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Abstract 

A discrete-time predator-prey system with Michaelis-Menten functional response and Gompertz growth of 

prey is examined to reveal its chaotic dynamics. We prove algebraically that when one of the model parameter 

passes its critical value, the system passes through a flip bifurcation (FB) and Neimark-Sacker bifurcation 

(NSB) in the interior of Թା
ଶ . We apply the center manifold theorem and bifurcation theorems to determine the 

existence conditions and direction of bifurcations. Numerical simulations are employed which include the 

diagram of bifurcations, phase portraits, periodic orbits, invariant cycle, abrupt emergence of chaos, and 

attracting chaotic sets. In addition, maximum Lyapunov exponents (MLEs) and fractal dimension (FD) are 

computed numerically to justify the existence of chaos in the system. Finally, we apply feedback control 

method to control chaotic trajectories. 

 

Keywords predator-prey system with Michaelis-Menten functional response; Gompertz growth; bifurcations; 

Lyapunov exponents; feedback control. 

 

 

 

 

 

 

 

 

1 Introduction 

Mathematical modeling is a promising approach to understand and analyze the dynamics of ecological systems. 

Many mathematical models have been developed to interpret the interaction between the species. One can 

describe the dynamics of population growth if the functional behavior of growth rate is known. Eventually, 

this functional behavior is measured in the laboratory or in the field. In population ecology, the interaction 

between predator and prey species play fundamental role and have long been studied one of the dominant 

themes due to their universal existence and importance (Berryman, 1992). Different predator-prey models can 

be found in the literature (Berryman, 1992; May, 1974). The most studied mathematical model describing a 

predator-prey interaction is the following well-known Kolmogorov type predator-prey model with Michaelis-

Menten (or Holling type II) functional response (Freedman, 1980; May, 1974): 
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ሶݔ ൌ ݃ሺݔ, ሻܭ െ
ఈ௫

௔ା௫
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ሶݕ ൌ
ఉ௫

௔ା௫
ݕ െ ݕ݀

           (1) 

where ݃ሺݔ, ሻܭ ൌ  ݔݎ ቀ1 െ
௫

௄
ቁ; ݔ and ݕ stand densities of prey and predator, respectively; ݎ, ,ܭ ܽ, ,ߙ ,ߚ ݀ are 

all positive constants that stand for intrinsic growth rate of the prey, the carrying capacity of the prey, half 

saturation constant, capturing rate of prey, maximal growth rate of predator, the mortality rate of the predator, 

respectively. In (1), prey grows logistically if predator is absent. The qualitative analysis of solutions for 

system (1) is well established (Freedman, 1980; May, 1974). To investigate the dynamics of a community 

comprising of population of various interacting species, Gompertz, 1825,developed an alternative expression 

for the prey birth rate which is similar in effect to logistic growth: ݃ሺݔ, ሻܭ ൌ ݔݎ ln ቀ
௄

௫
ቁ.  

Though most predator-prey theories are based on continuous models governed by differential equations, in 

recent year, a number of famous ecologist and mathematician have been paid attention and investigated 

extensively the discrete version of continuous-time models. Because if population size is small, or population 

generations are relatively discrete (non overlapping), studies on discrete predator-prey model is more 

appropriate rather than continuous model as discrete-time model reveals very rich and complex dynamics. 

Besides, for insects with non-overlapping generations, predator-prey system can be modeled in a discrete-time 

form and numerical computation also requires to discretize a continuous-time model (He and Lai, 2011; He 

and Li, 2014; Rana, 2015, 2017, 2019; Liu and Cai, 2019; Zhao et al., 2016; Zhao et al., 2017). These 

researches found many complex properties including attracting fixed point, stable orbits, periodic, quasi-

periodic and non-periodic orbits through the possibility of flip and Neimark-Sacker bifurcations which had 

been derived either by numerically or by normal form and center manifold theory. 

In this paper, we consider the following predator-prey system with Gompertz growth of prey: 

 

ሶݔ ൌ ݔݎ ln ቀ
௄

௫
ቁ െ

ఈ௫

௔ା௫
ݕ 
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ఉ௫

௔ା௫
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          (2) 

 

To get following two-dimensional discrete system, forward Euler scheme with integral step size ߜ is applied 

to system (2): 

 

ቀ
ݔ
ቁݕ հ ቌ

ݔ ൅ ߜ ቂݔݎ ln ቀ
௄

௫
ቁ െ

ఈ௫

௔ା௫
ቃݕ 

ݕ ൅ ߜ ቂ
ఉ௫

௔ା௫
ݕ െ ቃݕ݀

ቍ         (3) 

 

The objective is to see how model parameters affect on the dynamics of system (3).Especially, we discuss 

systematically the existence condition of flip and NS bifurcation bifurcations in the interior of Թା
ଶ  using 

bifurcation theory and center manifold theory (Kuzenetsov, 1998). Because in the discrete predator-prey 

system, these two bifurcations are the main mechanisms to produce complex dynamics and cause the system to 

jump from stable to unstable states and trigger a route to chaos via periodic and quasi-periodic states. 

This paper is organized as follows. Section 2 presents the existence condition for fixed points of system (3) 

and their stability criterion. In Section 3, the direction of bifurcation for system (3) under certain parametric 

condition is determined. The diagrams of bifurcation, phase portraits, maximum Lyapunov exponents and 
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Fractal dimensions of the system (3) for one or more control parameters are presented in Section 4 by 

implementing numerical simulations. In Section 5, we apply the feedback control method to stabilize chaos at 

unstable trajectories. Finally a short discussion is carried out in Section 6. 

 

2 Existence Conditions and Stability Analysis of Fixed Points 

2.1 Fixed points and their existence 

For all permissible parameters value, a simple algebraic computation shows that the model system (3) 

possesses the following two fixed points: 

i. The boundary fixed point ܧଵሺܭ, 0ሻ. Biologically it presents that in the absence of predators, the prey 

population reaches in the carrying capacity, 

ii. The unique coexistence fixed point ܧଶሺכݔ, כݔ ሻ whereכݕ ൌ െ
௔ௗ

ௗିఉ
 and כݕ ൌ െ

௔௥ఉL୭୥ቂ಼
ሺష೏శഁሻ
ೌ೏

ቃ

ఈሺௗିఉሻ
 and 

exists if ߚ െ ݀ ൐
௔ௗ

௄
. 

