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Abstract 

In this paper we consider a system of second order rational difference equations. We mainly discuss the 

boundedness and persistence, existence of fixed point, and uniqueness of positive fixed point, local and global 

behavior of positive fixed point and rate of convergence of every positive solution of the system under 

discussion. It will be shown that the system under discussion exhibits some special dynamics such as same 

mathematical condition for existence of fixed point and its global stability. Finally, some numerical examples 

are provided for verification of theoretical results. 

 

Keywords system of rational difference equations of order two; boundedness and persistence; existence of 

fixed point; linearized stability; global stability analysis; rate of convergence. 

 

 

 

 

 

 

 

 

1 Introduction 

Discrete dynamical system has a great worth in the field of applied mathematics. Each dynamical system 

௡ାଵݔ ൌ ݂ሺݔ௡, ,௡ିଵ,൉൉൉ݔ  ௡ି௞ሻ is equivalent to a difference equation and conversly. It is fairly gratifying andݔ

challenging to explore the dynamical proerties of nonlinear difference equations, more generally when we are 

dealing with difference equations of the rational types (Khan et al., 2014ሻ. Recently, many researchers have 

explored the dynamics of the constant solutions of nonlinear difference equations. In engineering, difference 

equations arise in switch engineering, ordinal signal processing and electrical systems. Periodic solutions of 

difference equations have been examined  by many scholars, and many techniques have been introduced and 

applied for the existence and qualitative analysis of the constant solution (Liu, 2010; Din, 2013; Khan et al., 

2019ሻ. There has remained an unlimited interest in the learning of the global behavioral analysis of difference 

equations and the boundedness and the periodic behavior of nonlinear difference equations (Din and Khan, 

2014ሻ. Generally, linear difference equations are easy to solve. But here the main topic of attention is the 
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solution of nonlinear difference equations. Hence we considered a non linear system of rational difference 

equations and explore its qualitative properties (Din and Khan, 2014ሻ. In nonlinear analysis we came across 

many types of recognized population models and many other well known forms of difference equations. Some 

well-known discrete systems are discrete-time population models, discrete-time chemical models, rational 

difference equations and exponential difference equations (Ahmed, 1993; Liu, 2010; Din, 2013; Din and 

Donchev, 2013; Din and Elsayed, 2014). 

Aloqeili (2006) explored the stability and the semi-cycle nature of the solution of the following difference 

equation of rational form: 

௡ାଵݔ ൌ
௫೙షభ

௔ି௫೙షభ௫೙
, 

where ݊ ൌ ܽ In addition .ڮ,0,1,2 ൐ 0. 

Cinar (2004) provided the positive solution of the discrete-time mathematical equation:  

௡ାଵݔ ൌ
௡ିଵݔ

1 ൅ ௡ݔ௡ିଵݔ
. 

Papaschinopoulos and Schinas (2012) studied the system of two nonlinear difference equations which is 

given as follows:  

௡ାଵݔ ൌ ܣ ൅
௡ݕ
௡ି௣ݔ

,

௡ାଵݕ ൌ ܣ ൅
௡ݔ
௡ି௤ݕ

.
 

where ݊ ൌ  .are positive real numbers ݍ ,݌ and ,.ڮ,0,1,2

Gibbons et al. (2000) investigated the qualitative behavior of the following second-order rational 

difference equation: 

௡ାଵݔ ൌ
ߙ ൅ ௡ିଵݔߚ
ߛ ൅ ௡ݔ

. 

    Papaschinopoulos et al. (2012) examined the asymptotic nature of the positive solutions of the following  

three systems of difference equations of exponential kind: 

௡ାଵݔ ൌ
ߙ ൅ ௬೙ି݁ߚ

ߛ ൅ ௡ିଵݕ
, ௡ାଵݕ ൌ

ߜ ൅ ௫೙ି݁ߝ

ߞ ൅ ௡ିଵݔ
, 

௡ାଵݔ  ൌ
ߙ ൅ ௬೙ି݁ߚ

ߛ ൅ ௡ିଵݔ
, ௡ାଵݕ ൌ

ߜ ൅ ௫೙ି݁ߝ

ߞ ൅ ௡ିଵݕ
,  

  

  
                

௡ାଵݔ ൌ
ߙ ൅ ௫೙ି݁ߚ

ߛ ൅ ௡ିଵݕ
, ௡ାଵݕ ൌ

ߜ ൅ ௬೙ି݁ߝ

ߞ ൅ ௡ିଵݔ
.
 

