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Abstract

A discrete-time predator-prey system with Michaelis-Menten functional response and Gompertz growth of
prey is examined to reveal its chaotic dynamics. We prove algebraically that when one of the model parameter
passes its critical value, the system passes through a flip bifurcation (FB) and Neimark-Sacker bifurcation
(NSB) in the interior of R3. We apply the center manifold theorem and bifurcation theorems to determine the
existence conditions and direction of bifurcations. Numerical simulations are employed which include the
diagram of bifurcations, phase portraits, periodic orbits, invariant cycle, abrupt emergence of chaos, and
attracting chaotic sets. In addition, maximum Lyapunov exponents (MLEs) and fractal dimension (FD) are
computed numerically to justify the existence of chaos in the system. Finally, we apply feedback control
method to control chaotic trajectories.
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1 Introduction

Mathematical modeling is a promising approach to understand and analyze the dynamics of ecological systems.
Many mathematical models have been developed to interpret the interaction between the species. One can
describe the dynamics of population growth if the functional behavior of growth rate is known. Eventually,
this functional behavior is measured in the laboratory or in the field. In population ecology, the interaction
between predator and prey species play fundamental role and have long been studied one of the dominant
themes due to their universal existence and importance (Berryman, 1992). Different predator-prey models can
be found in the literature (Berryman, 1992; May, 1974). The most studied mathematical model describing a
predator-prey interaction is the following well-known Kolmogorov type predator-prey model with Michaelis-
Menten (or Holling type 1) functional response (Freedman, 1980; May, 1974):
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o= gk -y
. Bx (1)
y = _Zy—dy

where g(x,K) = rx (1 - %) x and y stand densities of prey and predator, respectively; r,K,a,a,8,d are

all positive constants that stand for intrinsic growth rate of the prey, the carrying capacity of the prey, half
saturation constant, capturing rate of prey, maximal growth rate of predator, the mortality rate of the predator,
respectively. In (1), prey grows logistically if predator is absent. The qualitative analysis of solutions for
system (1) is well established (Freedman, 1980; May, 1974). To investigate the dynamics of a community
comprising of population of various interacting species, Gompertz, 1825,developed an alternative expression
for the prey birth rate which is similar in effect to logistic growth: g(x, K) = rxIn (%)

Though most predator-prey theories are based on continuous models governed by differential equations, in
recent year, a number of famous ecologist and mathematician have been paid attention and investigated
extensively the discrete version of continuous-time models. Because if population size is small, or population
generations are relatively discrete (non overlapping), studies on discrete predator-prey model is more
appropriate rather than continuous model as discrete-time model reveals very rich and complex dynamics.
Besides, for insects with non-overlapping generations, predator-prey system can be modeled in a discrete-time
form and numerical computation also requires to discretize a continuous-time model (He and Lai, 2011; He
and Li, 2014; Rana, 2015, 2017, 2019; Liu and Cai, 2019; Zhao et al., 2016; Zhao et al., 2017). These
researches found many complex properties including attracting fixed point, stable orbits, periodic, quasi-
periodic and non-periodic orbits through the possibility of flip and Neimark-Sacker bifurcations which had
been derived either by numerically or by normal form and center manifold theory.

In this paper, we consider the following predator-prey system with Gompertz growth of prey:

x = rxln(g)—%y @
y = Zy-ay

To get following two-dimensional discrete system, forward Euler scheme with integral step size ¢ is applied
to system (2):

x+6[rxln(§)—% y]
y+6[ﬁ

a+x

()~

3)
Y= dy]

The objective is to see how model parameters affect on the dynamics of system (3).Especially, we discuss
systematically the existence condition of flip and NS bifurcation bifurcations in the interior of R2 using
bifurcation theory and center manifold theory (Kuzenetsov, 1998). Because in the discrete predator-prey
system, these two bifurcations are the main mechanisms to produce complex dynamics and cause the system to
jump from stable to unstable states and trigger a route to chaos via periodic and quasi-periodic states.

