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Abstract 

In this paper, I have proposed a mathematical model for aquatic ecosystem with three interacting species, 

toxin-producing phytoplankton (TPP), non-toxin producing phytoplankton (NTP) and zooplankton with 

Holling type II functional responses. I have carried out a detail study of stability analysis for the non-spatial 

and spatial model systems and obtained the conditions for diffusive instability. I have also performed the 

numerical simulation for a particular set of parameter values which is realistic for natural planktonic system. 

The numerical results revealed the following: (i) dominant TPP population is under control which is essential 

for aquatic systems, (ii) cyclic behavior of NTP, TPP and zooplankton population in heterogeneous biomass 

distribution, and (iii) the evolution of patchy non-Turing patterns. The overall result may be useful for 

sustainability and maintenance of biodiversity of aquatic systems. 
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1 Introduction 

The construction and study of mathematical models for population dynamics have remained an important area 

in theoretical ecology since the famous Lotka-Volterra model (Zhang and Zhang, 2018). The study of 

organism movement and dispersal has become a key element for understanding a series of ecological questions 

related to the spatiotemporal dynamics of populations (Kareiva, 1990; Levin, 1974). Planktons are extremely 

variable in abundance, both spatially and temporally. Plankton patchiness depends on biological as well as 

physical process for the spatial structure. Biological processes includes such as growth, grazing and behavior 

and physical processes includes such as lateral stirring and mixing, and nonlinearity of ecosystems, all 

contribute to the spatial structure in plankton distributions. Huisman et al. (2004) have studied the physical 

processes in the generation and maintenance of patchiness. Phytoplankton takes up CO2 from the atmosphere 
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and provides the basis of the food chain in the oceans. Many phytoplankton species are toxic to zooplankton. 

This toxicity influences the distribution of phytoplankton and zooplankton populations. Modeling of plankton 

population is vital to understanding the dynamics of plankton populations and the feedback of marine 

phytoplankton on greenhouse effect. Recently, a number of papers focused on harmful algal blooms which 

reflect the increasing interest for strategies and management (Franks, 1997; Adriana et al., 2000; Anderson et 

al., 1997; Blaxter et al., 1997; Hallegraeff, 1993; Truscott et al., 1994; Wyatt, 1998), biological stoichiometry 

(Elser et al., 2012). The mechanism to explain the cyclic nature of bloom dynamics using different forms of 

toxin liberation process in phytoplankton-zooplankton interaction has been studied by Chattopadhyay et al. 

(2000). With the help of field observations, the space-time frame for promotion of plankton diversity due to 

the presence of TPP has been studied by some researchers (Roy et al., 2008; Roy, 2007; Roy et al., 2006). 

They have explained the role of toxin-producing phytoplankton (TPP) to determine and maintain the diversity 

of the overall phytoplankton and zooplankton species in the Bay of Bengal. Yang et al. (2008) studied a spatial 

tritrophic food chain model with Holling type II functional response and the global existence of solutions for 

the model of cross diffusion type is investigated when the spatial dimension is less than six. A method to 

monitor, prevent and control harmful algal blooms has been studied by Anderson et al. (2009). Chakraborty et 

al. (2012) have explained the role of avoidance by zooplankton for survival and dominance of toxic 

phytoplankton. Using three species Lotka-Volterra reaction–diffusion system, Scotti et al. (2015) investigated 

the role of toxicity and zooplankton’s predation in the persistence of toxic prey and observed that a toxic prey 

may destabilize the spatially homogeneous coexistence and trigger spatial pattern formation. Upadhyay et al. 

(2010) have introduced the mathematical modeling of plankton dynamics and studied the spatiotemporal 

pattern formation in a minimal model of a spatial aquatic system. 

In this work, I have taken three interacting species, non-toxic, toxic phytoplankton and zooplankton for 

modeling the planktonic dynamics with diffusion. I have considered that the local growth of the phytoplankton 

is logistic and that the zooplankton shows the Holling type II functional response for non-toxic phytoplankton 

(NTP) and toxin producing phytoplankton (TPP). I have obtained the conditions for local and global stability 

of the model system in the absence and the presence of diffusion. I also obtained the criteria for Turing 

instability. The main aim of this paper is to see the spatial interaction and the selection of spatiotemporal 

patterns. This paper is organized as follows. In Section 2, the model system and parameters are discussed. The 

model system is analyzed in the absence as well as in the presence of diffusion in Section 3 and 4. I have 

discussed the conditions for Turing instabilities in Section 3. In Section 5, I have discussed the numerical 

simulation results for one and two dimensional spatial domain. Finally, results are discussed in Section 6. 

