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Abstract 

A discrete dynamic model for human epidemics was developed in present study. The model included major 

parameters as transmission strength and its dynamic changes, mean incubation period, hospitalization time (i.e., 

the time from illness to hospitalization), non-hospitalization (i.e., outside hospitals) daily mortality, 

non-hospitalization daily recovery rate, and hospitalization proportion (proportion of cases for hospitalization), 

etc. Sensitivity analysis of the model indicated the total cumulative cases significantly increased with the 

increase of initial transmission strength and hospitalization time. The total cumulative cases significantly 

decreased with the increase of transmission strength’s dynamic decline and hospitalization proportion, and 

decreased with the increase of non-hospitalization daily mortality and non-hospitalization daily recovery rate. 

The total cumulative cases significantly increased with the decrease of mean incubation period. Sensitivity 

analysis demonstrated that dynamic change of transmission strength is one of the most important and 

controllable factors. In addition, reducing the delay for hospitalization (i.e., hospitalization time) is much 

effective in weakening disease epidemic. Enhancing immunity to recover from the disease is of importance for 

increasing non-hospitalization recovery rate.  

 

Keywords discrete dynamic model; difference and differential equations; human epidemics; hospitalization 

time; hospitalization proportion; incubation period; transmission strength; COVID-19. 

 

 

 

 

 

 

 

 

1 Introduction 

So far a lot of dynamic models have been developed and used in the mechanic analysis and prediction of 

animal epidemics. Among them the differential equations based models are the mainstream methods, including 

SIR model (Kermack and McKendrick, 1927), Anderson-May model (Anderson and May, 1981), the models 

Computational Ecology and Software 
ISSN 2220721X   
URL: http://www.iaees.org/publications/journals/ces/onlineversion.asp 
RSS: http://www.iaees.org/publications/journals/ces/rss.xml 
Email: ces@iaees.org 
EditorinChief: WenJun Zhang 
Publisher: International Academy of Ecology and Environmental Sciences 



Computational Ecology and Software, 2020, 10(3): 94-104 

 IAEES                                                                                      www.iaees.org  

of Zhang et al. (1997, 2011), etc. Zhang et al. (1997) model was a group of differential-integral equations 

mainly treating susceptible and infected insect populations. The improved model (Zhang et al., 2011; Zhang, 

2016, 2018) was composed of nearly twenty differential equations supplemented by other equations. In these 

models, both susceptible and infected populations were treated as population density, and susceptible 

population interacts with infected population mainly through feeding on virus on the leaves spread by insects 

that died from virus infection. Serving as both explanatory and simulation models, they have demonstrated the 

better performance. Both SIR model (Kermack and McKendrick, 1927) and Anderson-May model (Anderson 

and May, 1981) include differential equations (correspondingly, difference equations) for susceptible (s) and 

infected (i) populations rather than population density, and the two populations interact with each other 

through the interaction term, ps(t)i(t) (Fuxa and Tanada, 1987). Nevertheless, numerous simulation results 

showed that both of their models are extremely sensitive to some of the key parameters and initial population 

sizes, especially the infection coefficient, p. Given true parameters and initial conditions, it was so difficult to 

synchronously obtain realistic results for population size and key time points (such as the peak time) although 

both of them are better explanatory models for the epidemic dynamics. Furthermore, many important 

parameters such as incubation period, hospitalization terms, etc., were not included in such explanatory models 

and most of the other models (Chen et al., 2020a). For these reasons, in present study we developed a 

generalized discrete dynamic model for human epidemics, and sensitivity analysis and scenario predictions 

were made, aiming to provide a generalized simulation tool for future uses (Zhang et al., 2020). 

  

2 Methods 

2.1 Model 

Suppose the susceptible population is infinite in terms of the infected population, i.e, the size of susceptible 

population is approximately an infinite value. The susceptible population can thus be ignored. In addition, the 

hospital acts as a “black hole”. The hospital accommodates infected cases, and the later recovered from 

medical treatment and are released to the susceptible population, or die. According to general rules and human 

actions for disease epidemic, the generalized discrete dynamic model (delay difference equation) for human 

epidemics is developed as the following 

 

          i(t) = i(t-t) + i(t-t) - p(t-t) i(t-t) t - a(t-t) i(t-t) t - h(t-t)  

          i(t-t) = r(t-t-c) i(t-t-c) t 

          h(t-t) = b(t-t) i(t-t-d)  

          s(t) = s(t-t) + i(t) 

                                                       (1) 

 

where   

i(t): non-hospitalization cases (i.e., the existing cases outside hospitals) at time t 

t: time step 

i(t): non-hospitalization new cases (i.e., the newly occurred cases outside hospitals) at time t 

h(t): hospitalization cases (i.e., the cases for hospitalization) at time t 

s(t): cumulative cases at time t 

r(t): new infection cases infected by a non-hospitalization case at time t in t (i.e., transmission strength) 

a(t): non-hospitalization disease mortality at time t in t (0a(t)1) 

b(t): proportion of non-hospitalization cases for hospitalization at time t (0b(t)1) (i.e., hospitalization 

proportion) 
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p(t): non-hospitalization recovery rate at time t in t (0p(t)1) 

c: mean incubation period 

d: mean time from illness to hospitalization (i.e., hospitalization time) 