This paper is organized as follows. Section 2 presents the existence condition for fixed points of system (3)
and their stability criterion. In Section 3, the direction of bifurcation for system (3) under certain parametric
condition is determined. The diagrams of bifurcation, phase portraits, maximum Lyapunov exponents and
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Fractal dimensions of the system (3) for one or more control parameters are presented in Section 4 by
implementing numerical simulations. In Section 5, we apply the feedback control method to stabilize chaos at
unstable trajectories. Finally a short discussion is carried out in Section 6.

2 Existence Conditions and Stability Analysis of Fixed Points
2.1 Fixed points and their existence
For all permissible parameters value, a simple algebraic computation shows that the model system (3)
possesses the following two fixed points:
i.  The boundary fixed point E;(K,0). Biologically it presents that in the absence of predators, the prey

population reaches in the carrying capacity,

_ arﬁLog[—K(_a?ﬁ)]

2B and

ii.  The unique coexistence fixed point E,(x*,y*) where x* = —% and y* =

existsif g —d > %.

2.2 Dynamical behavior: stability analysis

We analyze local stability of system (3) at each fixed points by computing the magnitude of eigenvalues of
Jacobian matrix evaluated at fixed point E(x,y). The Jacobian matrix of system (3) around fixed point
E(x,y) isgiven by

Jeyy = (1 12 @
21 J22
where
. _ _ _ ayad K
jiin = 1-=716 @t +1r61n (x),
j _ xad
12 T T
. _ a;ﬁSx (5)
J21 (a+x)2’
- 1— xBs
Jap = 1—dé+ P

The characteristic equation of matrix | is

2 +py)A+qxy)=0 (6)
where p(x,y) = —tr] = —(j11 + j22) and det] = ji1j22 — j12J21.Using Jury’s criterion (Elaydi, 1996), we
state the following stability conditions of fixed points.

Proposition 2.1 For the boundary fixed point E; (K, 0), the following topological classification true
a. if [f—d<‘;—d then

i Byisasinkif 0< 8 <min {3,200},

ii. Eisasourceif § > max{z,ﬂ}
r ad+dK-KpB
2(a+K)

. .. 2
iii. E;is anon-hyperbolicif & = ~or 6= ad+dK—KG'
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b.if p—d >2% then
i. Ejisasourceif &> %
ii. Ejisasaddleif &<,
iii. E;is anon-hyperbolic if § = %

c.if f—d= ‘;—d then E;is always non-hyperbolic.

. . _2 _ 2(a+K) .
It is obvious that when §== or8——ad+dK_KB, then one of the eigenvalues of J(E,) are
A=1-rfand 1, =1-4d6§ +%is —1 and the other is not equal to +1. Therefore, a flip bifurcation

can occur if parameters change in small vicinity of FBg—lor FB,%l:

2(a+K)

FBI%-1 = {(r,K,a,d,5) € (0,+00)6 =§,6 im

ad
B-d <5,
2(a+K)

2 _ =
OrFBE = {(r, K,a,d,8) € (0,4»):6 = drdK—KG’

2 ad
§#2,p-d<

At E,(x*,y"), the Jacobian matrix (6) can be obtained as

J(E2) = (d - p)51 (f(—mﬁ)) g
r - n\—-—
\-lee ) )

where

daré ln(K(_dJrﬁ))

a B-TBS+dré(1-dS+B8) In @
——and det/g, = )

B

trlg, =2—1r6+

Applying Jury’s conditions, the fixed point E, is linearly asymptotically stable if and only if

1+ trjg, +detjg, >0,
1 - tr]Ez + det]Ez > 0,
det]Ez - 1 > 0

K(=d+p) K(=d+pB)

ad ),A2 =r (—1 + %),% = 4and L = A2 — A, 4.

dr(—d+pB) ln(
B

Let A1 =
We state following proposition about stability criterion of E,.