 

2 Model System 

I consider a reaction-diffusion model for non-toxic phytoplankton-toxic phytoplankton-zooplankton system 

where u(x, y, t) represents the non-toxin producing phytoplankton (NTP), v(x, y, t) represents the toxin 

producing phytoplankton (TPP) and w(x, y, t) represents the zooplankton populations at any location (x, y) and 

time t. I follow the following assumptions to construct out mathematical model: 

(i) NTP and TPP populations follow the logistic growth in the absence of each other and the zooplankton. 

(ii) NTP and TPP exhibit Holling type-II functional response to zooplankton. In absence of NTP, 

zooplankton go extinct. 

(iii)  Non-toxic prey does not invest resources into producing toxins, its maximal growth rate is higher 

than that of the toxic prey. 

Based on the above assumptions, non-dimensional diffusive plankton dynamics may be written as follows 
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(Roy, 2008; Roy et al., 2006; Chakraborty et al., 2012; Scotti et al., 2015): 
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(1) 

The parameters 1r and 2r  are the intrinsic growth rates of NTP and TPP in the absence of predation; 1K  

and 2K  are the carrying capacity of NTP and TPP populations; 1  and 2  are the rates at which NTP and 

TPP are grazed by zooplankton; 1m  and 2m  are half-saturation constants for NTP and TPP density ; 1  

and 2  measure the competitive effect of TPP on NTP and NTP on TPP; 1  be the maximum rate of gain in 

zooplankton growth due to predation of NTP at a rate 1 and 2  be the rate of inhibition of (or reduction in) 

zooplankton growth by toxic material ingested in feeding on TPP; c  is the mortality rate of zooplankton,

1 2,d d  and 3d
 

are the diffusion coefficient of NTP, TPP and zooplankton density respectively. Now I 

assume that competitive effect of TPP on NTP and NTP on TPP are very small or zero, so I have taken  

1 2 0    in the model system (1). So our new model takes the following form:  
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(2)  

non vanishing initial conditions 

( , , 0) 0, ( , , 0) 0, ( , , 0) 0, ( , ) [0, ] [0, ],u x y v x y w x y x y L L                

(3) 

and the zero-flux boundary conditions 

0, ( , )
u v w

x y
n n n

  
   

    
for all t,                                     (4) 

where n is the outward normal vector on the smooth part of the boundary .   

 

3 Stability Analysis of Non-Spatial Model System 

In this section, I study the stability analysis of the model system (2) in the absence of diffusion. Therefore I 
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consider only the interaction part of the model system. I find the non-negative equilibrium point of the model 

system and discuss their stability analysis with respect to variation of several parameters. I first analyzed 

model system (2) without diffusion (i.e., 1 2 30, 0, 0d d d   ) the spatial uniform version of (2). In this case, 

the model system takes the form as: 

1
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(5) 

with (0) 0, (0) 0, (0) 0.u v w    

The model system (5) possesses six nonnegative real equilibrium points:
 

(i) Plankton-free equilibrium point 0 (0, 0, 0)E always exits. 

(ii) TPP and zooplankton-free equilibrium point 1 1( , 0, 0)E K exists on the boundary of the first 

octant. 

(iii) NTP and zooplankton-free equilibrium point 2 2(0, , 0)E K exists on the boundary of the first 

octant. 

(iv) Zooplankton-free equilibrium point ܧଷሺݑො, ,ොݒ 0ሻ is the planer equilibrium point on the uv-plane, 

where 1û K  and 2v̂ K . 

(v) TPP-free equilibrium point 4 ( , 0, )E u w  is the planer equilibrium point on the uw-plane, where 

 
1 1 1 1

1
1 1 1 1 1

, 1
cm r cm cm
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if 1 1 1( ) /K c c m   and 1 c  . 

(vi) The existence of interior equilibrium point * * *
5 ( , , )E u v w . 