2.2 Dynamical behavior: stability analysis 

We analyze local stability of system (3) at each fixed points by computing the magnitude of eigenvalues of 

Jacobian matrix evaluated at fixed point ܧሺݔ,  ሻ. The Jacobian matrix of system (3) around fixed pointݕ

,ݔሺܧ  ሻ is given byݕ

 

,ݔሺܬ ሻݕ ൌ ൬
݆ଵଵ ݆ଵଶ
݆ଶଵ ݆ଶଶ

൰           (4) 

 

where 

݆ଵଵ ൌ 1 െ ߜݎ െ
௔௬ఈఋ

ሺ௔ା௫ሻమ
൅ ߜݎ ln ቀ

௄

௫
ቁ ,

݆ଵଶ ൌ െ
௫ఈఋ

௔ା௫
,

݆ଶଵ ൌ
௔௬ఉఋ

ሺ௔ା௫ሻమ
,

݆ଶଶ ൌ 1 െ ߜ݀ ൅
௫ఉఋ

௔ା௫
.

         (5) 

 

The characteristic equation of matrix ܬ is  

ଶߣ ൅ ,ݔሺ݌ ߣሻݕ ൅ ,ݔሺݍ ሻݕ ൌ 0          (6) 

where ݌ሺݔ, ሻݕ ൌ െܬݎݐ ൌ െሺ݆ଵଵ ൅ ݆ଶଶሻ  and  ݀݁ܬݐ ൌ ݆ଵଵ݆ଶଶ െ ݆ଵଶ݆ଶଵ.Using Jury’s criterion (Elaydi, 1996), we 

state the following stability conditions of fixed points. 

 

Proposition 2.1 For the boundary fixed point ܧଵሺܭ, 0ሻ, the following topological classification true 

a. if ߚ െ ݀ ൏
௔ௗ

௄
 then  

i. ܧଵis a sink if 0 ൏ ߜ ൏ ݉݅݊ ቄ
ଶ

௥
,

ଶሺ௔ା௄ሻ

௔ௗାௗ௄ି௄ఉ
ቅ,  

ii. ܧଵis a source if ߜ ൐ ݔܽ݉ ቄ
ଶ

௥
,

ଶሺ௔ା௄ሻ

௔ௗାௗ௄ି௄ఉ
ቅ 

iii. ܧଵis a non-hyperbolic if ߜ ൌ
ଶ

௥
ߜ  ݎ݋  ൌ

ଶሺ௔ା௄ሻ

௔ௗାௗ௄ି௄ఉ
.  
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b. if ߚ െ ݀ ൐
௔ௗ

௄
 then  

i. ܧଵis a source if  ߜ ൐
ଶ

௥
, 

ii. ܧଵis a saddle if  ߜ ൏
ଶ

௥
, 

iii. ܧଵis a non-hyperbolic if ߜ ൌ
ଶ

௥
.  

c. if ߚ െ ݀ ൌ
௔ௗ

௄
 then ܧଵis always non-hyperbolic. 

It is obvious that when ߜ ൌ
ଶ

௥
  or ߜ ൌ

ଶሺ௔ା௄ሻ

௔ௗାௗ௄ି௄ఉ
, then one of the eigenvalues of ܬሺܧଵሻ  are 

ଵߣ ൌ 1 െ ଶߣ and ߜݎ ൌ 1 െ ߜ݀ ൅
௄ఉఋ

௔ା௄
is െ1 and the other is not equal to േ1. Therefore, a flip bifurcation 

can occur if parameters change in small vicinity of ܤܨாభ
ଵ or ܤܨாభ

ଶ : 

 

ாభܤܨ
ଵ ൌ ቄሺݎ, ,ܭ ܽ, ݀, ሻߜ א ሺ0, ൅∞ሻ: ߜ ൌ

ଶ

௥
, ߜ ്

ଶሺ௔ା௄ሻ

௔ௗାௗ௄ି௄ఉ
, ߚ െ ݀ ൏

௔ௗ

௄
ቅ, 

orܤܨாభ
ଶ ൌ ቄሺݎ, ,ܭ ܽ, ݀, ሻߜ א ሺ0,൅∞ሻ: ߜ ൌ

ଶሺ௔ା௄ሻ

௔ௗାௗ௄ି௄ఉ
, ߜ ്

ଶ

௥
, ߚ െ ݀ ൏

௔ௗ

௄
ቅ. 

 

At ܧଶሺכݔ,   ሻ, the Jacobian matrix (6) can be obtained asכݕ

ଶሻܧሺܬ ൌ

ۉ

ۈۈ
1ۇ െ ߜݎ ൅

ߜݎ݀ ln ቀ
௄ሺିௗାఉሻ

௔ௗ
ቁ

ߚ
െ
ߜߙ݀
ߚ

െ
ሺ݀ݎ െ ߜሻߚ ln ቀ

௄ሺିௗାఉሻ

௔ௗ
ቁ

ߙ
1 ی

ۋۋ
ۊ

 

where 

ாଶܬݎݐ ൌ 2 െ ߜݎ ൅
ௗ௥ఋ  ୪୬ቀ

಼ሺష೏శഁሻ
ೌ೏

ቁ

ఉ
,and ݀݁ܬݐாଶ ൌ

ఉି௥ఉఋାௗ௥ఋሺଵିௗఋାఉఋሻ ୪୬ቀ
಼ሺష೏శഁሻ

ೌ೏
ቁ

ఉ
. 

 

Applying Jury’s conditions, the fixed point ܧଶ is linearly asymptotically stable if and only if 

 

1 ൅ ாଶܬݎݐ ൅ ாଶܬݐ݁݀ ൐ 0, 

1 െ ாଶܬݎݐ ൅ ாଶܬݐ݁݀ ൐ 0, 

ாଶܬݐ݁݀ െ 1 ൐ 0.  

 

Let Aଵ ൌ
ௗ௥ሺିௗାఉሻ ୪୬ቀ

಼ሺష೏శഁሻ
ೌ೏

ቁ

ఉ
,Aଶ ൌ ݎ ቆെ1 ൅

ௗ ୪୬ቀ
಼ሺష೏శഁሻ

ೌ೏
ቁ

ఉ
ቇ,Aଷ ൌ 4,and ܮ ൌ ଶܣ

ଶ െ  .ଷܣଵܣ

 

We state following proposition about stability criterion of ܧଶ.  

