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Abstract 
Calculation of statistical power is important for proper interpretation of research results. Statistical Power 

depends on the selected significance level, sample size and effect size. Selection of an appropriate formula for 

calculating power of a test is dependent on the study design, type and statistical distribution of data and the 

statistical test. In this paper, several formulas are presented with examples for calculating power for one 

sample mean test and one sample proportion test, comparing between two independent groups and two paired 

groups, correlation analysis, simple and multiple linear regression, simple and multiple logistic regression, 

contingency tables and analysis of variance (ANOVA). 
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1 Introduction 

One of the most important stages of vegetation studies is calculation of statistical power. The power of a 

statistical test is the probability that it will yield statistically significant results. Power of a test is defined as the 

probability of correctly rejecting the null hypothesis when it is false, and it is equal to 1 - ߚ. Type II error (ߚ) 

is the probability of accepting the null hypothesis when it is false. The power of a test depends upon three 

parameters; sample size, significance level and effect size.  

In vegetation studies, sample size is the required number of samples (e.g., number of plots, points, 

transects, plant individuals, seed and fruit traps, etc.) taken for estimating and comparing vegetation 

characteristics such as cover, biomass, density, production, height, diameter, richness, nutrients, rooting depth 

and interactions. The larger the sample size, other things (significance level, effect size) being equal, the larger 

the power. Significance level (ߙ) or Type I error is the probability of rejecting the null hypothesis, when it is 

true. The lower the value of significance level, the lower the power of the test (Cohen, 1988). The most 

common significance levels used in vegetation studies are 10%, 5% and 1% (Federal register Vol. 44, No 50; 

1979; Stauffer, 1983; Mosley et al., 1989; Hofmann and Ries, 1990).  

Effect size is the minimum detectable difference between the groups being compared. The term “effect size” 
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was defined by Cohen (1988) as the degree to which the phenomenon is present in the population. Some 

examples of the effect size include the difference between sample mean and true mean in a one sample t-test, 

the difference between two proportions in a comparison of two independent proportions, the correlation 

coefficient and the slope of a linear regression model. The larger the effect size, the greater the statistical 

power. Standard deviation is another important parameter that is usually used for calculating effect size, 

sample size and power (Nedorezov, 2014; Zhang, 2017). 

The statistical power can be calculated before and after data collection. The power can be calculated before 

data collection using previous studies to obtain the required sample size. When the power is calculated after 

data collection, it can be used to verify whether a non-significant result is due to lack of relationship between 

the groups or due to lack of statistical power. An ideal study is the one with a high power. This means that the 

study has a high chance of detecting a difference between groups if it exists (Suresh and Chandrashekara, 

2012). Common values for power in vegetation studies are 0.8 and 0.9 or higher depending on the study (Peek 

et al., 2003; Moffet, 2009; Conser and Connor, 2009). 

Different research designs and statistical tests need different methods of power calculations, and one single 

formula cannot be used for all research designs (Charan and Biswas, 2013). In this paper several formulas are 

explained for calculating statistical power with examples according to the study designs and statistical tests. 

The power formulas presented in this paper can be used for testing the difference from a constant, comparing 

two means based on paired and unpaired groups, comparing two independent proportions, correlation analysis, 

simple and multiple linear regression, simple and multiple logistic regression, contingency tables and analysis 

of variance (ANOVA). 

The most frequently used software for power calculations are G* Power (Erdfelder et al., 1996; Faul et al., 

2007), PS (Dupont and Plummer, 1997) and PASS (StataCorp, L. P. 2013). For a review of statistical power 

analysis software see Thomas and Krebs (1997).   

The formulas and examples presented in this paper are for calculating the power based on a two sided-test, 

and the smaller of the two terms of formulas is negligible and therefore is ignored (except for ANOVA, 

multiple linear regression and Chi-square). For one-sided tests, the approximations obtained from the formulas 

are exact, with tୟ used instead of tୟ/ଶ, and Z used instead of Z/ଶ in the formulas (Z=1.645 at 5% and 

Z= 2.326 at 1% significance level). 

   

2 Methods 

2.1 Power calculation for one-sample mean test  

Suppose the objective is to test the difference of the mean of a quantitative variable (e.g., biomass, density, 

production) from a constant using one sample t-test to see if the difference is significant. Then the following 

formula is used to calculate the power of the test 

 

1 െ ߚ ൌ ܶିଵ ൬√݊  ൈ
݀
ܵ
൰ െ ഀݐ

మ
,ିଵ൨  ܶିଵ ൬െ√ܰ  ൈ

݀
ܵ
൰ െ ഀݐ

మ
,ିଵ൨ 

 

ܶିଵሺݔሻ is the cumulative probability distribution for a t statistic with N-1 degrees of freedom. ݐఈ/ଶ,ିଵ is the 

value of t-distribution based on the significance level (ߙ) and the degrees of freedom (N-1), N is sample size, S 

is the standard deviation of the quantitative variable, d is the difference between the sample mean and the 

constant. The effect size is defined as ݀/ݏ. 