In this case, * *,u v and *w  are the positive solutions of the following three equations:    

1
1
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u w

r
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(6b) 
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(6c) 

Solving Eqs. (6a) and (6b) I get an equation in u and v. Also from Eq. (6c), I get an equation in u and v as 

follows: 
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Let 2

2

v

u

Fdu

dv F
   where 2 0uF  with 2 2

2 2 2 2 2 1 1 1/( ) , /( ) .v uF m m v F m m u       

It may be noted that / 0du dv   because 2 0vF  and 2 0uF  . 

From above analysis, I note that the isoclines (7a) and (7b) intersect at a unique point  * *,u v  if in 

addition to conditions (7a)-(7b), the following condition holds: 

1 1 .b au u  
This completes the existence of equilibrium point 5E . 

Now, I study the local behavior of the model system (5) at each equilibrium points. To study the local 

stability behavior each equilibrium point of the model system, I compute the variational matrices 

corresponding to each equilibrium point. From these matrices, the following results are obtained. 

(i) 0 (0, 0, 0)E
 

is a saddle point with unstable manifold in uv-direction and stable manifold in w-

direction. 

(ii) 1 1( , 0, 0)E K  is a saddle point with stable manifold in uw-direction provided 

1 1 1 1( )K c m K    and unstable manifold in v-direction. 

(iii) 2 2(0, , 0)E K  is a saddle point with stable manifold in vw-direction and unstable manifold in u-

direction. 

(iv) ܧଷሺݑത, ҧݒ , 0ሻ is stable or unstable in the positive direction orthogonal to uv-direction depending 

on whether 3 = - c + (1(ū(m1 + ū)) - (2(ݒҧ(m1 + ݒҧ))
 
is negative or positive, provided ū > 

K1 / 2, ݒҧ > K2 / 2. 

(v) 4 ( , 0, )E u w  is stable in the positive direction orthogonal to uw-direction if 2 2 2( / )w r m   
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In the following theorem, I propose the necessary and sufficient conditions for the positive equilibrium 

* * *
5 ( , , )E u v w to be locally asymptotically stable. 

Theorem 1. The unique non-trivial positive equilibrium point * * *
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if and only if the following inequalities hold: 
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In order to study the global stability behavior of the positive equilibrium * * *
5 ( , , )E u v w ,I assumed that 

* * *
5 ( , , )E u v w  is locally asymptotically stable. In the following theorem, I able to write down the sufficient 

conditions under which the positive equilibrium point * * *
5 ( , , )E u v w  is globally asymptotically stable. 

Theorem 2. Let the following inequalities hold: 
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where 1 maxM u and 2 maxM v . Then, the positive equilibrium point * * *
5 ( , , )E u v w  is globally 

asymptotically stable. 

Proof: Consider the following positive definite function, 
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where m  is a positive constant to be chosen suitably. 

Now, differentiating 1V with respect to time t  along the solutions of the model system (5), a little algebraic 

manipulation yields, 

80



Computational Ecology and Software, 2020, 10(2): 74-93 

 IAEES                                                                                     www.iaees.org

* *
* 2 * 21 1 1 2 2

* *
1 1 1 2 2 2

* 2 * *1 2 1 1 1
*

1 2 1 1 1

*2 2 2
*

2 2 2

( ) ( )
( )( ) ( )( )

( ) ( )( )
( ) ( ) ( )( ) ( )

( )
( )( ) ( )

dV r w r w
u u v v

dt K m u m u K m v m v

u v m m
m c w w u u w w

m u m v m u m u m u

m m
v v

m v m v m v

 

   

 

   
               

   
                 
 

      
*( ).w w

 

The above equation can be written as sum of quadratics, 

* 2 * * * 21
11 12 22

* 2 * * * 2
22 23 33

* 2 * 2
11 13 33

1 1
( ) ( )( ) ( )

2 2
1 1

( ) ( )( ) ( )
2 2
1 1

( ) ( )( ) ( ) ,
2 2

dV
m u u m u u v v m v v

dt

m v v m v v w w m w w

m u u m u u w w m w w 

       

      

      

 

where 

* *
1 1 2 2

11 22* *
1 1 1 2 2 2

1 2
33 12

1 2

1 1 1 2 2 2
13 23* *

1 1 1 2 2 2

, ,
( )( ) ( )( )