Proposition 2.2 Suppose 8 —d > %. Then the fixed point E,(x*,y*) of system (3) is a
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i. sink if one of the following conditions holds

(i) L>0 and &<
1

(i2) L<O0 and §<-%%
1

ii. source if one of the following conditions holds

—Ay+VL

1

(ii.l) L=0 and 6>

(i2) L<0 and §>-2%

1

iii. non-hyperbolic if one of the following conditions holds

(i) L>0 and §="22E 5, 2 4
Ay A0 A,
(iii.2) L<0 and &= -2z
Aq

iv. saddle if otherwise.
From Proposition 2.3, we see that two eigenvalues of J(E,) are 4; = —1 and 4, # +1 if condition
(iii.1) holds. If (iii.2) is true, then the eigenvalues of J(E,) are complex having magnitude one.

Let
A, —VL 2 4
1 = . =—2 > —_——
FBg, {(r, K,a,a,8,d,6) € (0,+): 6 . L>0,6+# 2, Az}’
or
) —A; +VL 2 4
FB;g =4{(r,K,a,a,8,d,6) € (0,40):§ = ——, L>0,6#——,——*
2 A A, A,

Then system (3) experiences a flip bifurcation around fixed point E, if parameters vary in small vicinity of
either set FBj orset FBZ .

Also let

A
A_l:
Then if the parameters change around the setNSBg,, system (3) experience a NS bifurcation atE;,.

NSBg, = {(r, K,aapB,d, &) € (0,40):8 = — L< o},

3 Direction and Stability Analysis of Bifurcation

In this section, we will pay attention to determine the direction and stability of flip and NS bifurcations of
system (3) around E, by using center manifold theory (Kuzenetsov, 1998). We set & as a real bifurcation
parameter.

3.1 Flip bifurcation

We take parameter (r,K,a,a,,d,§) arbitrarily locate in FB%Z. For the case of FB,%Z, one can do similar
reasoning. Consider the system (3) at the fixed point E,(x*,y*) parameters lie in FB%Z.

_Ai_‘/z, then the eigenvalues of E,(x*,y*) areA;(6r) = —1 and 2,(8F) = 3 + A, 6.
1

Lets = 85 =

In order for |A,(6F)| # 1, we have
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A26F :pt _2, _4' (7)

We assume the transformation ¥ = x —x*, y =y —y* and write A(8) =J(x*,y*). Then we shift the

fixed point (x*,y*) of system (3) to the origin. After Taylor expansion, system (3) reduces to

X X Fi(%,7,8)
~—>A6(~)+<1~~ ) 8
()~ 4@ )+ (r & 5 ©
where X = (%, ¥)Tis the vector of the transformed systemand
ax’as(ay+yx*—xy*) _axad(ay+yx’-xy*) | 1 r&38

F(%5,6) = +=

(a+x*)* (a+x*)3

+o(l X 1%

x*Z

2 Iy VL = S Ak e (9)
Fz(f, }7’ 5) _ _a% Bé(ay+yx*—xy*) + axps(ay+yx*—xy*) + 0(" X ”4)

(a+x*)* (a+x*)3

The system (8) can be expressed as

1 1
Xni1 = A + 5 B (X, Xp) + = CO X, Xa) + O(1 Xy 1)

Bi(x,y) Ci(x,y,u) . - .
where B(x, =( 1 ) and (x,y,u =( ) are symmetric multi-linear vector functions of
) =g, y) 2 X = y,0) 2 Y
x,y,u € R? and defined as follows:
_ §%F,(§,6) 6 aad(axyyy +axgy; + xy1x" + x1y,xT — 2x,Y1Y7)
B = ), ese | T T T @+ 1)
jk=1 JE5k e=g
B,(x,y) = §%F,(¢,6) o apd(ax,ys + ax,y; + xy1x" + x1y,%" — 2x1Y1Y")
2X,Y) = Tz sz Ve = 3 ,
8608 |, (a+x)
z 52F1(S(. 8) TU 1 X1Y1 6
Cix,y,u) = Z 37.08,08, XY = — 5 +
jhet=1 ~ TTP kA g0

2aad(a(uyx1y1+us X2y U1 X1 Y2) T X1 Y1 X Uy (X2 Y1 X" +X1 Yo X" =3x11Y7))
(a+x*)*

2
_ 8%F,(§,6)
C(xy,u) = 2 . 68;68,.6¢,
Jkl=1

Xj YUy =
§=0

_2aB6(a(uzXyr + UsXoys + Ui X1Yp) + UpX Y1 X7 + U (Y1 X7 + X1Y2X" — 3%1Y1Y7))
(a+x*)* ’

and 6 = 6p.