Example 

Suppose a researcher wishes to determine the accuracy of density estimates by quadrat. To do this, total 
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number of plants is counted to be 2000 in a 100 ݉ଶ sampling area and the true density is calculated as 

2000/100= 2 ݉ିଶ. This density is assumed to be the true density. The density is also estimated using 20 

located quadrats as “number of plants/quadrat area” in the sampling area and the mean density is 2.3 ݉ିଶ with 

the standard deviation of 0.45. The power for detecting the difference between the estimated density and the 

actual density at 5% significance level is calculated as follows 

For N=20, df is 20-1=19 and at ഀݐ ,0.05=ߙ
మ
,ିଵ is 2.093 

൬√20  ൈ
2.3 െ 2
0.45

൰ െ 2.093 ൌ 0.888 

 

From t-table, in row df= 19, the value of t is 0.861 for power (1- ߚ)=0.8 and the value of t is 1.066 for power 

 is calculated using interpolation as 0.888 = ݐ The power for .0.85=(ߚ -1)

 

0.8 
0.888 െ 0.861
1.066 െ 0.861

ሺ0.85 െ 0.8ሻ ൌ 0.807 

and 

൬െ√20  ൈ
2.3 െ 2
0.45

൰ െ 2.093 ൌ െ4.94 

 

From t-table in row df= 19, for 4.94- = ݐ, the power is 0.00005. Then the power of the test is 0.807 

0.00005 ൌ 0.80705. The smaller of the two terms is negligible and can be ignored. Therefore the power can 

be calculated as 

ఉݐ ൌ ሺ√ܰ  ൈ
|݀|
ܵ
ሻ െ ഀݐ

మ
,ିଵ 

The power can be calculated using the value of ݐఉ from t-distribution table. The above-equation can be used 

to calculate the power for a one-sided test with ݐ/ଶ replaced by ݐ. The above power formula can be used to 

test the difference of mean plant biomass, production, density, plant height, seed production, litter, rooting 

depth and nutrients from a constant.  

2.2 Power calculation for one sample proportion test  

Suppose the objective is to test the difference of plant cover proportion estimated by points from a constant 

(e.g., cover proportion measured by transect or quadrat) to detect if there is any significant difference. Then the 

following equation should be used for calculating the power of the test 

 

ఉܼ ൌ ൣห2ܽ݊݅ݏܿݎඥ ଵܲ െ ඥ݊݅ݏܿݎ2ܽ ܲห ൈ √ܰ ൧ െ ܼఈ/ଶ 

 

The power is calculated using the value of ఉܼ from the table of standard normal probabilities. ܼఈ/ଶ is 

standard normal variate for significance level (ܼఈ/ଶ=1.96 at 5% and ܼఈ/ଶ= 2.576 at 1% Type I error), ଵܲ is 

the expected proportion in population, ܲ is the tested proportion (constant) and N is the size of sample. The 

effect size is defined as ଵ െ   .For a one-sided test, ܼఈ is used instead of ܼఈ/ଶ in the equation (ܼఈ=1.645

at 5% and ܼఈ= 2.326 at 1% significance level).   

Example 

The cover of plants in a large sampling plot is measured to be 40% by line transects (based on total length of 

intercepted plants divided by the transect length). This cover is assumed to be the true cover. The cover 

proportion is also estimated to be 46% by 460 located points in the sampling plot (as % of points contacted 
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with plants). The statistical power for testing the difference between the estimated cover by points and the true 

cover at 5% significance level is 

 

ఉܼ ൌ ൣห2ܽ0.46√݊݅ݏܿݎ െ 0.4ห√݊݅ݏܿݎ2ܽ ൈ √460 ൧ െ 1.96 ൌ 0.641 

 

From the z-table the power for the value of ఉܼ ൌ 0.641 is 0.73. The above power equation can be used to test 

the difference of proportion (such as proportion of quadrats occupied by a plant species in a population, 

proportion of plants associated with fungi, bacteria species or epiphytes, proportion of germinating seeds in a 

plant species, proportion of plants having a disease in a population) from a constant.  

2.3 Power calculation for comparing two independent samples with quantitative data 

Suppose a researcher wishes to determine the effects of grazing on the biomass of plants by comparing the 

mean biomass of plants between the grazed and ungrazed (exclosure) plots. In such case, independent sample 

t-test can be used to test if the difference between the two means is significant. The power is then calculated 

using the following equation if equal variances are assumed  

ఉݐ ൌ
|݀|

ܵ ൈ ට
ଵ

భ


ଵ

మ
 
െ ഀݐ

మ
,భାమିଶ

 

The power is calculated using the value of ݐఉ from t-distribution table based on the degrees of freedom 

݊ଵ  ݊ଶ െ  ఈ/ଶ ,భାమିଶ is the value of t-distribution based on the significance level and the degrees ofݐ ,2

freedom (݊ଵ  ݊ଶ െ 2) and S is the standard deviation calculated as follows  

 

ܵ ൌ ඨ ଵܵ
ଶሺ݊ଵ െ 1ሻ  ܵଶ

ଶሺ݊ଶ െ 1ሻ

݊ଵ  ݊ଶ െ 2
 

ଵܵ and ܵଶ are the standard deviation of group1 and 2 respectively, and ݊ଵ and ݊ଶ are respectively the size of 

group 1 and 2. d is the difference between the two means (ݔҧଵ െ  ҧଶ). The effect size in this equation can beݔ

defined as ݀/ܵ (Cohen, 1988). 