 

Proposition 2.2 Suppose ߚ െ ݀ ൐
௔ௗ

௄
. Then the fixed point ܧଶሺכݔ,   ሻ of system (3) is aכݕ
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i. sink if one of the following conditions holds 

 (i.1) ܮ ൒ ߜ    ݀݊ܽ    0 ൏
ି஺మି√௅

஺భ
;  

 (i.2) ܮ ൏ ߜ    ݀݊ܽ    0 ൏ െ
஺మ
஺భ

;  

ii. source if one of the following conditions holds  

(ii.1) ܮ ൒ ߜ    ݀݊ܽ    0 ൐
ି஺మା√௅

஺భ
;  

(ii.2) ܮ ൏ ߜ    ݀݊ܽ    0 ൐ െ
஺మ
஺భ

;  

iii. non-hyperbolic if one of the following conditions holds  

(iii.1) ܮ ൒ ߜ    ݀݊ܽ    0 ൌ
ି஺మേ  √௅

஺భ
ߜ ; ് െ

ଶ

஺మ
, െ

ସ

஺మ
 

(iii.2) ܮ ൏ ߜ    ݀݊ܽ    0 ൌ െ
஺మ
஺భ

;  

iv. saddle if otherwise.  

From Proposition 2.3, we see that two eigenvalues of ܬሺܧଶሻ are ߣଵ ൌ െ1 and ߣଶ ്  if condition 1ט

(iii.1) holds. If (iii.2) is true, then the eigenvalues of ܬሺܧଶሻ are complex having magnitude one.  

 

Let  

ாమܤܨ
ଵ ൌ ቊሺݎ, ,ܭ ܽ, ,ߙ ,ߚ ݀, ሻߜ א ሺ0, ൅∞ሻ: ߜ ൌ

െܣଶ െ ܮ√
ଵܣ

, ܮ ൒ 0, ߜ ് െ
2
ଶܣ

, െ
4
ଶܣ
ቋ, 

or 

ாమܤܨ
ଶ ൌ ቊሺݎ, ,ܭ ܽ, ,ߙ ,ߚ ݀, ሻߜ א ሺ0, ൅∞ሻ: ߜ ൌ

െܣଶ ൅ ܮ√
ଵܣ

, ܮ ൒ 0, ߜ ് െ
2
ଶܣ

, െ
4
ଶܣ
ቋ. 

Then system (3) experiences a flip bifurcation around fixed point ܧଶ if parameters vary in small vicinity of 

either set ܤܨாమ
ଵ  or set ܤܨாమ

ଶ . 

 

Also let 

ாమܤܵܰ ൌ ൜ሺݎ, ,ܭ ܽ, ,ߙ ,ߚ ݀, ሻߜ א ሺ0, ൅∞ሻ: ߜ ൌ െ
ଶܣ
ଵܣ
, ܮ ൏ 0ൠ, 

Then if the parameters change around the setܰܵܤாమ, system (3) experience a NS bifurcation atܧଶ. 

 

3 Direction and Stability Analysis of Bifurcation 

In this section, we will pay attention to determine the direction and stability of flip and NS bifurcations of 

system (3) around ܧଶ by using center manifold theory (Kuzenetsov, 1998). We set ߜ as a real bifurcation 

parameter. 

3.1 Flip bifurcation 
We take parameter ሺݎ, ,ܭ ܽ, ,ߙ ,ߚ ݀, ாమܤܨ ሻ arbitrarily locate inߜ

ଵ . For the case of ܤܨாమ
ଶ , one can do similar 

reasoning. Consider the system (3) at the fixed point ܧଶሺכݔ, ாమܤܨ ሻ parameters lie inכݕ
ଵ .  

Letߜ ൌ ிߜ ൌ
ି஺మି√௅

஺భ
, then the eigenvalues of ܧଶሺכݔ, ிሻߜଵሺߣሻ areכݕ ൌ െ1    and    ߣଶሺߜிሻ ൌ 3 ൅ Aଶߜி. 

In order for |ߣଶሺߜிሻ| ് 1, we have 
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Aଶߜி ് െ2,െ4            (7) 

 

We assume the transformation ݔ෤ ൌ ݔ െ ෤ݕ    ,כݔ ൌ ݕ െ ሻߜሺܣ and write כݕ ൌ ,כݔሺܬ  ሻ. Then we shift theכݕ

fixed point ሺכݔ,  ሻ of system (3) to the origin. After Taylor expansion, system (3) reduces toכݕ

 

൬
෤ݔ
෤൰ݕ ՜ ሻߜሺܣ ൬

෤ݔ
෤൰ݕ ൅ ൬

,෤ݔଵሺܨ ,෤ݕ ሻߜ
,෤ݔଶሺܨ ,෤ݕ ሻߜ

൰          (8) 

where ܺ ൌ ሺݔ෤,   ෤ሻ்is the vector of the transformed systemandݕ

 

,෤ݔଵሺܨ ,෤ݕ ሻߜ ൌ
௔௫෤మఈఋሺ௔௬෤ା௬෤௫ିכ௫෤௬כሻ

ሺ௔ା௫כሻర
െ

௔௫෤ఈఋሺ௔௬෤ା௬෤௫ିכ௫෤௬כሻ

ሺ௔ା௫כሻయ
൅

ଵ

଺

௥௫෤యఋ

௫כమ
൅ ܱሺצ ܺ ସሻצ

,෤ݔଶሺܨ ,෤ݕ ሻߜ ൌ െ
௔௫෤మఉఋሺ௔௬෤ା௬෤௫ିכ௫෤௬כሻ

ሺ௔ା௫כሻర
൅

௔௫෤ఉఋሺ௔௬෤ା௬෤௫ିכ௫෤௬כሻ

ሺ௔ା௫כሻయ
൅ ܱሺצ ܺ ସሻצ

    (9) 