Din et al. (2014) studied the global dynamics of the second order competitive system of difference 
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equations of rational type: 

௡ାଵݔ ൌ
ఈభାఉభ௫೙షభ
௔భା௕భ௬೙

,

௡ାଵݕ ൌ
ఈమାఉమ௬೙షభ
௔మା௕మ௫೙

,
                                                           (1) 

where ߙ௜, ,௜ߚ ܽ௜, ܾ௜ for ݅ א ሼ1,2ሽ are positive parameters and conditions at initial points ݔ଴, ,ଵିݔ ,଴ݕ  ଵିݕ

are positive and real.  

For applications and elementary analysis of rational difference equations, we can see Kulenovic and 

Ladas (2002), Grove and Ladas (2004), and Sedaghat (2003). Some applications of difference equations in 

mathematical ecology can be seen also in past studies (Ahmed, 1993; Liu, 2010; Din, 2013; Din and Donchev, 

2013; Din and Elsayed, 2014; Din et al., 2019). 

Motivated by the study of Din et al. (2014), we have considered the following form of system (1) for 

further analysis of second order system of rational difference equations: 

௡ାଵݔ ൌ ݂ሺݕ௡, ௡ିଵሻݕ ൌ
ఈభାఉభ௬೙ షభ
௔భା௕భ௬೙

,

௡ାଵݕ ൌ ݃ሺݔ௡, ௡ିଵሻݔ ൌ
ఈమାఉమ௫೙షభ
௔మା௕మ௫೙

                                              (2) 

where f, g are continuous functions and the initial conditions ݔ௜, ݕ௜ for ݅ א ሼെ1,0ሽ are positive and real. The 

next part of manuscript is related to the qualitative analysis of system (2). 

 

2 Persistence and Boundedness 

Theorem 2.1 Assuming that βଵ ൏ aଵ and βଶ ൏ aଶ  then every  positive solution ሺx୬, y୬ሻ of the system (2) 

is bounded. Furthermore, it persists.  

Proof . Let us consider a positive solution ሺݔ௡,  ௡ሻ of the the system (2). Then, we haveݕ

 

௡ାଵݔ ൑ ଵܣ ൅  ௡ିଵ                                                        (3)ݕଵܤ

௡ାଵݕ ൑ ଶܣ ൅  ௡ିଵ                                                        (4)ݔଶܤ

݊ ൌ 0,1,2,3, . . . . . . .. 

where, ܣ௜ and ܤ௜ are constant values with ܣ௜=
ఈ೔
௔೔

 and ܤ௜=
ఉ೔
௕೔

 for ݅ א 1,2. 

Next we consider the following system of linear difference equations:  

ܵ௡ାଵ ൌ ଵܣ ൅ ,ଵܵ௡ିଵܤ
௡ܶାଵ ൌ ଶܣ ൅ ଶܤ ௡ܶିଵ
݊ ൌ 0,1,2, . . .

                                                        (5) 

Then, by some critical computation one can get the following form of solutions of mathematical system (5): 

ܵ௡ ൌ
஺భ

ଵି஻భ
൅ ଵܤଵݎ

೙
మ ൅ ,ଵሻ௡ܤଶሺെඥݎ

௡ܶ ൌ
஺మ

ଵି஻మ
൅ ଶܤଷݎ

೙
మ ൅ .ଶሻ௡ܤସሺെඥݎ

݊ ൌ 1,2, . .

                                               (6) 
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where ݎଵ,ݎଶ, ݎଷ ܽ݊݀ ݎସ are constant and depends on initial values ௜ܵ and  ௜ܶ for ݅ א ሼെ1,0}. Assume that 

ଵߚ ൏ ܽଵ  and ߚଶ ൏ ܽଶ . Then, both sequences {ܵ௡ሽ  and ሼ ௡ܶሽ  of solutions of system (6) are bounded. 