Example 

Suppose the mean biomass of plants in 15 ungrazed (exclosure) plots is 80 g with standard deviation of 14.5, 

and the mean biomass of plants in 15 grazed plots is 60 g with standard deviation of 13.5. Then, the power for 

testing the difference between the two means at 0.01 significance level is calculated as follows 

ܵ ൌ ඨ
14.5ଶሺ15 െ 1ሻ  13.5ଶሺ15 െ 1ሻ

15  15 െ 2
ൌ 14 

 

 and df= 15+15-2=28 is 2.763 0.01=ߙ ఈ/ଶ ,భାమିଶ forݐ 

 

ఉݐ ൌ
|80 െ 60|

14 ൈ ට ଵ

ଵହ


ଵ

ଵହ
 
െ 2.763 ൌ 1.15 

From t-table, in row df= 28, ݐఉ is 1.056 for power (1- ߚ)=0.85 and ݐఉ is 1.313 for power (1- ߚ)=0.90. Then 

the power for ݐఉ = 1.15 is calculated using interpolation as 

 

0.85 
1.15 െ 1.056
1.313 െ 1.056

ሺ0.90 െ 0.85ሻ ൌ 0.87 
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If equal variances are not assumed then the power is calculated using  

ఉݐ ൌ
|ௗ|

ඨೄభ
మ

భ
ା
ೄమ
మ

మ
 

െ ഀݐ
మ
,௩  and the degrees of freedom (v) is calculated as ݒ ൌ

ሺ
ೄభ
మ

భ
ା
ೄమ 
మ

మ
ሻమ

ሺ
ೄభ
మ

భ
ሻమ

భషభ
ା
ሺ
ೄమ 
మ

మ
ሻమ

మషభ

 

The above-mentioned power equation can be used to calculate the statistical power for comparing the 

attributes such as density, biomass, height, litter, seed production and nutrients between the plants which are 

and are not associated with other organisms (e.g., fungus, epiphytes), the plants which are and are not exposed 

to pollutants, the plants which are and are not manured and between the plants in two stands. 

2.4 Sample size calculation for comparing two independent proportions  

A researcher wants to determine the effects of gibberellins and cytokinin hormones on percentage germination 

of seeds of a plant species. To do this, two groups of seeds were selected; one group was treated with 

gibberellins and one group with cytokinin. The proportions of germinated seeds in both groups were compared 

to detect any significant difference. Then, the following formula is used to calculate power when two groups 

are equal 

    

ఉܼ ൌ
| ଵܲ െ ଶܲ|

ටଶ ሺଵିሻ

ே

െ ܼఈ/ଶ 

The power is calculated using the value of ఉܼ from the table of standard normal probabilities. ܼఈ/ଶ is 

standard normal variate for significance level (ܼఈ/ଶ=1.96 at 5%= ߙ and ܼఈ/ଶ= 2.576 at 1%= ߙ). N is sample 

size, ଵ and ଶ are respectively the proportion of events in group 1 and 2. p is the average proportion of the 

events = (proportion of the event in group1 + proportion of the event in group2)/2. The effect size can be 

defined as ଵ െ ,ଶ  .ଵ or the odds ratio/ଶ

Example 

Suppose 80% of 35 seeds exposed to gibberellins and 40% of 35 seeds exposed to cytokinin were germinated 

within a specified time. The power for detecting the difference between the two proportions at 0.05=ߙ is 

calculated as follows 

ܲ ൌ ሺ0.8  0.4ሻ/2 ൌ 0.6  

ఉܼ ൌ
|0.8 െ 0.4|

ටଶ ൈ.ሺଵି.ሻ

ଷହ

െ 1.96 ൌ 1.46 

The power for the value of ఉܼ ൌ 1.46 is 0.926 from z-table. In the above example if N=10, then the power at 

 is 0.05=ߙ

  

ఉܼ ൌ
|0.8 െ 0.4|

ටଶ ൈ.ሺଵି.ሻ

ଵ

െ 1.96 ൌ െ0.134 

 

The power for the value of ఉܼ ൌ െ0.134 is 0.447 from z-table.  

If the size of two groups are unequal ሺ݊ଵ ് ݊ଶሻ, the power is calculated as 

  

ఉܼ ൌ
| ଵܲ െ ଶܲ|

ටሺ1 െ ሻሺ
ଵ

భ


ଵ

మ
ሻ
െ ܼఈ/ଶ 
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The above equation can be used to calculate the required power for comparing the effects of factors such as 

hormones, water etc, on seed germination. 

2.5 Power calculation for comparing two paired (dependent) samples with quantitative data 

Suppose a researcher wishes to compare the differences in biomass of plants in fixed plots before and one year 

after the fire using paired sample t-test to see if the differences are significant. Then the following formula is 

used to calculate the power of the test 

  

ఉݐ ൌ
|݀|
ௌ

√ே 

െ ഀݐ
మ
,ିଵ 

The power is calculated using the value of ݐఉ from t-distribution table based on the degrees of freedom (N-1). 