Let p,q € R? be two eigenvectors of A for eigenvalue A,(8r) = —1 such that A(6r)q = —q and
AT (8p)p = —p. Then we have

g~ (2 —dép + Bépx” —M)Tand P (2 —d,+ BSpx* aﬁpx*)T.

a+x* ' (a+x*)? a+x* ' a+x*
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We use (p,q) = p1q1 + P2qthe standard scalar product in R?to normalize p,q such that (p,q) = 1. To do,

_ _ BSpx* a6px*)T
weset p =yg (2 dop + o) where

1
* *\ 2 2 ok k
(2 _ d5F + BSpx* adpx ) __aaBépx’y

a+x*’ at+x* (a+x*)3

Yr =

The sign of the coefficient of critical normal forml, (6z) determines the direction of the flip bifurcation and is
obtained as

L(8F) =2 (p.C(0, 4,0} =5 (P, B(q, (A= )7 B(q,9))) (10)

We state the following result on direction and stability of flip bifurcation according to above analysis.

Theorem 3.1 If (7) holds, [;(6r) # 0 and the parameter § changes its value in a small vicinity of FB,%Z,
then system (3) undergoes a flip bifurcation aroundE,(x*, y*). Moreover, if 1,(6z) > 0 (resp., [;(6r) < 0)
then the period-2 orbits that bifurcate from E,(x*,y*) are stable (resp., unstable).

3.2 Neimark-Sacker bifurcation
Next, we take parameter (r, K, a, a, 8, d, &)arbitrarily locate in NSBg,. We consider system (3) at fixed point

E;(x*,y*) with parameter(r, K, a, @, B,d, §) € NSBg,. Then the roots (eigenvalues) of equation (6), are pair

-p(8)+i /4q(6)—p(5)2

of complex conjugate and given by 1,1 = >

Az

1

Therefore, we have|1] = /q(6), q(dys) = 1.
From the transversality condition, we get

a|A(8)| 4z
as ls=gys 2 ( )

Moreover, nondegenerate condition p(Sys) # 0,1, obviously satisfies

A3

=2 %23 (13)
A

and we have

A(bys) #1 for k=1,23,4 (14)

Suppose q,p € C? are two eigenvectors of A(Sys) and AT(8ys) for eigenvalues A(8ys) and
A(Sys) such that

A(Sns)q = A(Bns)q,  A(Bns)T = A(Bys)T
and

AT(SNs)p = /T(SNS)p: AT(SNS)ﬁ = A(6ns)P-

By direct computation we obtain

* s\ T * _ s\ T
g~ (1 — dyg + 222 3, - S angp (1= diy + 20 - 7,208

a+x* (a+x*)2 a+x* a+x*
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Bénsx* 1 adysx”
)

T
For normalization of vectors p and g, we set p = yys (1—d6N5+ ) , Where yys =

a+x* a+x*

1

* 2 2 —
Snsx z) aaongxy
a+x* (a+x*)3

(1—(151\]5 t B

Then it is clear that (p,q) = 1 where (p,q) = p1q, + p»q, for p,q € C2. Now, we decompose
vector X € R%as X = zq + zq, for § close to Sys and z € C. Obviously, z = (p, X). Thus, we obtain the
following transformed form of system (8) for |§|near Sys:

ze A(6)z+ g(z,2,0),
where A(8) = (1 + ¢(6))e©® with ¢(Sys) =0 and g(z,z 6) is a smooth complex-valued function.
After Taylor expression of g with respectto (z,Z), we obtain
9(2,7,8) = Z ﬁgkl(a)zkzl, with g €C,  k1=01,-

k+122
According to multilinear symmetric vector functions, the coefficients g, are