The system (8) can be expressed as 

ܺ௡ାଵ ൌ ௡ܺܣ ൅
1
2
,ሺܺ௡ܤ ܺ௡ሻ ൅

1
6
,ሺܺ௡ܥ ܺ௡, ܺ௡ሻ ൅ ܱሺצ ܺ௡  ସሻצ

where ܤሺݔ, ሻݕ ൌ ൬
,ݔଵሺܤ ሻݕ
,ݔଶሺܤ ሻݕ

൰ and ሺݔ, ,ݕ ሻݑ ൌ ൬
,ݔଵሺܥ ,ݕ ሻݑ
,ݔଶሺܥ ,ݕ ሻݑ

൰ are symmetric multi-linear vector functions of 

,ݔ ,ݕ ݑ א Թଶ and defined as follows: 

,ݔଵሺܤ ሻݕ ൌ ෍  

ଶ

௝,௞ୀଵ

,ߦଵሺܨଶߜ ሻߜ
௞ߦߜ௝ߦߜ

ቤ
కୀ଴

௞ݕ௝ݔ ൌ െ
ߜଵݕଵݔݎ
כݔ

െ
ଵݕଶݔሺܽߜߙܽ ൅ ଶݕଵݔܽ ൅ כݔଵݕଶݔ ൅ כݔଶݕଵݔ െ ሻכݕଵݕଵݔ2

ሺܽ ൅ ሻଷכݔ

,ݔଶሺܤ ሻݕ ൌ ෍  

ଶ

௝,௞ୀଵ

,ߦଶሺܨଶߜ ሻߜ
௞ߦߜ௝ߦߜ

ቤ
కୀ଴

௞ݕ௝ݔ ൌ
ଵݕଶݔሺܽߜߚܽ ൅ ଶݕଵݔܽ ൅ כݔଵݕଶݔ ൅ כݔଶݕଵݔ െ ሻכݕଵݕଵݔ2

ሺܽ ൅ ሻଷכݔ
,

 

,ݔଵሺܥ ,ݕ ሻݑ ൌ ෍  

ଶ

௝,௞,௟ୀଵ

,ߦଵሺܨଶߜ ሻߜ

௟ߦߜ௞ߦߜ௝ߦߜ
ቤ
కୀ଴

௟ݑ௞ݕ௝ݔ ൌ
ߜଵݕଵݔଵݑݎ

ଶכݔ
൅ 

ଶ௔ఈఋሺ௔ሺ௨మ௫భ௬భା௨భ௫మ௬భା௨భ௫భ௬మሻା௨మ௫భ௬భ௫כା௨భሺ௫మ௬భ௫כା௫భ௬మ௫ିכଷ௫భ௬భ௬כሻሻ

ሺ௔ା௫כሻర
, 

,ݔଶሺܥ ,ݕ ሻݑ ൌ ෍  

ଶ

௝,௞,௟ୀଵ

,ߦଶሺܨଶߜ ሻߜ

௟ߦߜ௞ߦߜ௝ߦߜ
ቤ
కୀ଴

௟ݑ௞ݕ௝ݔ ൌ 

 

െ
ଵݕଵݔଶݑሺܽሺߜߚ2ܽ ൅ ଵݕଶݔଵݑ ൅ ଶሻݕଵݔଵݑ ൅ כݔଵݕଵݔଶݑ ൅ כݔଵݕଶݔଵሺݑ ൅ כݔଶݕଵݔ െ ሻሻכݕଵݕଵݔ3

ሺܽ ൅ ሻସכݔ
, 

 

and ߜ ൌ   .ிߜ

 

Let ݌, ݍ א Թଶ  be two eigenvectors of ܣ  for eigenvalue ߣଵሺߜிሻ ൌ െ1 such that ܣሺߜிሻݍ ൌ െݍ  and 

݌ிሻߜሺ்ܣ ൌ െ݌. Then we have 

ቀ2~ݍ െ ிߜ݀ ൅
ఉఋಷ௫כ

௔ା௫כ
, െ

௔ఉఋಷ௬כ

ሺ௔ା௫כሻమ
ቁ
்
and ݌~ ቀ2 െ ிߜ݀ ൅

ఉఋಷ௫כ

௔ା௫כ
,
ఈఋಷ௫כ

௔ା௫כ
ቁ
்
.  
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We use ݌ۃ, ۄݍ ൌ ଵݍଵ݌ ൅ ,݌ ଶ,the standard scalar product in Թଶto normalizeݍଶ݌ ,݌ۃ such that ݍ ۄݍ ൌ 1. To do, 

we set ݌ ൌ Fߛ ቀ2 െ ிߜ݀ ൅
ఉఋಷ௫כ

௔ା௫כ
,
ఈఋಷ௫כ

௔ା௫כ
ቁ
்

, where  

Fߛ ൌ
1

ቀ2 െ ிߜ݀ ൅
ఉఋಷ௫כ

௔ା௫כ
,
ఈఋಷ௫כ

௔ା௫כ
ቁ
ଶ
െ

௔ఈఉఋಷ
మ௫כ௬כ

ሺ௔ା௫כሻయ

. 

The sign of the coefficient of critical normal form݈ଵሺߜிሻ determines the direction of the flip bifurcation and is 

obtained as 

݈ଵሺߜிሻ ൌ
ଵ

଺
,݌ۃ ,ݍሺܥ ,ݍ ۄሻݍ െ

ଵ

ଶ
,݌ۃ ,ݍሺܤ ሺܣ െ ,ݍሺܤሻିଵܫ  (10)      ۄሻሻݍ

We state the following result on direction and stability of flip bifurcation according to above analysis. 

 

Theorem 3.1 If (7) holds, ݈ଵሺߜிሻ ് 0 and the parameter ߜ changes its value in a small vicinity of ܤܨாమ
ଵ , 

then system (3) undergoes a flip bifurcation aroundܧଶሺכݔ, ிሻߜሻ. Moreover, if ݈ଵሺכݕ ൐ 0 (resp., ݈ଵሺߜிሻ ൏ 0) 

then the period-2 orbits that bifurcate from ܧଶሺכݔ,   .ሻ are stable (resp., unstable)כݕ

 

3.2 Neimark-Sacker bifurcation 

Next, we take parameter ሺݎ, ,ܭ ܽ, ,ߙ ,ߚ ݀,  ாమ. We consider system (3) at fixed pointܤܵܰ ሻarbitrarily locate inߜ

,כݔଶሺܧ ,ݎሻ with parameterሺכݕ ,ܭ ܽ, ,ߙ ,ߚ ݀, ሻߜ א  ாమ. Then the roots (eigenvalues) of equation (6), are pairܤܵܰ

of complex conjugate and given by ߣ, ҧߣ ൌ
ି௣ሺఋሻേ௜ටସ௤ሺఋሻ–௣ሺఋሻమ

ଶ
. 