Aditionally, we assume that ܵିଵ=ିݔଵ, ܵ଴=ݔ଴, and ܶି ଵ=ିݕଵ, ଴ܶ=ݕ଴  then eventually we have 

௡ݔ ൑
ఈభ

௔భିఉభ
ൌ Rଵ,

௡ݕ ൑
ఈమ

௔మିఉమ
ൌ ܴଶ.

݊ ൌ 0,1,2, . .

                                                            (7) 

Moreover, from system (2) and (7) one can see that  

௡ାଵݔ ൒
ఈభ

௔భା௕భ௬೙
ൌ

ఈభሺఈమିఉమሻ

௔భሺఈమିఉమሻା௕భఈమ
ൌ ଵܸ,   

௡ାଵݕ ൒
ఈమ

௔మା௕మ௫೙
ൌ

ఈమሺఈభିఉభሻ

௔మሺఈభିఉభሻା௕మఈభ
ൌ ଶܸ.

                                                                                                (8) 

Clearly, by joining system (7) and (8) by mathematical inequalities one can get the following true 

mathematical condition: 

ଵܸ ൑ ௡ݔ ൑ ܴଵ,
ଶܸ ൑ ௡ݕ ൑ ܴଶ.
݊ ൌ 1,2.3, . . . .

                                                               (9) 

Hence, the required goal is acchieved .  

Lemma 2.1 Let  ሼሺx୬, y୬ሻሽ be a positive solution of  (2) .Then, ሾVଵ, Rଵሿ ൈ ሾVଶ, Rଶሿ be an invariant set 

concerning to the mathematical system (2). 

Proof. The proof of this theorem is exactly followed by the method of mathematical induction.  

Next we discuss the stability analysis of mathematical system (2). 

 

3 Stability Analysis 

The following theorem gives us the necessary and sufficient conditions for existence of the unique positive 

fixed point of system (2). 

Theorem 3.1 Assme that 

஑భ
ୟభ
൏

ஒభ
ୠభ
,
஑మ
ୟమ
൐

ஒమ
ୠమ

 or 
஑భ
ୟభ
൐

ஒభ
ୠభ
,
஑మ
ୟమ
൏

ஒమ
ୠమ

                                           (10) 

Then there exist the unique positive fixed point (x, yሻ of mathematical system (2). Additionally, each solution 
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ሺx୬, y୬ሻ of system (2) converges to (x, yሻas asymptotically. 

Proof . Consider the following system  

መ݂ሺݑ, ሻݒ ൌ
ఈభାఉభ௩

௔భା௕భ௨
,     

ො݃ሺݖ, ሻݓ ൌ
ఈమାఉమ௪

௔మା௕మ௭
,

                                                        (11) 

where ݖ, ݓ א ሾ ଵܸ, ܴଵሿ= ଵܷ  and ݑ, ݒ א ሾ ଶܸ, ܴଶሿ=ܷଶ . Moreover, it is clearly seen that መ݂ሺݑ, ሻݒ א ଵܷ,  and 

ො݃ሺݖ, ሻݓ א ܷଶ as መ݂:ܷଶ ൈ ܷଶ ՜ ଵܷ and ො݃:  ଵܷ ൈ ଵܷ ՜ ܷଶ. 

Assume that ሺݔ௡, ௡ݔ ௡ሻ is positive solution of original system (2) then formerly we haveݕ א ଵܷ and ݕ௡ א ܷଶ. 