9208ns) = (0, B(q,9)), 911(6ns) = {p,B(q,9))
9o2(0ns) = (0, B(q,Q)), 921(6ns) =(p,C(q,9,9)),

The coefficient [,(5ys) which determines the direction of NS bifurcationin a generic system exhibiting

invariant closed curve can be calculated via

s e8NS g, . (1 — 2¢i0(6ns)) g =2i8(6ns)
2(8ns) = Re 2 ]~ 2(1 — ei9(ns)

where e@Gns) = 1(8ys).

Summarizing above analysis, we present the following theorem for direction and stability of NS bifurcation.

1 2 1 2
920911 _§|911| _Z|goz|'

Theorem 3.2 If (13) holds, [,(dys) # 0 and the parameter & changes its value in small vicinity of NSBg,,
then system (3) passes through a Neimark-Sacker bifurcation around E,. Moreover, if [,(dys) < 0 (resp.,>
0), then there exists a unique attracting (resp., repelling) invariant closed curve bifurcates from E,.

Table 1 Parameter values.

Cases Varying parameter Fixed parameters System
in range Dynamics

Case (i) 2.15< 6§ < 2.88 r = 175K = 1.0,a = 04,a = 05,8 = 0.05d = 0.01 FB

Case (ii) 18<6<295 r = 125K = 1.05,a = 03,a = 05,8 = 04,d = 0.15 NS

Case (iii) 0.248 < a < 0.32 r = 1.25,K = 1.05, NS

a = 058 = 04,d = 0.15,6 = 2.04827

4 Numerical Simulations
In this section, numerical simulation are performed to validate our theoretical results, especially, we present

bifurcation diagrams of system (3) around E,, phase portraits, maximum Lyapunov exponents and fractal
dimension corresponding to bifurcation diagrams. We assume that § is a real bifurcation parameter unless

stated. We consider different set of parameter values for bifurcation analysis as given in Table 1.
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Example 1: Flip bifurcation of system (3) with respect to bifurcation parameter &.

We set values of parameter as given incase (i). By calculation, we obtain a unique fixed point
E,(0.1,4.02952) of system (3). The critical point for FB is §z~2.20115. It is observed that the system (3)
experiences a FB around E, when & passes its critical value §z.Atd = &z, the two eigenvalues are
A =—-1,1, = 0921907, [;(6r) = 349.055and (r,K,a,a,p,d,6) € FBgz. This verifies Theorem 3.1.

The bifurcation diagrams shown in Fig. 1(a-b) reveal that stability of fixed point E, happens for § < &,
at 6 = & system (3) loses its stability and for 6 > 6 there exists a period doubling phenomena leading to
chaos. There exists period -2,-4, -8orbits occur for the window & € [2.1,2.7942] and chaotic set for
6 € [2.7942,2.88]. The MLEs and FD related to Fig. 1(a-b) are computed and displayed in Fig. 1(c-d). The
status of stable, periodic or chaotic dynamics are compatible with sign of MLE as in Fig. 1(c-d). The phase

portraits of bifurcation diagrams in Fig. 2(a-b) for different values of § are displayed in Fig. 2.

maxLce
o

Fractal dimension

L L L L L L
21 22 23 24 25 26 27 28 21 22 23 24 25 26 27 28
& &

(©) (d)

Fig. 1 Flip bifurcation and Lyapunov exponent of system (3). (a) FB in prey, (b) FB in predator, (c) MLEs related to (a-b), (d) FD

corresponding to (a). Initial value (x,,y,) = (0.1,4.02).

Example 2: NS bifurcation of system (3) with respect to bifurcation parameter §.