Let ߜ ൌ ேௌߜ ൌ െ
஺మ
஺భ

          (11) 

Therefore, we have|ߣ| ൌ ඥݍሺߜሻ,    ݍሺߜேௌሻ ൌ 1. 

From the transversality condition, we get  

ௗ|ఒሺఋሻ|

ௗఋ
ቚ
ఋୀఋಿೄ

ൌ െ
஺మ
ଶ
് 0          (12) 

Moreover, nondegenerate condition ݌ሺߜேௌሻ ് 0,1, obviously satisfies 

஺మ
మ

஺భ
് 2,3           (13) 

and we have 

ேௌሻߜ௞ሺߣ ് 1    for  ݇ ൌ 1,2,3,4         (14) 

 

Suppose ݍ, ݌ א ԧଶ  are two eigenvectors of ܣሺߜேௌሻ  and ்ܣሺߜேௌሻ  for eigenvalues ߣሺߜேௌሻ  and 

  ேௌሻ such thatߜҧሺߣ

ݍேௌሻߜሺܣ ൌ തݍேௌሻߜሺܣ      ,ݍேௌሻߜሺߣ ൌ  തݍேௌሻߜҧሺߣ

and 

݌ேௌሻߜሺ்ܣ ൌ ҧ݌ேௌሻߜሺ்ܣ      ,݌ேௌሻߜҧሺߣ ൌ  .ҧ݌ேௌሻߜሺߣ

 

By direct computation we obtain  

ቀ1~ݍ െ ேௌߜ݀ ൅
ఉఋಿೄ௫כ

௔ା௫כ
െ െ,ߣ

௔ఉఋಿೄ௬כ

ሺ௔ା௫כሻమ
ቁ
்
and݌~ቀ1 െ ேௌߜ݀ ൅

ఉఋಿೄ௫כ

௔ା௫כ
െ ,ҧߣ

ఈఋಿೄ௫כ

௔ା௫כ
ቁ
்
. 
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For normalization of vectors ݌  and ݍ, we set ݌ ൌ NSߛ ቀ1 െ ேௌߜ݀ ൅
ఉఋಿೄ௫כ

௔ା௫כ
െ ,ҧߣ

ఈఋಿೄ௫כ

௔ା௫כ
ቁ
்

, where ߛNS ൌ

ଵ

ቀଵିௗఋಿೄା
ഁഃಿೄೣ

כ

ೌశೣכ
ିఒഥቁ

మ
ି
ೌഀഁഃಿೄ

మ כ೤כೣ

ሺೌశೣכሻయ

. 

Then it is clear that ݌ۃ, ۄݍ ൌ 1 where ݌ۃ, ۄݍ ൌ ଶݍҧଵ݌ ൅ ,݌ ଵ forݍҧଶ݌ ݍ א ԧଶ.  Now, we decompose 

vector ܺ א Թଶas ܺ ൌ ݍݖ ൅ ݖ ேௌ andߜ close to ߜ ത, forݍҧݖ א ԧ. Obviously, ݖ ൌ ,݌ۃ  Thus, we obtain the .ۄܺ

following transformed form of system (8) for |ߜ|near ߜேௌ:  

ݖ հ ݖሻߜሺߣ ൅ ݃ሺݖ, ,ҧݖ  ,ሻߜ

where ሻߜሺߣ  ൌ ሺ1 ൅ ߮ሺߜሻሻ݁௜ఏሺఋሻ  with ߮ሺߜேௌሻ ൌ 0  and ݃ሺݖ, ,ҧݖ ሻߜ  is a smooth complex-valued function. 

After Taylor expression of ݃ with respect to ሺݖ,   ҧሻ, we obtainݖ

݃ሺݖ, ,ҧݖ ሻߜ ൌ ෍  
௞ା௟ஹଶ

1
݇! ݈!

݃௞௟ሺߜሻݖ௞ݖҧ௟,    with    ݃௞௟ א ԧ, ݇, ݈ ൌ  .ڮ,0,1

According to multilinear symmetric vector functions, the coefficients ݃௞௟ are  

݃ଶ଴ሺߜேௌሻ ൌ ,݌ۃ ,ݍሺܤ ேௌሻߜଵଵሺ݃    ,ۄሻݍ ൌ ,݌ۃ ,ݍሺܤ  ۄതሻݍ

݃଴ଶሺߜேௌሻ ൌ ,݌ۃ ,തݍሺܤ ேௌሻߜଶଵሺ݃    ,ۄതሻݍ ൌ ,݌ۃ ,ݍሺܥ ,ݍ  ,ۄതሻݍ

 

The coefficient ݈ଶሺߜேௌሻ which determines the direction of NS bifurcationin a generic system exhibiting 

invariant closed curve can be calculated via 

݈ଶሺߜேௌሻ ൌ R݁ ቆ
݁ି௜ఏሺఋಿೄሻ݃ଶଵ

2
ቇ െ R݁ ቆ

ሺ1 െ 2݁௜ఏሺఋಿೄሻሻ݁ିଶ௜ఏሺఋಿೄሻ

2ሺ1 െ ݁௜ఏሺఋಿೄሻሻ
݃ଶ଴݃ଵଵቇ െ

1
2
|݃ଵଵ|ଶ െ

1
4
|݃଴ଶ|ଶ, 

where ݁௜ఏሺఋಿೄሻ ൌ   .ேௌሻߜሺߣ

Summarizing above analysis, we present the following theorem for direction and stability of NS bifurcation. 

 

Theorem 3.2 If (13) holds, ݈ଶሺߜேௌሻ ് 0 and the parameter ߜ changes its value in small vicinity of ܰܵܤாమ, 

then system (3) passes through a Neimark-Sacker bifurcation around ܧଶ. Moreover, if ݈ଶሺߜேௌሻ ൏ 0 (resp.,൐

0), then there exists a unique attracting (resp., repelling) invariant closed curve bifurcates from ܧଶ.  

 

Table 1 Parameter values. 