 

   Equation (1) can be represented by a delay differential equation and an integral  

 

          di(t) / dt = r(t-c) i(t-c) - (p(t) + a(t)) i(t) - b(t) r(t-d-c) i(t-d-c)              

          s(t) =  r(t) i(t) dt 

(2) 

           

   Without losing generality, let t=1 (e.g., one day), we have the following dynamic model corresponding to 

equation (1) 

 

          i(t) = i(t-1) + i(t-1) - p(t-1) i(t-1) - a(t-1) i(t-1) - h(t-1)  

          i(t-1) = r(t-1-c) i(t-1-c) 

          h(t-1) = b(t-1) i(t-1-d)  

          s(t) = s(t-1) + i(t) 

                                                         (3) 

 

The parametrical functions r(t), p(t), a(t), and b(t) are partially controllable functions. In addition, the 

parameter, d, is a controllable parameter also, i.e., we can use d(t) to replace d. Epidemic dynamics are diverse, 

which is dependent upon the specific functions, r(t), p(t), a(t), b(t), and d(t) (or d). For example, the periodic 

oscillation may occur in certain conditions, etc. 

2.2 Problem of r(t) 

The transmission strength of non-hospitalization cases, r(t), is a function of time t, dependent upon the type of 

dynamics of transmission strength of non-hospitalization cases.  

As the most occurred type, r(t) may decline with time for the reasons such as the natural attenuation of 

pathogenicity and transmission strength, the increase of people’s self-protection, and other 

transmission-reducing measures and behaviors used by governments and individuals, etc. In this situation, it 

can be expressed as the linear approximation  

    

           r(t) = w - v t                                    (4) 

 

r(t) can also be represented by other functions. Some of the representative functions include 

 

r(t) = u sin ( t + ) + q                     (periodic function) 

r(t) = un t
n + un-1 t 

n-1 + … + u1 t + q            (polynomial function) 

 

A representative dynamic type of the model is illustrated in Fig. 1. 

2.3 Peak time and earliest termination time 

The maximum cumulative cases and peak daily new cases in the epidemic period [1, tm] are as the follows 

 

      smax = max {s(t) | t[1, tm]}       

      imax = max {i(t) | t[1, tm]} 
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and the peak time, tmax, is the time point meeting with i(t) = imax. For S-shape dynamics of cumulative cases, 

the cumulative cases increases and tends to its upper limit, i.e., smax, and the dynamics of i(t) is a unimodal 

curve with peak daily new cases imax and peak time, tmax (Fig. 1) 

    If there exists a minimum tend that meets i(t)=0 (ttmax, tendttend+cmax), tend is the earliest termination 

time of epidemic (Fig. 1), where cmax is the maximum incubation period. 

 

 

Fig. 1 Illustration of an epidemic dynamics produced by equation (3) (based on equation (4)).  

 

 

3 Sensitivity analysis 

As the most occurred type, based on equation (4) and some parameters of the epidemic disease (Chen et al., 

2020; Guan et al., 2020; Guo et al., 2020; Liu et al., 2020; Riou and Althaus, 2020), we assume a set of 

parametrical values of (c, d, p, a, b, w, v) for sensitivity analysis (Zhang, 2016b). The initial infected 

population, i(0)=1.  

3.1 Transmission strength  

(1) Effect of the change of initial transmission strength (w) 
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Total cumulative cases (TCC) increases exponentially with initial transmission strength (w) (Fig. 2). Based on 

w=0.3, the 0.02 of increase in initial transmission strength (w) will result in an increase of TCC by 183%, 

while the 29679% increase of TCC is expected by an increase of 0.1 in w.  

 

 
 

Fig. 2 Effect of the change of initial transmission strength (w). (c, d, p, a, b, w, v) = (5, 3, 0.01, 0.01, 0.4, w, 0.002). 

 

 

(2) Effect of the dynamic decline of transmission strength (v) 

TCC decreases exponentially with the increase of transmission strength’s dynamic decline (v) (Fig. 3). Based 

on v=0.0028, the 0.0002 of decrease in v will result in an increase in TCC by 112%, while the 0.001 of 

decrease in v will lead to the increase in TCC by 22354%.  

3.2 Effect of the change of mean incubation period (c) 

TCC decreases dramatically with the increase of mean incubation period (c) (Fig. 4).  

3.3 Effect of the change of hospitalization time (d) 

TCC increases exponentially with the increase of hospitalization time (d) (Fig. 5). Based on d=7, five days 

decrease in hospitalization time will lead to the decrease of 99% in TCC. 

3.4 Effect of the change of non-hospitalization daily mortality (a) and daily recovery rate (p) 

TCC decreases exponentially with the increase of non-hospitalization daily mortality (a) and 

non-hospitalization daily recovery rate (p) (Fig. 6 and 7).  
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Fig. 3 Effect of the change of transmission strength’ dynamic decline (v). (c, d, p, a, b, w, v) = (5, 3, 0.01, 0.01, 0.4, 0.4, v). 