Now assume that ݉ଶ,݉ଵ, ݄ଶ, ݄ଵ are positive numbers satisfying (11) such that 

݉ଶ ൌ መ݂ሺ݉ଵ,݉ଵሻ ൌ
ఈభାఉభ௠భ

௔భା௕భ௠భ
,

݉ଵ ൌ መ݂ሺ݉ଶ,݉ଶሻ ൌ
ఈభାఉభ௠మ

௔భା௕భ௠మ

                                                (12) 

݄ଶ ൌ ො݃ሺ݄ଵ, ݄ଵሻ ൌ
ఈమାఉమ௛భ
௔మା௕మ௛భ

,

݄ଵ ൌ ො݃ሺ݄ଶ, ݄ଶሻ ൌ
ఈమାఉమ௛మ
௔మା௕మ௛మ

.
                                                  (13) 

Let 

ሻݔ෨ሺܨ  ൌ
ఈభାఉభ௙ณሺ௫ሻ

௔భା௕భ௙ณሺሺ௫ሻ
െ ݔ ൌ

ఉభ
௕భ
൅ ሺ

ఈభ௕భି௔భఉభ
௕భ

ሻሺ
ଵ

௔భା௕భ௙ሺ௫ሻ
ሻ െ  (14)                         ݔ

where  

ณ݂ ሺሺݔሻ ൌ
ఈమାఉమ௫

௔మା௕మ௫
ൌ

ఉమ
௕మ
൅ ቀ

ఈమ௕మି௔మఉమ
௕మ

ቁ ቀ
ଵ

௔మା௕మ௫
ቁ                                    (15) 

where  ܨ:෩ ଵܷ ՜ ଵܷ is into.  

Now one can see that:  

ሻݔ෠Ԣሺܨ ൌ െ ณ݂ Ԣሺݔሻ
ሺఈభ௕భି௔భఉభሻ

ሺ௔భା௕భ௙ሺ௫ሻሻమ
െ 1,                                              (16) 

where  

ณ݂ Ԣሺݔሻ ൌ െ
ሺఈమ௕మି௔మఉమሻ

ሺ௔మା௕మ௫ሻమ
.                                                       (17) 

By using equation (17) in (16) one can acquire 

ሻݔ෠Ԣሺܨ ൌ
ሺఈభ௕భି௔భఉభሻ

ሺ௔భା௕భ௙ሺ௫ҧሻሻమ
ൈ

ሺఈమ௕మି௔మఉమሻ

ሺ௔మା௕మ௫ҧሻమ
െ 1.                                          (18) 

Hence, under the condition defined in equation (11) one can have :  
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ሻݔ෠Ԣሺܨ ൏ 0                                                                                           

(19) 

(19) indicates that ܨ෠ሺݔሻ ൌ 0 takes exceptional unique positive solution in ଵܷ. Additionally, from equation 

(12) we realize that ݉ଶ and ݉ଵ are satisfying the equation ܨሺݔሻ ൌ 0 which demonstrate that ݉ଵ ൌ ݉ଶ. 

Therefore from equation (13) it is clear that ݄ଶ ൌ ݄ଵ. Moreover, by using a result from Din and Khan (2017) it 

follow that system of equation (2) has a unique positive equilibrium ሺݔ,  ሻ and every positive solution ofݕ

system equation (2) tends to the unique positive equilibrium ሺݔ, ሻ as n՜ݕ ∞. This completes the proof of the 

theorem.  

The very next theorem is related to the linearized stability of system (2) about ሺݔ,   .ሻݕ

Theorem 3.2 The one and only positive equilibrium point ሺx, yሻ of the mathematical system (2) is locally 

asymptotically stable if the following conditions are true: 

βଶ ൏ aଵ, βଵ ൏ aଶ, bଵ ൌ bଶ                                                       (20) 

Proof. Assume that ሺݔ,  ሻ is the one and only fixed point of  the system (2), then individual can see thatݕ

ݔ ൌ
ఈభାఉభ௬

௔భା௕భ௬
,

ݕ ൌ
ఈమାఉమ௫

௔మା௕మ௫

                                                                               

(21) 

Formally, by linearization of the system (2) about ሺݔ,   :ሻ and by using system  (21), we getݕ

௡ାଵݔ ൌ െ
௕భ௫

௔భା௕భ௬
௡ݕ ൅

ఉభ
௔భା௕భ௬

 ௡ିଵ,                                                (22)ݕ

௡ାଵݕ ൌ െ
௕మ௬

௔మା௕మ௫
௡ݔ ൅

ఉమ
௔మା௕మ௫

 ௡ିଵ,                                                (23)ݔ

Futrhermore, equations (22) and (23) are jointly equivalent to the following mathematical matrix form: 