ܰ) ఈ/ଶ ,ିଵ is the value of t-distribution based on the significance level and the degrees of freedomݐ െ 1), N is 

sample size, S is the standard deviation of the differences, and d is the difference between two means before 

and after disturbances or treatments. The effect size can be defined as ݀/ܵ. 

Example 

Suppose the difference in the mean biomass of plants in 10 fixed plots before and one year after the fire is 18 g 

and the standard deviation of the differences is 13.5. Then, the power for testing the difference between the 

two means at 1% significance level is calculated as follows 

  and df =10-1=9 is 3.25 0.01= ߙ ఈ/ଶ ,ିଵ atݐ

 

ఉݐ ൌ
|18|
ଵଷ.ହ

√ଵ 

െ 3.25 ൌ 0.966 

 

From t-table, in row df= 9, ݐఉ is 0.883 for power (1- ߚ)=0.8 and ݐఉ is 1.1 for power (1- ߚ)=0.85. Then the 

power for ݐఉ = 0.966 is calculated using interpolation as 

 

0.80 
0.966 െ 0.883
1.1 െ 0.883

ሺ0.85 െ 0.80ሻ ൌ 0.82 

 

In the above example if N=6, then the power at 1% significance level is calculated as follows 

  and df =6-1=5 is 4.032 0.01= ߙ ఈ/ଶ ,ିଵ atݐ

 

ఉݐ ൌ
|18|
ଵଷ.ହ

√ 

െ 4.032 ൌ െ0.766 

 

From t-table, in row df= 5, ݐఉ is -0.727 for power (1- ߚ)=0.25 and ݐఉ is -0.92 for power (1- ߚ)=0.20. Then 

the power for ݐఉ = -0.766 is  

 

0.25 െ
െ0.766 െ ሺെ0.727ሻ
െ0.92 െ ሺെ0.727ሻ

ሺ0.25 െ 0.20ሻ ൌ 0.24 

 

The above equation can be used to calculate the power to interpret  the differences in vegetation attributes 
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such as biomass, production, density, rooting depth, seed production and height of plants  in fixed plots 

before and after disturbances (such as grazing, fire, drought) and treatments (such as manures, watering, leaf 

pruning, growth hormones) 

2.6 Power calculation for simple linear regression model and correlation   

The relationship between a vegetation attribute as dependent variable (e.g., biomass, cover, density) and an 

environmental variable as independent variable (e.g., precipitation, temperature, soil salinity, soil water content) 

can be determined using a simple linear regression and correlation. The power equation for a simple linear 

regression model is calculated as follows (Dupont and Plummer, 1998) 

 

ఉݐ ൌ ඩ
ܰ

௦
మ

ఒమ௦ೣ
మ െ 1

െ ഀݐ
మ
,ିଶ 

The power is calculated using the value of ݐఉ from t-distribution table based on the degrees of freedom (N -2). 

 ఈ/ଶ,ିଶ is obtained from t-table at a given significance level with N-2 degrees of freedom.  ܵ௫ is standardݐ

deviation of the independent variable, ܵ௬ is standard deviation of the dependent variable and ߣ is the slope 

of regression line. The slope of the linear regression line can be used as the effect size. The relationship 

between correlation coefficient (r),  ܵ௫ and ܵ௬ is ݎ ൌ ሺߣ ܵ௫ሻ/ܵ௬. 

Example 

Suppose a researcher wishes to determine the relationship between a plant biomass and soil EC through fitting 

a simple linear regression. The data of the plant biomass and soil EC were collected from 30 quadrats and a 

simple linear regression was made. The standard deviation of the biomass (ܵ௬) was 3.2, the standard deviation 

of soil EC ( ܵ௫) was 2 and the slope of regression line (ߣ ) was 0.8. The power for the regression model at 

 is calculated as follows 0.05=ߙ

 

For N = 30, df is 30-2=28, and at 0.05 significance level,  ݐఈ/ଶ is 2.048  

ఉݐ ൌ ඨ
30

ଷ.ଶమ

.଼మൈଶమ
െ 1

െ 2.048 ൌ 1.11 

 

From t-table, in row df= 28, ݐఉ is 1.056 for power (1- ߚ)=0.85 and ݐఉ is 1.313 for power (1- ߚ)=0.90. Then 

the power for ݐఉ = 1.11 is calculated using interpolation as 

 

0.85 
1.11 െ 1.056
1.313 െ 1.056

ሺ0.90 െ 0.85ሻ ൌ 0.862 

 

Based on the data, ݎ ൌ ሺ0.8 ൈ 2ሻ/3.2 ൌ 0.5, and therefore power can also be calculated based on r. 

2.7 Power calculation for correlation analysis    

The power for testing the difference of Pearson correlation coefficient (r) from the constant value of ݎ ൌ 0 is 

calculates as follows 

 

ఉܼ ൌ ൬
1
2
ൈ ln ൬

1  ݎ
1 െ ݎ

൰ ൈ √݊ െ 3൰ െ ܼఈ/ଶ 
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ܼఈ/ଶ is standard normal variate for significance level (ܼఈ/ଶ=1.96 at 5%= ߙ and ܼఈ/ଶ= 2.576 at 1%= ߙ), n 

is sample size and r is the Pearson correlation coefficient. When the difference is tested between the Pearson r 

and zero, r is the effect size (Cohen, 1988; Benzer, 2017). 