With the variation of parameter &, the system (3) exhibits much richerdynamics through the emergence of NS
bifurcation. We take parameters as given in case (ii). After calculation, we find a unique fixed point
E,(0.18,2.11631). A NS bifurcation point is obtained asé = §ys~2.04827. It is shown that the system (3)

experiences a NS bifurcation around E, when & passes its critical value dyg. Also at § = §ygwe
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havel, 1 = 0.566465 + 0.824086 i, g,, = 0.135473 + 0.245758i,g,; = 2.2689 — 0.906715 i, gy, =
~1.25699 + 4.9813i, g,; = —4.96799 + 6.72114i, and 1,(Sys) = —8.120394164511106. It is
obvious that (v, K,a,a, ,d,5) € NSBg,. This verifies the correctness of Theorem 3.2.

=, -
ol \
4

Fig. 2 Phase portraits (xy-plane) of bifurcation diagrams Fig. 1(a-b) for different values of §.

The bifurcation diagrams shown in Fig. 3(a-b) demonstrate that E,is stabile for§ < &yg, loses its stability
at & = dyg and an attracting invariant curve appears if § > §ys. We dispose the MLEs in Fig. 3(c) relating
bifurcation in Fig. 3(a-b), which confirm the existences of chaos and periodic orbits as parameter & varying.
These results indicate that NS bifurcation instigates a route to chaos, through a dynamic transition from a
stable state, to invariant closed cycle, with periodic and quasi-periodic states occurring in between, to chaotic
sets. For instance, when §~2.95, the sign of MLE confirming presence of chaos. Fig. 3(d) is local
amplification of Fig. 3(a) for § € [2.75,2.95].

The phase portraits of bifurcation diagrams in Fig. 3(a-b) for different values of § are displayed in Fig. 4,
which clearly illustrates the act of smooth invariant curve how it bifurcates from the stable fixed point and
increases its radius. As § grows, disappearance of closed curve occurs suddenly and a period-6, -11, -20, -10,
-5 and period -25 orbits appear at §~2.283, §~2.582, §~2.835,6~2.858,6~2.8925, and §~2.9155

respectively. We also see that a fully developed chaos in system (2) occurs at §~2.95.

Example 3: NS bifurcation of system (3) with respect to bifurcation parameter a.

With the variation of other parameter values (e.g., parameter a), the predator-prey system (3) may exhibit
another richer dynamical behaviors. When we set the parameter values as given in case (iii), a new NS
bifurcation diagram is obtained as disposed in Fig. 5(a-b). The system firstly enters chaotic dynamics for small

value of a. However, with the increase of a value, the chaotic dynamics of the system suddenly disappear
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through a NS bifurcation occurring first ata = ays~0.3. Similar nonlinear characteristics to Figures 3 and 4
are found in this case, such as route to chaos, invariant curves, chaotic attractors, periodic and quasi-periodic
states. The MLE corresponding to Fig. 5(a-b) is computed and plotted in Fig. 5(c), which confirm the
existences of chaos and periodic orbit as parameter a varying. We notice that system dynamics is stable if
a > ays, loses its stability at a = ays and an attracting invariant closed curve appears if a < ayg. That is
decreased values of parameter a causes complex system dynamics which trigger a route to chaos via NS
bifurcation. As adecreases, closed curve suddenly disappear and a period -7, -14, and -28 orbits and attracting
chaotic sets appear at a~0.2562, a~0.2542, a~0.2528 and a~0.249 respectively.

(@) (b)

ractal dimension

(© (d) O

Fig. 3 NS bifurcation and Lyapunov exponent of system (3). (a) NS bifurcation in prey, (b) NS bifurcation in predator, (c)
MLEs related to (a-b), (d) local amplification of (a) for § € [1.8,2.95] (e) FD associated with (a). Initial value (x,,y,) =
(0.17,2.11).

Example 4: Parametric basins of attractions.