ܺ௡ାଵ=ܺܣ௡. 

where 
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A=൮

0 ଵܦ 0 ଶܦ
ଷܦ 0 ସܦ 0
1
0

0
1

0
0

0
0

൲ , ܺ௡=. ቌ

௡ݔ
௡ݕ
௡ିଵݔ
௡ିଵݕ

ቍ 

ଵܦ ൌ െ
ܾଵݔ

ܽଵ ൅ ܾଵݕ
, ଶܦ ൌ

ଵߚ
ܽଵ ൅ ܾଵݕ

, ଷܦ ൌ െ
ܾଶݕ

ܽଶ ൅ ܾଶݔ
, ସܦ ൌ

ଶߚ
ܽଶ ൅ ܾଶݔ

. 

The characteristic equation of the matrix A can be described mathematically as 

ସߣ െ ሺܦଵܦଷሻߣଶ െ ሺܦଵܦସ െ ߣଷሻܦଶܦ െ ସܦଶܦ ൌ 0                                 (24) 

Furthermore, under condition (20) one has:  

|ଷܦଵܦ| ൅ |ସܦଵܦ| ൅ |ଷܦଶܦ| ൅ |ସܦଶܦ| ൌ ቀ
ି௕భ௫

௔భା௕భ௬
ቁ ൈ ቀ

ି௕మ௬

௔మା௕మ௫
ቁ ൅ ቀ

ି௕భ௫

௔భା௕భ௬
ቁ ൈ ቀ

ఉమ
௔మା௕మ௫

ቁ ൅ ቀ
ఉభ

௔భା௕భ௬
ቁ ൈ ቀ

ି௕మ௬

௔మା௕మ௫
ቁ ൅

ቀ
ఉభ

௔భା௕భ௬
ቁ ൈ ቀ

ఉమ
௔మା௕మ௫

ቁ ൌ
௕భ௕మ௫௬ା௕భఉమ௫ା௕మఉభ௬ାఉభఉమ

ሺ௔భା௕భ௬ሻሺ௔మା௕మ௫ሻ
൑

ሺఉమା௕మ௬ሻሺఉభା௕భ௫ሻ

ሺ௔భା௕భ௬ሻሺ௔మା௕మ௫ሻ
ൌ ቂ

ሺఉమା௕మ௬ሻ

ሺ௔భା௕భ௬ሻ
ቃ ൈ ቂ

ሺఉభା௕భ௫ሻ

ሺ௔మା௕మ௫ሻ
ቃ ൏ 1                      

(25) 

Therefore, the sufficient condition for linearized stability of system (2) is satisfied (Din and Khan, 2017) 

which finalizes the proof of theorem.  

 

4 Convergence Rate of Solution  

Let {ሺ࢔࢞,  :ሻሽ be any solution of system (2) and satisfying the following equations࢔࢟

lim
௡՜ஶ

௡ାଵݔ ൌ  ,ݔ

and  

lim
௡՜ஶ

௡ାଵݕ ൌ  .ݕ

where  ݔ א ଵܷ and ݕ א ܷଶ. To determine the error terms one has the following from system (2)  

௡ାଵݔ െ ݔ ൌ
ఈభାఉభ௬೙షభ
௔భା௕భ௬೙

െ ݔ   ൌ
ఉభሺ௬೙షభି௬ሻ

௔భା௕భ௬೙
െ

௕భ௫ሺ௬೙ି௬ሻ

௔భା௕భ௬೙
, 

௡ାଵݕ െ ݕ ൌ
ఈమାఉమ௫೙షభ
௔మା௕మ௫೙

െ ݕ ൌ
ఉమሺ௫೙షభି௫ሻ

௔మା௕మ௫೙
െ

௕మ௬ሺ௫೙ି௫ሻ

௔మା௕మ௫೙
. 

