

ଵܷ ൌ
ଵ

ଶ
ሺ݉ݕଶ  ݉ଵ݊ଶ ݉ଶܾଶ  ݉ଷ݁ଶሻ,  

where, ݉ሺ݅ ൌ 0, 1, 2, 3ሻ are positive constants to be chosen appropriately. 

Differentiating above equation with respect to ‘ݐ’ and using linearized system of model (4) corresponding to 

 ,we get ,כܧ

 
ௗభ
ௗ௧

ൌ െ݉ ቀ
ఒכேכ

כ
 ቁכܻߚ ଶݕ െ ݉ଵ݀݊ଶ െ ݉ଶ ቀ

௦భכ

כ


௦ ሺாכ ሻ

ሺா
כ ሻ
ቁכܤ ܾଶ െ ݉ଷߠ݁ଶ    

           ሾ݉ሺכܻߚ  ሻכܤߣ െ ݉ଵߙሿ݊ݕ  ሾ݉ߣሺܰכ െ ሻכܻ  ݉ଶݏଵሿܾݕ 

           ݉ଶ ቀݏԢ ሺܧכ ሻכܤ െ
ሺாכ ሻ௦ᇱ ሺாכ ሻିᇲሺாכ ሻ௦ሺாכ ሻ

మሺா
כ ሻ

ଶכܤ  ቁכܤଶݏ ܾ݁ െ݉ଷߠଵ݀݊݁. 

After choosing ݉ ൌ 1,݉ଵ ൌ
ఉכାఒכ

ఈ
, ݉ଶ ൌ 1 and    

   
൬௦ᇱ ሺாכ ሻିכ

ಽሺಶ
כ ሻೞᇲ ሺಶ

כ ሻషಽᇲሺಶ
כ ሻೞሺಶ

כ ሻ
ಽమሺಶ

כ ሻ
כమା௦మכ൰

మ

ఏబ൬
ೞభೊכ

ಳכ
ା
ೞ ሺಶ

כ ሻ
ಽሺಶ

כ ሻ
כ൰

 ൏ ݉ଷ ൏
ఏబ

ఏభ
మௗఈ

ሺכܻߚ   .ሻכܤߣ

we get 
ௗభ
ௗ௧

 to be negative definite showing that ଵܷ is Lyapunov function and hence כܧ is locally 

asymptotically stable provided the conditions (15) and (16) are satisfied.    
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Appendix-B 

Proof: Consider the following positive definite function, corresponding to the model system (4) about כܧ, 

 ܷଶ ൌ ݉ ቀܻ െ כܻ െ כܻ ln


כ
ቁ 

భ

ଶ
ሺܰ െ ሻଶכܰ 

మ

ଶ
ሺܤ െ ሻଶכܤ 

య

ଶ
ሺܧ െ כܧ ሻଶ, 

where, ݉ሺ݅ ൌ 0,1,2,3ሻ are positive constants to be chosen appropriately. 

Differentiating the above equation with respect to ‘ݐ’ and using system (4), we get, 

 
ௗమ
ௗ௧

ൌ െ݉ ቀߚ 
ఒே

כ
ቁ ሺܻ െ ሻଶכܻ െ ݉ଵ݀ሺܰ െ ሻଶכܰ െ ݉ଶ ቆ

௦ሺாכ ሻ

ሺா
כ ሻ
ܤ  ߰ሺכܤ, ሻቇכܧ ሺܤ െ  ሻଶכܤ

             െ݉ଷߠሺܧ െ כܧ ሻଶ  ቂ݉ ቀߚ 
ఒ

כ
ቁ െ ݉ଵߙቃ ሺܻ െ ሻሺܰכܻ െ  ሻכܰ

            ቂ݉ߣ ቀ
ேିככ

כ
ቁ  ݉ଶݏቃ ሺܻ െ ܤሻሺכܻ െ  ሻכܤ

             ݉ଶ ቂቀܤ െ
మ

ሺா
כ ሻ
ቁ ݂ሺܧሻ  ሻܧሻ݃ሺܧሺݏଶܤ  ቃܤଶݏ ሺܤ െ ܧሻሺכܤ െ כܧ ሻ 

              െ݉ଷߠଵ݀ሺܰ െ ܧሻሺכܰ െ כܧ ሻ. 

where, ݂ሺܧሻ and ݃ሺܧሻ are defined as follows,   

݂ሺܧሻ ൌ ቐ

௦ሺாሻି௦ሺாכ ሻ

ாିா
כ ܧ            , ് כܧ  

ௗ௦

ௗா
, ܧ                           ൌ כܧ    

,  

݃ሺܧሻ ൌ ൞

ሺாሻିሺாכ ሻ

ሺாሻሺா
כ ሻሺாିா

כ ሻ
ܧ            , ് כܧ  

ଵ

బ
మ

ௗ

ௗா
, ܧ                                    ൌ כܧ   

 

 .      

By considering the assumptions of the theorem and the mean value theorem, we have, 

|݂ሺܧሻ|  , |݃ሺܧሻ| 


బ
మ . 

After choosing ݉ ൌ 1, ݉ଵ ൌ
ଵ

ఈ
ቀߚ 

ఒ
כ
ቁ, ݉ଶ ൌ 1  and 

 
൭൬ି

ಳ
మ

ಽ൫ಶ
כ ൯
൰ାమ ௦ሺሺாሻሻ



ಽబ
మା௦మ൱

మ

ఝሺכ,ா
כ ሻ

൏ ݉ଷ ൏
ఏబ

ఈௗఏభ
మ ቀߚ 

ఒ
כ
ቁ. 

we get 
ௗమ
ௗ௧

 to be negative definite showing that ܷଶis a Lyapunov function and hence כܧ is nonlinearly 

asymptotically stable provided the conditions (17) and (18) are satisfied. 
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