Example 

Suppose the Pearson correlation coefficient between a plant biomass and soil Nitrogen is 0.6 using the data of 

20 plots. Then the power for detecting the difference of the correlation coefficient from zero at 5% significance 

level is obtained as follows 

 

ఉܼ ൌ ൬
1
2
ൈ ln ൬

1  0.6
1 െ 0.6

൰ ൈ √20 െ 3൰ െ 1.96 ൌ 0.90 

 

The power for the value of ఉܼ ൌ 0.90 is 0.816 from z-table. The power for Pearson correlation can also be 

calculated using t-distribution as follows  

ఉݐ  ൌ ඥሺ1/ݎ െ ଶሻ/ሺ݊ݎ െ 2ሻ  െ ഀݐ
మ
,ିଶ. 

2.8 Power calculation for multiple linear regression model 

In a multiple linear regression model, the relationship between a dependent variable (Y) and a number of 

independent variables (ݔଵ,ݔଶ  .) is modeled. Suppose a researcher wants to determine the relationshipݔ…

between a quantitative attribute of vegetation (e.g., biomass, cover, density) and a number of predictors (e.g., 

precipitation, temperature, humidity, elevation) using a multiple linear regression model. The statistical power 

for multiple linear regression model is calculated using the following formula (Laubscher, 1960; Cohen, 1988) 

ఉܼ ൌ
ට2ሺݑ  ሻߣ െ

௨ାଶఒ

௨ାఒ
െ ටሺ2ݒ െ 1ሻ

௨ ி
௩

ට௨ ி
௩


௨ାଶఒ

௨ାఒ

 

 

The power is calculated based on ఉܼ value from Z- table. u is the number of predictors  or degrees of 

freedom of the numerator of the F ratio. ߣ  is the noncentrality parameter and is calculated as ߣ ൌ ݂ଶܰ 

where N is the total sample size, ݂ଶ is the effect size and is calculated as ݂ଶ ൌ ܴ.
ଶ /ሺ1 െ ܴ.

ଶ ሻ, ܴ.
ଶ  is the 

squared multiple correlation between Y and X (ݔଵ,ݔଶ  ), v is the denominator (error) degrees of freedom (vݔ …

=N-u-1) and ܨ is the critical F-value obtained from F-distribution table using the given significance level (ߙ), 

numerator degrees of freedom (u) and denominator degrees of freedom (v). 

Example 

Suppose a researcher wishes to determine the relationship between the biomass of a plant species and three 

climatic variables (u = 3) including precipitation, temperature and humidity. A multiple linear regression 

model was made using the data of plant biomass and the three variables obtained from 27 plots. ܴ.
ଶ  of the 

model was 0.30.  The power of the regression model at 0.05 =ߙ is calculated as follows 

numerator df (u) =3, error df (v) = 27-3-1=23,  

݂ଶ ൌ 0.3/ሺ1 െ 0.3ሻ ൌ 0.4285 

ߣ ൌ 0.4285  ൈ 27 ൌ 11.57 

The critical F-value at 0.05=ߙ, numerator df = 3, and error df =23 is 3.03 from F-table. 

ఉܼ ൌ
ට2ሺ3  11.57ሻ െ

ଷାଶሺଵଵ.ହሻ

ଷାଵଵ.ହ
െ ටሺ2ሺ23ሻ െ 1ሻ

ଷሺଷ.ଷሻ

ଶଷ

ටଷሺଷ.ଷሻ

ଶଷ


ଷାଶሺଵଵ.ହሻ

ଷାଵଵ.ହ

ൌ 0.704 
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The power obtained for ఉܼ ൌ 0.704  from Z-table is 0.758. The statistical power for multiple linear 

regression model can also be calculated as a function of ߣ, u and v using Cohen’s power tables (Cohen, 1988, 

p. 416-423).  A part of the Cohen’s table for obtaining the power at 5% significance level is presented below 

(Fig. 1). 

 

 

Fig. 1 Power of the F test as a function of ߣ, u and v at a=0.05 (Cohen, 1988). 

 

 

For each of the values of u, power entries for the following four values of v are provided 20, 60, 120 and ∞. 