Let  ܧ௡ଵ=ݔ௡ െ ௡ݕ=௡ଶܧ  and ݔ െ   then one has  ݕ

௡ାଵܧ
ଵ ൌ ܽ௡ܧ௡ଶ ൅ ܾ௡ܧ௡ିଵ,

ଶ  

௡ାଵܧ
ଶ ൌ ܿ௡ܧ௡ଵ ൅ ݀௡ܧ௡ିଵ

ଵ . 

where  

ܾ௡ ൌ
ఉభ

௔భା௕భ௬೙
, ܽ௡ ൌ െ

௕భ௫೙
௔భା௕భ௬೙

, 
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 ܿ௡ ൌ െ
ܾଶݕ௡

ܽଶ ൅ ܾଶݔ௡
, ݀௡ ൌ

ଶߚ
ܽଶ ൅ ܾଶݔ௡

 

Moreover , 

lim
௡՜ஶ

ܽ௡ ൌ െ
ܾଵݔ

ܽଵ ൅ ܾଵݕത
ൌ     ,ଵܦ lim௡՜ஶ

ܾ௡ ൌ
ଵߚ

ܽଵ ൅ ܾଵݕത
ൌ  ,ଶܦ

lim
௡՜ஶ

ܿ௡ ൌ െ
ܾଶݕത

ܽଶ ൅ ܾଶݔҧ
ൌ ,ଷܦ lim

௡՜ஶ
݀௡ ൌ

ଶߚ
ܽଶ ൅ ܾଶݔҧ

ൌ  .ସܦ

Now, the limiting system of error terms can be described as follows: 

ۉ

ۈ
ۇ
݁௡ାଵ
ଵ

݁௡ାଵ
ଶ

݁௡ଵ

݁௡ଶ ی

ۋ
ۊ

=൮

0 ଵܦ 0 ଶܦ
ଷܦ 0 ସܦ 0
1
0

0
1

0
0

0
0

൲

ۉ

ۈ
ۇ
݁௡ଵ

݁௡ଶ

݁௡ିଵ
ଵ

݁௡ିଵ
ଶ

ی

ۋ
ۊ

. 

which is similar to linearized system of (2) about one and only fixed point ሺݔ,  ሻ. Finally, we get theݕ

following result by using a Proposition from Pituk (2002ሻ.   

Theorem 4.1 (Pituk, 2002 ሻ Assume that ሺx୬, y୬ሻ be any solution of system (2) such that lim୬՜ஶx୬ାଵ=x  

and  lim୬՜ஶy୬ାଵ=y,  where x א Uଵ and  y א Uଶ. Then, the error vector E୬=

ۉ

ۈ
ۇ
E୬ଵ

E୬ଶ

E୬ିଵ
ଵ

E୬ିଵ
ଶ

ی

ۋ
ۊ
 of each solution of 

(2) satisfies both of the following asymptotic relations: 

Lim
୬՜ஶ

ሺ||E୬||ሻ
భ
౤ ൌ |λଵ,ଶ,ଷ,ସFJሺx, yሻ|, lim୬՜ஶ

ห|E౤శభ|ห

ห|E౤|ห
ൌ |λଵ,ଶ,ଷ,ସFJሺx, yሻ|,                      (26)        

where λଵ,ଶ,ଷ,ସFJሺx, yሻ are the characteristic values of Jacobian matrix FJሺx, yሻ of system (2) about one and 

only fixed point  ሺx, yሻ. 

 

5 Numerical Simulation and Discussion 

Example 5.1 Let αଵ ൌ 1.8, βଵ ൌ 1.5, aଵ ൌ 0.06, bଵ ൌ 0.002, αଶ ൌ 1.1, βଶ ൌ 0.01, aଶ ൌ 0.22, bଶ ൌ

0.003. Then,  the system (2) has the following mathematical form : 

௡ାଵݔ ൌ
ଵ.଼ାଵ.ହ௬೙షభ
଴.଴଺ା଴.଴଴ଶ௬೙

,

௡ାଵݕ ൌ
ଵ.ଵା଴.଴ଵ௫೙షభ
଴.ଶଶା଴.଴଴ଷ௫೙

.
                                                        (27) 

where the initial conditions are ݔ଴ ൌ 114.4, ଵିݔ ൌ 114.3, ଵିݕ ൌ 3.94, ଴ݕ ൌ 3.95. By using these values in 
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system (2) we get the following unique positive fixed point ሺݔҧ, തሻݕ ൌ ሺ114.4,3.98ሻ for the system (2). 