When two more parameters change through its critical values, then system (3) can exhibit more complex
dynamic behavior. Ina 2D parameter space the parametric basins of attraction (Gkana, 2013) is plotted to
notice how the system dynamics qualitatively change as parameter values increase. This plot (Fig. 6) is a
numerical analysis tool in which the different colors describe different stability states. So, we first plot (Fig. 6a)
the parametric basins of attraction for the parameter values a € [0248,0.32] and g € [0.35,0.5] and rest of
parameter values as in case (ii) or case (iii). Fig. 6b is the plot in the parametric plane (a,d) with a €
[0248,0.32] and § € [1.8,2.95]. Fig. 6b is the plot in the parametric plane (8, K) with g € [0.35,0.5] and
K € [1.0,1.258]. It is simple to find values of control parameters for which the dynamics of system (3) is in
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status of non-chaotic, periodic or chaotic. The red and blue regions for an attracting fixed point and/or for
stable periodic cycles. The white region corresponds to those parameters values for which the solution
trajectories may be quasi-periodic (invariant curves) or non-periodic (chaos, strange attractors). The black
region is the set of parameters for which the solution trajectories diverge to infinity.
From 2D parameter space (Fig. 6) we observe the following:
e The increases values of control parameters a and g, the solution behaviors of system (3) change from
non-periodic to an attracting fixed point or stable periodic cycle.
e The increases values of control parameters a and &, the dynamics of system (3) change from chaotic
to non-chaotic states.
e The increases values of control parameters 8 and K, the system dynamics significantly change from
non-chaotic to chaotic states.

Fig. 4 Phase portraits (xy-plane) of bifurcation diagrams Fig. 3(a-b) for different values of &.
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Fractal dimension of system (3)
The measure of fractal dimensions characterizes the strange attractors of a system. By using Lyapunov

exponents, the fractal dimension (Cartwright, 1999; Kaplan and Yorke, 1979) is defined by
ey
d,=j+ W |
where hy, hy, ..., h, are Lyapunov exponents and j is the largest integer such that Y/_, h; >0 and
Y oh <o,
For our two-dimensional system (3), the fractal dimension takes the form

hy

dL=1+E,

hy > 0> h,and h; + h, <O0.

With parameter values as in case (ii), the fractal dimension of system (3) is plotted in Fig. 3(e). The strange
attractors given in Fig. 4 and its corresponding FD illustrate that the increase values of parameter § causes a
chaotic dynamics for the predator-prey system (3).
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Fig. 5 NS bifurcation and Lyapunov exponent of system (3). (a) NS bifurcation in prey, (b) NS bifurcation in predator, (c) MLEs
related to (a-b), (d) FD associated with (a). Initial value (xq,y,) = (0.17,2.11).

5 Chaos Control
To stabilize chaos at the state of unstable trajectories of system (3), a state feedback control method (Elaydi,

1996) is applied. By adding a feedback control law as the control force w,, to system (3), the controlled form

IAEES WWw.iaees.org



130 Computational Ecology and Software, 2020, 10(3): 117-132

of system (3) becomes

K n
Xpt1 = Xp+90 [rxn In (Z) — aann yn] +u, (15)
Yn+1 = Yot 6 f+_);rlrlyn - dyn]
and

u, = —ky(x, — x*) — ky(y, — y*) where k;and k, are the feedback gains and (x*,y*) represent positive
fixed point of system (3). The Jacobian matrix J. of the controlled system (15) is given by
. 11— k1 jiz—k
Jeber,yy = (fr TR e T (16)
J21 J22
where j,q, 0,9 = 1,2 givenin (5) are evaluated at (x*,y*). The characteristic equation of (16) is

22— (tr])A+det], = 0 17)
Whel’e tT']C = j11 +j22 - kl and det],: = jzz(jll - kl) _j21(jlz - kz) Let Al and AZ be the roots Of (17)
Then

M+ =j11+ 2 — ke (18)
and
M, = J22 011 —kq) _f21(i12 — k) (19)

beta delta

K
0.500 2950 1.260

0451 2810 1.220

0463 2660 1180

0444 2520 1140

0425 2380 1100

0.406 2230 1.070

0388 2000 1.030

0.363 1340 0583

0.350

1800 -+ 0950
0248 0257 0266 0275 0284 0293 0302 031 0320 0248 0257 0266 0275 0284 0293 0302 031 0320 0350 0363 0383 0406 0425 0444 0463 0481 DbEDD
B 3 eta

Fig. 6 Diagnostic of system (3) in a 2D parameter space. (a) parametric basins of attraction in (a, 8)-plane (b) parametric basins

of attraction in (a, §)-plane (c) parametric basins of attraction in(8, K)-plane.