Power is found for a given ߣ using interpolation as 

 

ݎ݁ݓܲ ൌ ݎ݁ݓܲ 

ଵ

௩ಽ
െ

ଵ

௩
ଵ

௩ಽ
െ

ଵ

௩ೠ

 ሺܲݎ݁ݓ െ  ሻݎ݁ݓܲ

  .௨ are their respective valuesݎ݁ݓܲ  andݎ݁ݓܲ ,௨ are the lower and upper value of v andݒ  andݒ

Example 

For the above example, the power of the multiple regression model at 0.05 =ߙ is calculated as follows: 

In Cohen’s table for 0.05=ߙ (the above table), at block u=3, for v = 20, power at 10=ߣ is 0.67 and at 12=ߣ is 

0.75, linear interpolation finds the power at v=20 for 11.57=ߣ to be 0.73. Similarly interpolation at v=60 

between 10=ߣ (power =0.73) and 12 (power=0.81) finds the power for ߣ  =11.57 to be 0.79. Finally 

interpolation between power 0.73 (for v=20) and 0.79 (for v=60) using the above formula gives 

ݎ݁ݓܲ ൌ 0.73 

ଵ

ଶ
െ

ଵ

ଶଷ
ଵ

ଶ
െ

ଵ



 ሺ0.79 െ 0.73ሻ ൌ 0.75 

2.9 Power calculation for contingency tables  

A contingency table is used for detecting association or independence between two or more traits. The power 

for a contingency table can be calculated using the following equation (Milligan 1979)  
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ఉܼ ൌ െ
ሺ
ఞమ

௩ାఒ
ሻ
భ
య െ ሾ1 െ

ଶሺ௩ାଶఒሻ

ଽሺ௩ାఒሻమ
ሿ

ට
ଶሺ௩ାଶఒሻ

ଽሺ௩ାఒሻమ

 

 

The power is calculated based on ఉܼ value from Z- table. ݒ is degrees of freedom and is calculated for a 

contingency table with r rows and c columns as ݒ ൌ ሺݎ െ 1ሻሺ݇ െ 1ሻ. ߯ଶ is the critical value of the chi-square 

obtained from chi-square distribution table based on a specified significance level and degrees of freedom (v). 

ݓ is the noncentrality parameter (calculated ߯ଶ). The effect size is defined as ߣ ൌ ඥ߯ଶ/ܰ, where N is the 

total sample size. 

Example 

Suppose the chi-square calculated from the data of a 2ൈ4 table is 6. Then, the power at 0.01=ߙ is calculated as 

follows 

ߣ ൌ 6 

v = (2-1)(4-1)=3, table ߯ଶ for 0.01=ߙ and df = 3 is 11.3,  

 

ఉܼ ൌ െ
ሺ
ଵଵ.ଷ

ଷା
ሻ
భ
య െ ሾ1 െ

ଶሺଷାଶሺሻሻ

ଽሺଷାሻమ
ሿ

ට
ଶሺଷାଶሺሻ

ଽሺଷାሻమ

ൌ െ0.59 

 

The power obtained for ఉܼ ൌ െ0.59 from Z-table is 0.277. 

For contingency tables, the power can also be calculated as a function of sample size (N), effect size (w), 

degrees of freedom (v) and significance level (ߙ) using Cohen’s power tables (Cohen, 1988, p.228-248). A 

part of the Cohen’s table for calculating the power of ߯ଶ at 0.01=ߙ and v = 3 is presented below (Fig. 2). 

Example 

Suppose the chi-square calculated from the data of a 2ൈ4 table is 6 based on a sample of size (N) =30. Then, 

the power at 0.01=ߙ is calculated as follows 

ݓ ൌ ඥሺ6/30ሻ ൌ 0.447,  v = (2-1)(4-1)=3. According to the Cohen’s table at 0.01=ߙ and v =3 (the above 

table), at row N=30, we find power for column w=0.4 to be 0.22 and for w=0.5 to be 0.38. Linear Interpolation 

yields the power   

 

0.22 
0.447 െ 0.4
0.5 െ 0.4

 ሺ0.38 െ 0.22ሻ ൌ 0.29 
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Fig. 2 Power of ߯ଶ test at 0.01=ߙ and v =3 (Cohen, 1988). 

 

 

2.10 Power calculation for 2ൈ2 contingency table 

A 2ൈ2 contingency table is used for detecting association or independence between two traits. The power for a 

2ൈ2 contingency table can be calculated using the formula in the previous section. For a 2ൈ2 table, the degrees 

of freedom is 1 and the critical chi square value at 0.05=ߙ is 3.84 and at 0.01=ߙ is 6.63. The statistical power 

for a 2ൈ2 contingency table can also be calculated using the following equation: 

 

ఉܼ ൌ ሺ√ܰ ൈ ሻݓ െ ܼఈ/ଶ 

 

The power is calculated based on ఉܼ value from Z- table. ܼఈ/ଶ is standard normal variate for significance 

level (ܼఈ/ଶ=1.96 at 5%= ߙ and ܼఈ/ଶ= 2.576 at 1%= ߙ). N is sample size, ݓ is the effect size and is 

calculated as ݓ ൌ ටఞమ

ே
 , where ߯ଶ is the chi - square value calculated using the data of 2ൈ2 table. 