, 0,
( ) ( )

, .
( )( ) ( ) ( )( ) ( )

r w r w
m m

K m u m u K m v m v

u v
m m c m

m u m v

m m m m
m m

m u m u m u m v m v m v

 

 

   

   
            

 
      
   

               

 

Sufficient conditions for 1 /dV dt  to be negative definite are that the following inequalities hold: 
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(15e) 

2
23 22 33.m m m

          

(15f) 

Under the conditions (13a), (13b) and (13c) the condition (15a), (15b) and (15c) holds. I note that 12 0,m 

therefore (15d) holds. By choosing  *
1 1 1 1/ ,m m u m   I obtain 13 0m  , and thus condition (15e) is 

automatically satisfied. Finally, under the condition (13d) the condition (15f) holds. 

 

4 Stability Analysis of Spatial Model System 

In this section, I study the effect of diffusion on the model system (2)-(4) about the interior equilibrium point
* * *
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5 ( , , )E u v w with small perturbations 

   , , ,U x t V x t and  ,W x t as follows: 

2

11 12 13 1 2

2

21 22 23 2 2

2

31 32 33 3 2

,

,

.

U U
a U a V a W d

t x

V V
a U a V a W d

t x

W W
a U a V a W d

t x

 
   

 
 

   
 
 

   
            

(16) 

where * * *, , ,u u U v v V W w W       

and 

* * *
1 1 1

11 1 12 13* 2 *
1 1 1

* * *
2 2 2

21 22 2 23* 2 *
2 2 2

* * * *
1 1 2 2 1 2

31 32 33* 2 * 2 * *
1 2 1 2

2
1 , 0, ,

( )

2
0, 1 , ,

( )

, , .
( ) ( )

u m w u
a r a a

K m u m u

v m w v
a a r a

K m v m v

m w m w u v
a a a c

m u m v m u m v

 

 

   

 
         

 
         

     
   

(17) 

It may be noted that (U, V, W) are small perturbations of (u, v, w) about the equilibrium point *( , , )u v w  . In 

this case I look for eigen functions of the form   

0

exp( ),
n

n
n

n

a

b t ikx

c






 
   
 
 

  

and thus solution of system (16) of the form  
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0

exp( ),
n

n
n

n

aU

V b t ikx

W c






  
      

      


          

(18)   

where and k are the frequency and wave number respectively. The characteristic equation of the linearized 

system is given by 

3 2
1 2 3 0,        

          

(19) 

where 

 
        

 

2
1 1 2 3

4 2
2 1 2 1 3 2 3 11 2 3 22 1 3 33 1 2

2
3

( ) ,

( ) ,

,

Tr M k d d d

R M k d d d d d d k a d d a d d a d d

P k







    

         


          

(20) 

with 

 2 6 4 2
0 1 2

0 1 2 3

1 11 2 3 22 1 3 33 1 2

2 1 22 33 23 32 2 11 33 13 31 3 11 22

( ),

where

,

,

( ) ( ) ,

P k b k b k b k Det M

b d d d

b a d d a d d a d d

b d a a a a d a a a a d a a

   


  
               

(21) 

and 

11 13

22 23 11 22 33

31 32 33

11 22 33 13 31 22 33 23 32

11 22 33 23 32 22 13 31

0

0 , ( ) ,

( ) ( ) ,

( ) ( ) .

a a

M a a Tr M a a a

a a a

R M a a a a a a a a a

Det M a a a a a a a a

 
     
 
 
    
  

          

(22) 

From Eqs. (19)-(22) and using the Routh-Hurwitz criteria, the following theorem follows immediately. 

Theorem 3. (i)  The positive equilibrium * * *
5 ( , , )E u v w  is locally asymptotically stable in the    

       presence of diffusion if and only if 
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1

3

1 2 3

0, (23)

0, (24)

0. (25)



  



   

(ii) If the inequalities in Eq. (11) are satisfied, then the positive equilibrium * * *
5 ( , , )E u v w  is 

locally asymptotically stable in the presence as well as absence of diffusion. 