Cases Varying parameter 

in range 

Fixed parameters System 

Dynamics  

Case (i) 2.15 ൑ ߜ ൑  ݎ 2.88 ൌ  1.75, ܭ ൌ 1.0, ܽ ൌ 0.4, ߙ ൌ 0.5, ߚ ൌ 0.05, ݀  ൌ  0.01 FB 

Case (ii) 1.8 ൑ ߜ ൑  ݎ 2.95 ൌ  1.25, ܭ ൌ 1.05, ܽ ൌ 0.3, ߙ ൌ 0.5, ߚ ൌ 0.4, ݀  ൌ  0.15 NS 

Case (iii) 0.248 ൑ ܽ ൑  ݎ 0.32 ൌ  1.25, ܭ ൌ 1.05,

ߙ ൌ 0.5, ߚ ൌ 0.4, ݀ ൌ 0.15, ߜ ൌ 2.04827 

NS 

 

 

4 Numerical Simulations 

In this section, numerical simulation are performed to validate our theoretical results, especially, we present 

bifurcation diagrams of system (3) around ܧଶ, phase portraits, maximum Lyapunov exponents and fractal 

dimension corresponding to bifurcation diagrams. We assume that ߜ is a real bifurcation parameter unless 

stated. We consider different set of parameter values for bifurcation analysis as given in Table 1. 
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Example 1: Flip bifurcation of system (3) with respect to bifurcation parameter ߜ. 

We set values of parameter as given incase (i). By calculation, we obtain a unique fixed point 

,ଶሺ 0.1ܧ 4.02952ሻ of system (3). The critical point for FB is ߜி~2.20115. It is observed that the system (3) 

experiences a FB around ܧଶ  when ߜ  passes its critical value ߜி .Atߜ ൌ ிߜ , the two eigenvalues are 

ଵߣ ൌ െ1, ଶߣ ൌ 0.921907, ݈ଵሺߜிሻ ൌ 349.055and ሺݎ, ,ܭ ܽ, ,ߙ ,ߚ ݀, ሻߜ א ாమܤܨ
ଵ . This verifies Theorem 3.1. 

The bifurcation diagrams shown in Fig. 1(a-b) reveal that stability of fixed point ܧଶ happens for ߜ ൏  ,ிߜ

at ߜ ൌ ߜ ி system (3) loses its stability and forߜ ൐  ி there exists a period doubling phenomena leading toߜ

chaos. There exists period -2,-4, -8orbits occur for the window ߜ  א ሾ2.1,2.7942ሿ  and chaotic set for 

ߜ א ሾ2.7942,2.88ሿ. The MLEs and FD related to Fig. 1(a-b) are computed and displayed in Fig. 1(c-d). The 

status of stable, periodic or chaotic dynamics are compatible with sign of MLE as in Fig. 1(c-d). The phase 

portraits of bifurcation diagrams in Fig. 2(a-b) for different values of ߜ are displayed in Fig. 2. 

 

(a)                                (b) 

 

(c)                           (d) 

 

Fig. 1 Flip bifurcation and Lyapunov exponent of system (3). (a) FB in prey, (b) FB in predator, (c) MLEs related to (a-b), (d) FD 

corresponding to (a). Initial value ሺݔ଴, ଴ሻݕ ൌ ሺ0.1,4.02ሻ. 

 

Example 2: NS bifurcation of system (3) with respect to bifurcation parameter ߜ. 

With the variation of parameter ߜ, the system (3) exhibits much richerdynamics through the emergence of NS 

bifurcation. We take parameters as given in case (ii). After calculation, we find a unique fixed point 

,ଶሺ0.18ܧ 2.11631ሻ. A NS bifurcation point is obtained asߜ ൌ  ேௌ~2.04827. It is shown that the system (3)ߜ

experiences a NS bifurcation around ܧଶ  when ߜ  passes its critical value ߜேௌ . Also at ߜ ൌ ேௌߜ we 
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haveߣ, ҧߣ ൌ 0.566465 േ  0.824086 ݅ , ݃ଶ଴ ൌ 0.135473  ൅  0.245758 ݅ ,݃ଵଵ ൌ 2.2689  െ  0.906715 ݅ ,݃଴ଶ ൌ

െ1.25699  ൅  4.9813 ݅ , ݃ଶଵ ൌ െ4.96799  ൅  6.72114 ݅ , and ݈ଶሺߜேௌሻ ൌ െ8.120394164511106 . It is 

obvious that ሺݎ, ,ܭ ܽ, ,ߙ ,ߚ ݀, ሻߜ א  .ாమ. This verifies the correctness of Theorem 3.2ܤܵܰ

 

 

 

Fig. 2 Phase portraits (ݕݔ-plane) of bifurcation diagrams Fig. 1(a-b) for different values of ߜ. 

 

The bifurcation diagrams shown in Fig. 3(a-b) demonstrate that ܧଶis stabile forߜ ൏  ேௌ, loses its stabilityߜ

at ߜ ൌ ߜ ேௌ and an attracting invariant curve appears ifߜ ൐  ேௌ. We dispose the MLEs in Fig. 3(c) relatingߜ

bifurcation in Fig. 3(a-b), which confirm the existences of chaos and periodic orbits as parameter ߜ varying. 

These results indicate that NS bifurcation instigates a route to chaos, through a dynamic transition from a 

stable state, to invariant closed cycle, with periodic and quasi-periodic states occurring in between, to chaotic 

sets. For instance, when 2.95~ߜ, the sign of MLE confirming presence of chaos. Fig. 3(d) is local 

amplification of Fig. 3(a) for ߜ א ሾ2.75,2.95ሿ. 

The phase portraits of bifurcation diagrams in Fig. 3(a-b) for different values of ߜ are displayed in Fig. 4, 

which clearly illustrates the act of smooth invariant curve how it bifurcates from the stable fixed point and 

increases its radius. As ߜ grows, disappearance of closed curve occurs suddenly and a period-6, -11, -20, -10, 

-5 and period -25 orbits appear at 2.835~ߜ ,2.582~ߜ ,2.283~ߜ, ,2.858~ߜ  2.9155~ߜ and ,2.8925~ߜ

respectively. We also see that a fully developed chaos in system (2) occurs at 2.95~ߜ. 

 

Example 3: NS bifurcation of system (3) with respect to bifurcation parameter ܽ. 