߯ଶ ൌ
ሺ െ ݁ሻଶ

݁
 

  . and ݁ are the observed and expected value for cell i respectively

Example 

Suppose the objective is to determine the association between two plant species. The data were obtained using 

located quadrats and summarized in a 2ൈ2 table as follows 

 

 

 

Species A 

                      

Species B 

 

 Present Absent 

Present 14  2  16 

Absent 4  10  14 

 18 12 N=30

14 quadrats (cell a) contain both species A and B. In 2 quadrats (cell b) species A is present but not B. In 4 
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quadrats (cell c) species B is present but not A. In 10 quadrats (cell d) neither species A nor B are found. The 

expected value for each cell of the table is calculated as follows 

 

ሺܽሻܧ ൌ
16 ൈ 18
30

ൌ 9.6 

ሺܾሻܧ ൌ
16 ൈ 12
30

ൌ 6.4 

ሺܿሻܧ ൌ
14 ൈ 18
30

ൌ 8.4 

ሺ݀ሻܧ ൌ
14 ൈ 12
30

ൌ 5.6 

then 

 

߯ଶ ൌ
ሺ14 െ 9.6ሻଶ

9.6

ሺ2 െ 6.4ሻଶ

6.4

ሺ4 െ 8.4ሻଶ

8.4

ሺ10 െ 5.6ሻଶ

5.6
ൌ 10.8 

ݓ ൌ ඨ
10.8
30

ൌ 0.6 

 

The power at 0.05 significance level is  ఉܼ ൌ ൫√30 ൈ 0.6൯ െ 1.96 ൌ 1.326 

The power obtained for ఉܼ ൌ 1.326  from Z-table is 0.907 

2.11 Power calculation for analysis of variance (ANOVA)  

a) k groups with equal sizes 

ANOVA is used to test whether there is a significant difference between the means of two or more groups. The 

statistical power for ANOVA can be calculated using the following equation (Laubscher 1960; Cohen 1988). 

 

ఉܼ ൌ
ට2ሺݑ  ሻߣ െ

௨ାଶఒ

௨ାఒ
െ ටሺ2ݒ െ 1ሻ

௨ ி
௩

ට௨ ி
௩


௨ାଶఒ

௨ାఒ

 

 

The power is calculated based on ఉܼ value from Z- table. u is numerator degrees of freedom (ݑ ൌ ݇ െ 1) and 

k is the number of groups, ߣ  is the noncentrality parameter and is calculated as ߣ ൌ ݂ଶ݊ሺݑ  1ሻ ൌ ݂ଶܰ. 

n is the average sample size per group (݊ ൌ ሺܰ/݇ሻ and N is the total sample size, v is the denominator (error) 

degrees of freedom (v =N-k),  ܨ is the critical F-value obtained from F-distribution table using the given 

significance level (ߙ), numerator degrees of freedom (u) and denominator (error) degrees of freedom (v). The 

effect size is defined as ݂ ൌ
ఋ
ఋ

, where ߜ  is the standard deviation of means calculated as  ߜ ൌ

ට∑ ሺିሻమೖ
సభ


. In this equation, ݉ is the mean of group i, m is the mean of the means of the groups with equal 

sizes, k is the number of groups and ߜ is the within-population standard deviation and is calculated as 

ߜ ൌ ට∑ఋ
మ


, where ߜ is the standard deviation for each group.  

Example 
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Assume a researcher wishes to compare the estimates of density from three methods (k =3) obtained with four 

replications (the following table) using F-test. Then the power at 5% significance level is calculated as follows 

 

 Method 

 1 2 3 

 15 17 17 

 16 18 17 

 15 15 15 

 12 14 19 

݉ 14.5 16 17 

ߜ
ଶ 2.25 2.5 2 

 

݉ ൌ
14.5  16  17

3
ൌ 15.8 

ߜ ൌ ඨ
ሺ14.5 െ 15.8ሻଶ   ሺ16 െ 15.8ሻଶ   ሺ17 െ 15.8ሻଶ 

3
ൌ 1.027 

 

ߜ ൌ ඨ
2.25  2.5  2

3
ൌ 1.50 

 

݂ ൌ
1.027
1.50

ൌ 0.684 

n=12/3=4, u=3-1=2,  

ߣ ൌ 0.684ଶ ൈ 4 ൈ ሺ2  1ሻ ൌ5.614 

The critical F-value at 0.05=ߙ, numerator df (u)= 3-1=2, and error df (v) =12-3=9 is 4.26 from F-table. 

 

ఉܼ ൌ
ට2ሺ2  5.614ሻ െ

ଶାଶሺହ.ଵସሻ

ଶାሺହ.ଵସሻ
െ ටሺ2ሺ9ሻ െ 1ሻ

ଶሺସ.ଶሻ

ଽ

ටଶሺସ.ଶሻ

ଽ


ଶାଶሺହ.ଵସሻ

ଶାହ.ଵସ

ൌ െ0.21 

 

The power obtained for ఉܼ ൌ െ0.21  from Z-table is 0.42. 

The statistical power for ANOVA can also be obtained using Cohen’s power tables (Cohen, 1988, p. 289-354). 

A part of the Cohen’s table for obtaining sample size for ANOVA at 0.05=ߙ and u =2 is presented below 

(Fig.3). 
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Fig. 3 Power of F test at a= 0.05 and u=2 (Cohen, 1988). 