    
Fig. 4 Effect of the change of mean incubation period (c). (c, d, p, a, b, w, v) = (c, 3, 0.01, 0.01, 0.4, 0.4, 0.002). 
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Fig. 5 Effect of the change of hospitalization time (d). (c, d, p, a, b, w, v) = (5, d, 0.01, 0.01, 0.4, 0.4, 0.002). 

 

Fig. 6 Effect of the change of non-hospitalization daily mortality (a). (c, d, p, a, b, w, v) = (5, 3, 0.01, a, 0.4, 0.4, 0.002). 
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Fig. 7 Effect of the change of non-hospitalization daily recovery rate (p). (c, d, p, a, b, w, v) = (5, 3, p, 0.01, 0.4, 0.4, 0.002). 

 

 

3.5 Effect of the change of hospitalization proportion (b) 

TCC decreases exponentially with the increase of hospitalization proportion (b) (Fig. 8). Based on b=1, the 

0.25 days’ decrease in hospitalization proportion will lead to the increase in TCC by 385%. 
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Fig. 8 Effect of the change of hospitalization proportion (b). (c, d, p, a, b, w, v) = (5, 3, 0.01, 0.01, b, 0.4, 0.002). 

 

 

4 Discussion  

Sensitivity analysis indicated that almost all parameters have significant influence on the dynamics and final 

outcome of human epidemic. Among them, the dynamic change of transmission strength is one of the most 

important and controllable factors. The human epidemic can be substantially weakened by reducing 

transmission strength. In addition, the results demonstrated that reducing the delay for hospitalization is much 

effective in weakening disease epidemic. Sensitivity analysis on non-hospitalization recovery rate reminds us 

the importance for enhancing immunity to recover from the disease. Mean incubation period is another key 

factor in determining disease epidemic. The shorter incubation period may lead to the rapid development and 

serious outcome of epidemic disease.  

As shown in sensitivity analysis, the model performance depends upon the exact parametrical values. How 

to obtain the exact parametrical values for the disease is the basis for the better simulation and prediction of 

model performance. On the other hand, some parameter, e.g., incubation period, falls in an interval rather than 

a deterministic value. Therefore, a comprehensive analysis based on scenario prediction is necessary to obtain 

the most reliable prediction on epidemic dynamics. 

As mentioned earlier, the present multi-parametrical model will exhibit various behaviors and it is thus a 

generalized model. In some situations, the model will produce smooth dynamics, as indicated in Fig. 1. 

However, sometimes the stepwise or wavy dynamics may occur due to the constant parameterization (e.g., 

constant incubation period c, constant hospitalization time d, etc.) or specific parametrical values in the model, 

as exhibited in scenario predictions and some situations in sensitivity analysis. To produce more smooth 
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dynamics, dynamic parameters, as indicated in the model (1) to (3), can be used. 

In present study, the concept, hospitalization, can be further defined to include two parts, being sent to the 

hospital (i.e., hospitalization) and being isolated at home or other places (i.e., self-isolation). In the situation of 

self-isolation, the infection case will finally recover from infection, or die, or is sent to the hospital for medical 

treatment. For such an extended concept of hospitalization (hospitalization time, hospitalization proportion, 

etc.), the models above hold also. 

To improve prediction or simulation performance of the model, Monte Carlo or randomization method can 

be used (Zhang, 2010, 2011). The parameters r(t), p(t), a(t), b(t), and d(t) (or d) can be treated as interval 

variables. The incubation period c, can be treated as an interval variable also (in this situation, c is changeable 

and in a sense, c(t)=c). Randomly assigning values fallen in the corresponding intervals to these parameters 

and obtaining the modeled infection cases. Repeating the procedure many times, e.g., 100 times, and 

calculating the averaged infection cases, the finally modeled infection cases are thus achieved. 

How to evaluate the goodness of a dynamic model in both mechanism explanation and prediction? We 

argue that a realized model should meet these criteria: (1) as many as epidemiological parameters with explicit 

meaning should be included in the model; (2) as many as practical behaviors should be theoretically produced 

by the model; (3) major time points (peak time, termination time, etc.) and corresponding population sizes can 

be better predicted, and (4) the dynamic trajectoy produced by the model exhibits a good fitness with the 

practical one. Generally, the present model meets all of the criteria above, superior to conventional SIR models 

(Anderson and May, 1981; Kermack and McKendrick, 1927). 

In future applications of the present model, we suggest that the exact function, r(t), should be carefully 

estimated and used in the model (e.g., an approximate estimation of r is r=(R0-1)/Tg, where R0 is the basic 

reproduction number, and Tg is the disease generation time). In addition, the asymptomatic infection was 

ignored in present model due to its general insignificance in most epidemic diseases (Verma et al., 2018). For 

some diseases, these infections may play an important role and should be included in the model. Further, more 

complex models that include other factors or processes, e.g., network models, can be developed for specific 

uses (Zhang, 2012, 2015, 2016a, 2018; Banerjee, 2017; Shams and Khansari, 2019; Chen et al., 2020a). 
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