(iii) Suppose that any one or all of the inequalities in Eqs. (23)-(25) are not satisfied, then (22)-(24) 

can be made positive by increasing 1 2,d d  and 3d to a sufficiently large value, and hence 
* * *

5 ( , , )E u v w  can be made locally asymptotically stable. 

The Turing instability occurs if at least one of the roots of Eq. (19) has a positive real part or in other words, 

Re ( ) 0   for some 0k  . Irrespective of the sign of 1  and 2 the equation has a positive root if 3 0  . 

Therefore, diffusion driven instability occurs when 2
3 ( ) 0P k   . Hence the condition for diffusive 

instability is given by 

 2 6 4 2
0 1 2 ( ) 0.P k b k b k b k Det M    

          

(26) 

P is a cubic polynomial in 2k . The critical values of 
2( )P k occurs at 2 2

crk k , where 

2
1 1 0 22

0

3
.

3cr

b b b b
k

b

 
           

(27) 

For positive value of critical points 2 2
crk k  we require 

2
1 0 2 1 23 0 and 0 or 0.b b b b b                           

(28) 

Now, I consider the model system (2)-(4) for two dimensional cases. In order to study the stability behavior of 

this complete system, I define a positive function 2 ( )V t  given by 

2 1( ) ( ( ), ( ), ( )) ,V t V u t v t w t dA


   

where 1( )V t  is defined in Eq. (14). Differentiating 2 ( )V t  along the solution of model system (2), we get 

2 1 1 1
1 2

dV V u V v V w
dA I I

dt u t v t w t

                  ,         

where 
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2 2 21 1 1 1
1 2 1 2 3, .

dV V V V
I dA I d u d v d w dA

dt u v w 

                

Using the zero-flux boundary condition (4), we obtain the following: 

(i) 1 1 10, 0, 0,
V V V

u v w

  
  

  
 on  , 

(ii) 
2 2 2 2 2 2

1 1 1 1 1 1
2 2 2

0, 0, 0, 0.
V V V V V V

u v w u v u w v w

     
     

        
 

Using the similar analysis [21], we have  

222
21 1

2

222
21 1

2

222
21 1

2

0,

0,

0.

V V u u
u dA

u u x y

V V v v
v dA

v v x y

V V w w
w dA

w w x y

 

 

 

                    
                    
                    

 

 

 

 

This shows that 2 0I  . 

Since 2
1 2

dV
I I

dt
  and 2 0I  , hence 2 0

dV

dt
  if 1 0I  . If 1 0I   then 1 0

dV

dt
 . 

If 1 / 0dV dt   i.e. if 1 0I  , then the positive equilibrium point  * * *
5 ( , , )E u v w of the model system (5) 

is unstable. However, by increasing ( 1, 2, 3)id i   to a sufficiently large values, 2 /dV dt  can be made 

negative definite even if 1 0I  . Thus I can state the following theorem. 

Theorem 4.  

(i) If the positive equilibrium * * *
5 ( , , )E u v w of model (5) is globally asymptotically stable, then the 

corresponding uniform steady state of model (2) remains globally asymptotically stable. 

(ii) If the positive equilibrium * * *
5 ( , , )E u v w  of model (5) is unstable, then corresponding uniform 

steady state of model (2)-(4) can be made stable by increasing the diffusion coefficients 

appropriately. 

 

5 Numerical Simulations 

In this section, I perform numerical simulations to understand the dynamics of the model system (2) for one 

and two dimensional cases. For this purpose I have plotted the time series, spatiotemporal pattern for one 

dimensional case and snapshots for two dimensional cases. To investigate the spatiotemporal dynamics of the 

model system (2), I have used semi implicit (in time) finite difference method. The step lengths of ∆x and ∆t 

are chosen sufficiently small. The finite difference method gives rise to a sparse, banded linear system of 

algebraic equations. The resulting linear system is solved by using the GMRES algorithm for the two-

dimensional case (Garvie, 2007). The temporal dynamics is studied by observing the effect of time on space 
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versus density plot of prey and predator populations.  

 

Table 1 The set of fixed parameter values for the model system (2) taken from Roy et al. (2006). 