With the variation of other parameter values (e.g., parameter ܽ), the predator-prey system (3) may exhibit 

another richer dynamical behaviors. When we set the parameter values as given in case (iii), a new NS 

bifurcation diagram is obtained as disposed in Fig. 5(a-b). The system firstly enters chaotic dynamics for small 

value of ܽ. However, with the increase of ܽ value, the chaotic dynamics of the system suddenly disappear 
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through a NS bifurcation occurring first atܽ ൌ ܽேௌ~0.3. Similar nonlinear characteristics to Figures 3 and 4 

are found in this case, such as route to chaos, invariant curves, chaotic attractors, periodic and quasi-periodic 

states. The MLE corresponding to Fig. 5(a-b) is computed and plotted in Fig. 5(c), which confirm the 

existences of chaos and periodic orbit as parameter ܽ varying. We notice that system dynamics is stable if 

ܽ ൐ ܽேௌ, loses its stability at ܽ ൌ ܽேௌ and an attracting invariant closed curve appears if ܽ ൏ ܽேௌ. That is 

decreased values of parameter ܽ causes complex system dynamics which trigger a route to chaos via NS 

bifurcation. As ܽdecreases, closed curve suddenly disappear and a period -7, -14, and -28 orbits and attracting 

chaotic sets appear at ܽ~0.2562, ܽ~0.2542, ܽ~0.2528 and ܽ~0.249 respectively. 

 

(a)                            (b) 

 

 (c)                       (d)     (e) 

Fig. 3 NS bifurcation and Lyapunov exponent of system (3). (a) NS bifurcation in prey, (b) NS bifurcation in predator, (c) 

MLEs related to (a-b), (d) local amplification of (a) for ߜ א ሾ1.8,2.95ሿ (e) FD associated with (a). Initial value ሺݔ଴, ଴ሻݕ ൌ

ሺ0.17,2.11ሻ. 

 

Example 4: Parametric basins of attractions. 

When two more parameters change through its critical values, then system (3) can exhibit more complex 

dynamic behavior. Ina 2D parameter space the parametric basins of attraction (Gkana, 2013) is plotted to 

notice how the system dynamics qualitatively change as parameter values increase. This plot (Fig. 6) is a 

numerical analysis tool in which the different colors describe different stability states. So, we first plot (Fig. 6a) 

the parametric basins of attraction for the parameter values ܽ א ሾ0248, 0.32ሿ and ߚ א ሾ0.35, 0.5ሿ and rest of 

parameter values as in case (ii) or case (iii). Fig. 6b is the plot in the parametric plane ሺܽ, ܽ ሻ withߜ א

ሾ0248, 0.32ሿ and ߜ א ሾ1.8, 2.95ሿ. Fig. 6b is the plot in the parametric plane ሺߚ, ߚ ሻ withܭ א ሾ0.35, 0.5ሿ and 

ܭ א ሾ1.0, 1.258ሿ. It is simple to find values of control parameters for which the dynamics of system (3) is in 
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status of non-chaotic, periodic or chaotic. The red and blue regions for an attracting fixed point and/or for 

stable periodic cycles. The white region corresponds to those parameters values for which the solution 

trajectories may be quasi-periodic (invariant curves) or non-periodic (chaos, strange attractors). The black 

region is the set of parameters for which the solution trajectories diverge to infinity.  

From 2D parameter space (Fig. 6) we observe the following:  

 The increases values of control parameters ܽ and ߚ, the solution behaviors of system (3) change from 

non-periodic to an attracting fixed point or stable periodic cycle.     

 The increases values of control parameters ܽ and ߜ, the dynamics of system (3) change from chaotic 

to non-chaotic states.     

 The increases values of control parameters ߚ and ܭ, the system dynamics significantly change from 

non-chaotic to chaotic states.     

 

 

 

 

 

Fig. 4 Phase portraits (ݕݔ-plane) of bifurcation diagrams Fig. 3(a-b) for different values of ߜ. 
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Fractal dimension of system (3) 

The measure of fractal dimensions characterizes the strange attractors of a system. By using Lyapunov 

exponents, the fractal dimension (Cartwright, 1999; Kaplan and Yorke, 1979) is defined by 

݀௅ ൌ ݆ ൅
∑  ௝
௜ୀଵ ݄௜
| ௝݄|

 

where݄ଵ, ݄ଶ, . . . , ݄௡  are Lyapunov exponents and ݆  is the largest integer such that ∑  ௝
௜ୀଵ ݄௜ ൒ 0  and 

∑  ௝ାଵ
௜ୀଵ ݄௜ ൏ 0. 

For our two-dimensional system (3), the fractal dimension takes the form  

݀௅ ൌ 1 ൅
௛భ
|௛మ|

,    ݄ଵ ൐ 0 ൐ ݄ଶ and ݄ଵ ൅ ݄ଶ ൏ 0.  

With parameter values as in case (ii), the fractal dimension of system (3) is plotted in Fig. 3(e). The strange 

attractors given in Fig. 4 and its corresponding FD illustrate that the increase values of parameter ߜ causes a 

chaotic dynamics for the predator-prey system (3). 

 

 

(a)                                (b) 

 

(c)                                    (d) 

Fig. 5 NS bifurcation and Lyapunov exponent of system (3). (a) NS bifurcation in prey, (b) NS bifurcation in predator, (c) MLEs 

related to (a-b), (d) FD associated with (a). Initial value ሺݔ଴, ଴ሻݕ ൌ ሺ0.17,2.11ሻ. 