The solution of the equations A, = +1 and 1,4, = 1 determines the lines of marginal stability. These
conditions confirm that |4, ,| < 1. Suppose that 1,4, = 1, then from (19) we have
ll:j22k1 _j21k2 =j11j22 _j12j21 - L

Assume that A; = 1, then from (18) and (19) we get

Li (L —Jjao)ky + j21ks = i1 +J22 — 1 — jivJaz +j12Q21-
Next, assume that A, = —1, then from (18) and (19) we obtain

Ls: (1 + j2z2)ky — Jarkz = jix +Jaz + 1+ jij2z2 — JizJan-
We determine a triangular region in the (kq,k;)-plane by plotting the lines [;,1,,and [; (see Fig. 7(a))
which keeps eigenvalues with magnitude less than 1. In order to check how the implementation of feedback

control method works and controls chaos at unstable trajectories, we have carried out numerical simulations.
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With fixed & = 2.95 and rest parameters as in case (ii), we consider the feedback gains are ask, =
1.05 and k, = —0.35. The initial value is (x,,y,) = (0.17,2.11) and Fig.7(b) and 7(c) show that at the
fixed point (0.18,2.11631), the chaotic trajectory is stabilized.

1= - . - - e — 02 r 213

212l

ue -' ; _ . | thmumw.m...._

&oof 1 <o ||Wff[{'.1uw.m ------------ 1 .o

(a) (b) (c)
Fig. 7 Control of chaotic trajectories of system (15). (a) Stability region in (k4,k,) plane (b-c) Time series for states x and y

respectively.

6 Discussions

This work is concerned with the dynamics of a discrete-time predator-prey system with Michaelis-Menten
functional response and Gompertz growth of prey in the closed first quadrant RZ. By the center manifold
theory, we determine the existence condition and direction of flip and NS bifurcations of system (3) around E,.
In particular, we show that the system (3) can undergo a flip and NS bifurcation at unique fixed pointk, if §
varies around the sets FB,%2 or FB,%2 and NSBg,. Based on Figures, we notice that the small integral step size
& can stabilize the dynamical system (3), but the large integral step size may destabilize the system producing
more complex dynamical behaviors. In addition, we see that the appropriate choice of the half saturation
parameter a can stabilize the dynamical system (3). However, for the low values of a destabilize system
(3).Numerical simulations present unpredictable behaviors of the system through a flip bifurcation which
include orbits of period-2, -4, -8orbits and through a NS bifurcation which include an invariant cycle, orbits of
period -5, -6, -7, -10, -11, -14, -20, -25 and period -28 orbits and chaotic sets respectively. These indicate that
at the state of chaos, the system is unstable and particularly, the predator goes to extinct or goes to a stable
fixed point when the dynamic of prey is chaotic. We confirm about the existence of chaos through the
computation of MLEs and FD. The two bifurcations (FB and NSB) both trigger a route to chaos via periodic
and quasi-periodic states; that is, chaotic dynamics appear or disappear along with the emergence of
bifurcations. Moreover, we plot the parametric basins of attraction for system (3) by the variation of two
control parameters. This plot exhibits very rich nonlinear dynamical behaviors and one can directly observe
from this 2D parametric space when the system dynamics will be periodic, quasi-periodic and chaotic. Finally,
the chaotic trajectories at unstable state are controlled by implementing the strategy of feedback control. In

future, we would expect to obtain more analytical results on multiple parameter bifurcation exist in the system.
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