Parameter name Definition Value Unit 

 ଵݎ

 ଶݎ

 ଵܭ

 ଶܭ

 ଵߙ

 ଶߙ

݉ଵ 

݉ଶ 

 ଵߚ

 ଶߚ

ܿ 

Intrinsic growth rate of NTP 

Intrinsic growth rate of TPP 

Carrying capacity of NTP 

Carrying capacity of  TPP 

NTP consumption rate 

TPP consumption rate 

Half saturation constant for NTP 

Half saturation constant for TPP 

Maximum NTP conversion rate 

Maximum rate of toxin inhibition 

Zooplankton mortality rate 

0.4632 

0.4425 

305 

200 

0.6625 

0.435 

45 

30 

0.516 

0.198 

0.109 

݀ିଵ 

݀ିଵ 

݉݃ܿ/݉ଷ 

݉݃ܿ/݉ଷ 

݀ିଵ 

݀ିଵ 

݉݃ܿ/݉ଷ 

݉݃ܿ/݉ଷ 

݀ିଵ 

݀ିଵ 

݀ିଵ 

 

 

Time t and length [0, ]x L is measured in days [d] and meters [m] respectively. The diffusion 

coefficients 1 2,d d
 
and 3d

 
are measured in [m2d-1]. For the parameter values:  

1 2 1 2 1

2 1 2 1 2

0.4632, 0.4425, 305, 200, 0.6625,

0.435, 45, 30, 0.516, 0.198, 0.109,

r r K K

m m c


  
    
     

          

(29) 

 

I have obtained * * *( , , ) (25.2811, 18.9343, 45.0654)u v w  . With the above set of parameter values 

(29) and 1 2 30.01, 0.5,d d d    I have obtained the critical values 2
crk  are           

( 5.0823, 19.5017 ) and corresponding 2( )crP k are (0.02381, -0.05114) (Fig. 1). The graph of 2( )P k  vs.
2k  has been plotted for different values of 3d  in Fig. 1. The value of 2k for which 2

3 ( ) 0P k  
 

the 

model system (2) is unstable and the region under the curve for which 
2( ) 0P k   is known as Turing 

instability region.   
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Fig. 1 The graph of the function 
2( )P k  vs 

2k  for the parameter set (29) with 1 2 0.01d d   and

3 0.5, 0.6, 0.7.d 
 

 
 

To obtain the time series and non-trivial spatiotemporal pattern, we have chosen the same set of 

parameters as in (29) (one can take other set of parameters also) for the model system (2) and I have perturbed 

the homogenous initial distribution about the equilibrium point. I consider the following initial condition. 

* *0 0
1 1

* 0
1

2 ( ) 2 ( )
( , 0) sin , ( , 0) sin ,

0.2 0.2

2 ( )
( , 0) sin ,

0.2

x x x x
u x u v x v

x x
w x w

  



          
   

    
 

           

(30) 

where 4 * * *
1 05 10 , 0.1, ( , , ) (25.2811, 18.9343, 45.0654)x u v w     . 

To obtain the snapshots of the model system (2) first I have perturbed the homogenous initial distribution 

about the equilibrium point (Fig. 5) and then I have taken random perturbation about 

0 0 0( , , ) (0.4, 0.2, 0.4)u v w   (Fig. 6 and 7). With the above initial condition (30), time series of the model 

system (2) shows limit cycle behavior (Fig. 2) for different values of time 300, 500, 700t  .  
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Fig. 2 Time series of the model system (2) for the fixed set of parameter set (29) and 1 2 30.01, 0.1d d d  
 
with 

300, 500, 700t  . 

 

In Fig. 3 and 4, I have studied the spatiotemporal dynamics of the model system (2). From Fig. 3 I 

observed that NTP and TPP show oscillatory behavior in time t (first and second column) and zooplankton 

shows oscillatory behavior in time and space both (third column). Similarly, from Fig. 4 I observed that the 

system shows oscillatory behavior and oscillation increases with time 100, 200, 300t  .  
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Fig. 3 Spatiotemporal pattern of NTP [first column figure], TPP [second column figure] and Zooplankton [third column figure] of 

the model System (2) for 200t  with 1 2 0.01d d 
 
and 3 2, 10, 20d  . 