 

5 Chaos Control 

To stabilize chaos at the state of unstable trajectories of system (3), a state feedback control method (Elaydi, 

1996) is applied. By adding a feedback control law as the control force ݑ௡ to system (3), the controlled form 
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of system (3) becomes 

௡ାଵݔ ൌ ௡ݔ ൅ ߜ ቂݔݎ௡ ln ቀ
௄

௫೙
ቁ െ

ఈ௫೙
௔ା௫೙

௡ቃݕ ൅ ௡ݑ

௡ାଵݕ ൌ ௡ݕ ൅ ߜ ቂ
ఉ௫೙
௔ା௫೙

௡ݕ െ ௡ቃݕ݀
       (15) 

and 

௡ݑ ൌ െ݇ଵሺݔ௡ െ ሻכݔ െ ݇ଶሺݕ௡ െ ,כݔሻ where ݇ଵand  ݇ଶ are the feedback gains and ሺכݕ  ሻ represent positiveכݕ

fixed point of system (3). The Jacobian matrix ܬ௖ of the controlled system (15) is given by 

,כݔ௖ሺܬ ሻכݕ ൌ ൬
݆ଵଵ െ ݇ଵ ݆ଵଶ െ ݇ଶ
݆ଶଵ ݆ଶଶ

൰        (16) 

where ݆௣௤, ,݌ ݍ ൌ 1,2 given in (5) are evaluated at ሺכݔ,  ሻ. The characteristic equation of (16) isכݕ

 

ଶߣ െ ሺܬݎݐ௖ሻߣ ൅ ௖ܬݐ݁݀ ൌ 0         (17) 

where ܬݎݐ௖ ൌ ݆ଵଵ ൅ ݆ଶଶ െ ݇ଵ and ݀݁ܬݐ௖ ൌ ݆ଶଶሺ݆ଵଵ െ ݇ଵሻ െ ݆ଶଵሺ݆ଵଶ െ ݇ଶሻ. Let ߣଵ  and  ߣଶ be the roots of (17). 

Then 

ଵߣ ൅ ଶߣ ൌ ݆ଵଵ ൅ ݆ଶଶ െ ݇ଵ         (18) 

and 

ଶߣଵߣ ൌ ݆ଶଶሺ݆ଵଵ െ ݇ଵሻ െ ݆ଶଵሺ݆ଵଶ െ ݇ଶሻ        (19) 

 

 
Fig. 6 Diagnostic of system (3) in a 2D parameter space. (a) parametric basins of attraction in ሺܽ,  ሻ-plane (b) parametric basinsߚ

of attraction in ሺܽ, ,ߚሻ-plane (c) parametric basins of attraction inሺߜ  .ሻ-planeܭ

 

The solution of the equations ߣଵ ൌ േ1  and  ߣଵߣଶ ൌ 1 determines the lines of marginal stability. These 

conditions confirm that |ߣଵ,ଶ| ൏ 1. Suppose that ߣଵߣଶ ൌ 1, then from (19) we have  

݈ଵ: ݆ଶଶ݇ଵ െ ݆ଶଵ݇ଶ ൌ ݆ଵଵ݆ଶଶ െ ݆ଵଶ݆ଶଵ െ 1. 

Assume that ߣଵ ൌ 1, then from (18) and (19) we get  

݈ଶ: ሺ1 െ ݆ଶଶሻ݇ଵ ൅ ݆ଶଵ݇ଶ ൌ ݆ଵଵ ൅ ݆ଶଶ െ 1 െ ݆ଵଵ݆ଶଶ ൅ ݆ଵଶܽଶଵ. 

Next, assume that ߣଵ ൌ െ1, then from (18) and (19) we obtain  

݈ଷ: ሺ1 ൅ ݆ଶଶሻ݇ଵ െ ݆ଶଵ݇ଶ ൌ ݆ଵଵ ൅ ݆ଶଶ ൅ 1 ൅ ݆ଵଵ݆ଶଶ െ ݆ଵଶ݆ଶଵ. 

We determine a triangular region in the ሺ݇ଵ, ݇ଶሻ-plane by plotting the lines ݈ଵ, ݈ଶ, and  ݈ଷ (see Fig. 7(a)) 

which keeps eigenvalues with magnitude less than 1. In order to check how the implementation of feedback 

control method works and controls chaos at unstable trajectories, we have carried out numerical simulations. 
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With fixed ߜ ൌ 2.95 and rest parameters as in case (ii), we consider the feedback gains are as݇ଵ ൌ

1.05  and  ݇ଶ ൌ െ0.35. The initial value is ሺݔ଴, ଴ሻݕ ൌ ሺ0.17,2.11ሻ and Fig.7(b) and 7(c) show that at the 

fixed point ሺ0.18, 2.11631ሻ, the chaotic trajectory is stabilized.  

 

(a)    (b)                           (c) 

Fig. 7 Control of chaotic trajectories of system (15). (a) Stability region in ሺ݇ଵ, ݇ଶሻ plane (b-c) Time series for states ݔ and ݕ 

respectively. 

 

 

6 Discussions 

This work is concerned with the dynamics of a discrete-time predator-prey system with Michaelis-Menten 

functional response and Gompertz growth of prey in the closed first quadrant Թା
ଶ . By the center manifold 

theory, we determine the existence condition and direction of flip and NS bifurcations of system (3) around ܧଶ. 

In particular, we show that the system (3) can undergo a flip and NS bifurcation at unique fixed pointܧଶ if ߜ 

varies around the sets ܤܨாమ
ଵ  or ܤܨாమ

ଶ  and ܰܵܤாమ. Based on Figures, we notice that the small integral step size 

 can stabilize the dynamical system (3), but the large integral step size may destabilize the system producing ߜ

more complex dynamical behaviors. In addition, we see that the appropriate choice of the half saturation 

parameter ܽ can stabilize the dynamical system (3). However, for the low values of ܽ destabilize system 

(3).Numerical simulations present unpredictable behaviors of the system through a flip bifurcation which 

include orbits of period-2, -4, -8orbits and through a NS bifurcation which include an invariant cycle, orbits of 

period -5, -6, -7, -10, -11, -14, -20, -25 and period -28 orbits and chaotic sets respectively. These indicate that 

at the state of chaos, the system is unstable and particularly, the predator goes to extinct or goes to a stable 

fixed point when the dynamic of prey is chaotic. We confirm about the existence of chaos through the 

computation of MLEs and FD. The two bifurcations (FB and NSB) both trigger a route to chaos via periodic 

and quasi-periodic states; that is, chaotic dynamics appear or disappear along with the emergence of 

bifurcations. Moreover, we plot the parametric basins of attraction for system (3) by the variation of two 

control parameters. This plot exhibits very rich nonlinear dynamical behaviors and one can directly observe 

from this 2D parametric space when the system dynamics will be periodic, quasi-periodic and chaotic. Finally, 

the chaotic trajectories at unstable state are controlled by implementing the strategy of feedback control. In 

future, we would expect to obtain more analytical results on multiple parameter bifurcation exist in the system.   
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