Moreover, Fig. 1 and Fig. 2 respectively represent the plots of ݔ௡ and ݕ௡. Additionally, attracting  nature of 

the system (2) can be seen from Fig. 3. 

 

 

Fig. 1 Plot of ݔ௡ for system (2). 

 

 

 

Fig. 2 Plot of ݕ௡ for system (2). 
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Fig. 3 An attractor for system (2). 

 

Example 5.2 Let αଵ ൌ 3.91, βଵ ൌ 2.6, aଵ ൌ 1.3, bଵ ൌ 1.29, αଶ ൌ 0.81, βଶ ൌ 2.1, aଶ ൌ 2.7, bଶ ൌ 3.7 . 

Then, the system (2) has the following mathematical form: 

௡ାଵݔ ൌ
ଷ.ଽଵାଶ.଺௬೙షభ
ଵ.ଷାଵ.ଶଽ௬೙

,

௡ାଵݕ ൌ
଴.଼ଵାଶ.ଵ௫೙షభ
ଶ.଻ାଷ.଻௫೙

,
                                                          (28) 

where, the initial conditions are ݔ଴ ൌ 2.669, ଵିݔ ൌ 2.668, ଵିݕ ൌ 0.5101, ଴ݕ ൌ 0.5102. By using these 

values in system (2) we get the following unique positive fixed point ሺݔҧ, തሻݕ ൌ ሺ2.668,0.5101ሻ for the system 

(2). Moreover, Fig. 4 and Fig. 5 respectively represent the plots of ݔ௡ and ݕ௡. Additionally, attracting  

nature of the system (2) can be seen from Fig. 6. 
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Fig. 4 Plot of ݔ௡ for system (2). 

 

 

 

Fig. 5 Plot of ݔ௡ for system (2). 
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Fig. 6 An attractor for system (2). 

 

Example 5.3 Let  αଵ ൌ 0.5, βଵ ൌ 12, aଵ ൌ 13, bଵ ൌ 0.2, αଶ ൌ 0.1, βଶ ൌ 17, aଶ ൌ 17.5, bଶ ൌ 0.3. Then, 

the system (2)  has the following mathematical form: 

௡ାଵݔ ൌ
଴.ହାଵଶ௫೙షభ
ଵଷା଴.ଶ௬೙

,

௡ାଵݕ ൌ
଴.ଵାଵ଻௬೙షభ
ଵ଻.ହା଴.ଷ௫೙

,
                                                  (29) 

where, the initial conditions are ݔ଴ ൌ 0.46, ଵିݔ ൌ 0.5, ଵିݕ ൌ 0.11, ଴ݕ ൌ 0.14. By using these values in 

system (2) we get the following unique positive fixed point ሺݔҧ, തሻݕ ൌ ሺ0.484974,0.154921ሻ for the system 

(2). Moreover, Fig. 7 and Fig. 8 respectively represent the plots of ݔ௡ and  ݕ௡ . Additionally, attracting  

nature of the system (2) can be seen from Fig. 9. 

 

Fig. 7 Plot of ݔ௡ for system (2). 
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Fig. 8 Plot of ݕ௡ for system (2). 

 

 

 

 

Fig. 9 An attractor for system (2). 

 

 

6 Conclusion 

In literature, many articles are related to qualitative study of competitive system of second order rational 

difference equations (Garic et al., 2009). It is very interesting to study the problems related to the dynamical 

study of competitive systems in higher dimension. This article is related to qualitative study of system of 

second-order rational difference equations. We have investigated the boundedness and persistence of every 
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positive solution of system (2). Under certain parametric conditions the existence of one and only positive 

fixed point is proved. Moreover, we have shown that unique positive equilibrium point of system (2) is locally 

as well as globally asymptotically stable. Furthermore, we have explored the rate at which each solution of (2) 

convergence to the unique positive fixed point of (2). Finally, some numerical examples are provided to 

support our theoretical discussion. 
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