 

 

 

 

 
Fig. 4 Spatiotemporal pattern of NTP [first column figure], TPP [second column figure] and Zooplankton [third column figure] of 

the model System (1) for 1 2 30.01, 10d d d    with 100, 200, 300t  . 
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To understand the patchy distribution and species persistence I have taken the same parameters value (29) 

and I have perturbed the homogenous initial distribution about the equilibrium point. I consider the following 

initial condition: 

* 0 0
1 1

* 0 0
1 1

* 0 0
1 1

2 ( ) 2 ( )
( , 0) sin sin ,

0.2 0.2

2 ( ) 2 ( )
( , 0) sin sin ,

0.2 0.2

2 ( ) 2 ( )
( , 0) sin sin ,

0.2 0.2

x x y y
u x u

x x y y
v x v

x x y y
w x w

  

  

  

         
   

         
   

         
   

           

(31) 

where 4 * * *
1 05 10 , 0.1, ( , , ) (25.2811, 18.9343, 45.0654)x u v w     . 

For the parameters set (29) and initial condition (31) I have not observed any patchy distribution in NTP, 

TPP and zooplankton dynamics (Fig. 5). Then I have taken the random perturbation about initial point

0 0 0( , , ) (0.4, 0.2, 0.4)u v w  . In Fig. 6, I have plotted the snapshots for fixed value of t =200 with 

increasing value of 3 0.05, 1, 2d 
 

to observe the patchy spatial distribution of NTP, TPP and zooplankton 

population. Finally, I observed the time evolution of patchy spatial spread of model system (2) for t =200, 500 

and 700 (Fig.7). 

 

 

 

Fig. 5 Snapshots NTP [first column figure], TPP [second column figure] and Zooplankton [third column figure] of the model 

System (2) for 200t   with 1 2 0.01d d  and 3 1d  . 

 

 

 

90



Computational Ecology and Software, 2020, 10(2): 74-93 

 IAEES                                                                                     www.iaees.org

 

 

Fig. 6 Snapshots NTP [first column figure], TPP [second column figure] and Zooplankton [third column figure] of the model 

System (2) for 200t   with 1 2 0.01d d  and 3 0.05, 1, 2d  . 

 

 

 

Fig. 7 Snapshots NTP [first column figure], TPP [second column figure] and Zooplankton [third column figure] of the model 

system (2) with 1 2 30.01, 1d d d  
 
for 200, 500, 700t  . 

 

 

6 Discussions and Conclusions  

In this paper, I have considered a real situation of marine environment with three interacting aquatic species 

NTP-TPP-zooplankton and investigated their dynamical behavior. A detail study of stability analysis for the 

model system (2) has been carried out to understand the behavior of the system in presence as well as in the 
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absence of diffusion. For a particular set of parameter values (29) I have plotted the region of Turing instability 

(Fig. 1). The toxin production by phytoplankton has a great interest both for intrinsic scientific merit and also 

because of its possible direct effect on fisheries. The TPP blooms in freshwater has severe impact on marine 

system such as degradation of water quality, habitat alteration and oxygen deficiency in the bottom water. Our 

goal to control TPP blooms to improve marine ecosystem. For this purpose, I have plotted the time series, 

spatiotemporal patterns and snap shots of the model system (2) and I observed the following: 

(i) For increasing value of time 200, 500 and 700,t  the system represent the limit cycle behavior 

(Fig. 2). 

(ii) For increasing value of random movement of zooplankton, the spatiotemporal pattern of the model (2) 

shows oscillatory behavior in time and stationary in space for 3 2, 10d   and for 3 20d  system 

shows oscillatory behavior in both time and space (Fig. 3). 

(iii)  For increasing value of random movement of zooplankton, the patchy spatial distribution of NTP, 

TPP and zooplankton evolved (Fig. 6). 

(iv) For increasing value of time 200, 500 and 700,t  patchy spatial distribution of NTP, TPP and 

zooplankton evolved (Fig. 7). 

In this work, I demonstrate the non-Turing patch spread of TPP, NTP and zooplankton dynamics for two 

dimensional cases. To determine patchy spread and species persistence I have taken the same parameter values 

and initial condition as random perturbation about equilibrium point. With the help of time series, 

spatiotemporal pattern and snap shot I observed that the TPP blooms under control for a particular set of 

parameter value. Finally, the overall result may be useful for sustainability and maintenance of biodiversity of 

aquatic systems.   
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