 

Example 

For the above example the power at 5% significance level is calculated as follows: 

In Cohen’s table for 0.05=ߙ and u=2 (the above table), at row=4 (n=N/k=12/3=4) the power for column f=0.6 

is 0.33 and for f=0.7 is 0.44. Then the power for f=0.684 is obtained using interpolation 

 

0.33 
0.684 െ 0.6
0.7 െ 0.6

ሺ0.44 െ 0.33ሻ ൌ 0.429 

 

b) k groups with unequal sizes 

When the compared groups are of unequal sizes, m, ߜ and ߜ are calculated as follows 

 

݉ ൌ
∑݊݉

݊ଵ  ݊ଶ  ڮ ݊
 

 

݊ is the size of group i. 

 

ߜ ൌ ඨ
∑݊ሺ݉ െ ݉ሻଶ

݊ଵ  ݊ଶ  ڮ ݊
 

 

ߜ ൌ ඨ
∑݊ߜ

ଶ

݊ଵ  ݊ଶ  ڮ ݊
 

Suppose the objective is to compare the estimates of biomass from three methods with unequal replications 

(the table below). Then the power at 5% significance level is calculated as follows 
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 Method 

 A B C 

 12 14 19 

 14 18 17 

 16 15 15 

  15 19 

  17 15 

  17 17 

݉ 14 16 17 

ߜ
ଶ 2.67 2 2.67 

݊ 3 6 6 

 

݉ ൌ
3ሺ14ሻ  6ሺ16ሻ  6ሺ17ሻ

3  6  6
ൌ 16 

 

ߜ ൌ ඨ
3ሺ14 െ 16ሻଶ   6ሺ16 െ 16ሻଶ   6ሺ17 െ 16ሻଶ 

15
ൌ 1.095 

 

ߜ ൌ ඨ
3ሺ2.67ሻ  6ሺ2ሻ  6ሺ2.67ሻ

15
ൌ 1.55 

݂ ൌ
1.095
1.55

ൌ 0.707 

 

n= 15/3=5, u=3-1=2, v=15-3=12, 

ߣ ൌ 0.707ଶ ൈ 5 ൈ ሺ2  1ሻ ൌ7.497 

The critical F-value at 0.05=ߙ, numerator df (u)= 3-1=2, and error df (v) =15-3=12 is 3.89 from F-table. 

 

ఉܼ ൌ
ට2ሺ2  7.49ሻ െ

ଶାଶሺ.ସଽሻ

ଶାሺ.ସଽሻ
െ ටሺ2ሺ12ሻ െ 1ሻ

ଶሺଷ.଼ଽሻ

ଵଶ

ටଶሺଷ.଼ଽሻ

ଵଶ


ଶାଶሺ.ସଽሻ

ଶା.ସଽ

ൌ 0.182 

The power obtained for ఉܼ0.182  from Z-table is 0.571. 

The statistical power for ANOVA can also be obtained using Cohen’s tables (Cohen 1988, p. 289-354). 

The average sample size per group (n) is 15/3=5. In Cohen’s table for 0.05=ߙ and u=2 (the above table), at 

row=5, the power for column f=0.7 is 0.56 and for f=0.8 is 0.69. Then the power for f=0.707 is obtained using 

interpolation 

 

0.56 
0.707 െ 0.7
0.8 െ 0.7

ሺ0.69 െ 0.56ሻ ൌ 0.573 

2.12 Power calculation for simple logistic regression model 

A simple (univariate) logistic regression model describes the relationship between a binary response variable 

(Y=1 and Y=0) and an independent variable such as climatic, soil or topographic factors. The following 
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formula is used to calculate power for a simple logistic regression model (Hsieh, 1989). 

 

ఉܼ ൌ ඥ ܰ  ଵܲሺ1 െ   ଵܲሻכߚଶ െ ܼఈ/ଶ 

The power is obtained from z-table using the value of ఉܼ. ܼఈ/ଶ is the normal standard variate for significance 

level, ܼఈ/ଶ=1.96 at 5% and 2.576 at 1% significance level, כߚ is the tested effect size calculated as כߚ= ln 

(ODDS ratio)=ln ቈ
ሺ మ
భషమ

ሻ

ሺ భ
భషభ

ሻ
 and ଵ and ଶ are respectively the probability of the event at the mean of x, 

ҧݔ) ҧሻ and one standard deviation (s) above the meanݔ)   ሻ. If the data of independent variable are notݏ

standardized, then 

 

ଵ ൌ
݁ఉబାఉభሺ௫ҧሻ

1  ݁ఉబାఉభሺ௫ҧሻ
   

and  

ଶ ൌ
݁ఉబାఉభሺ௫ҧାୱሻ

1  ݁ఉబାఉభሺ௫ҧାୱሻ
   

 

If the data of independent variable (x) is standardized using  
௫ି௫ҧ

௦
, then the mean of standardized values will be 

zero and the standard deviation will be 1. In this case 

 

ଵ ൌ
݁ఉబ

1  ݁ఉబ
   

and  

ଶ ൌ
݁ఉబାఉభ

1  ݁ఉబାఉభ
   

 

Example  

Suppose a researcher wishes to determine the probability of presence of a plant species based on annual mean 

temperature using a simple logistic regression. The data of presence (y =1) and absence (y =0) of the plant 

species and the annual temperature (x) was obtained from 60 sampling plots, and a logistic regression was 

made. If constant (ߚ) of the model is -3.72, coefficient of regression (ߚଵ) is 0.238, the mean of temperature (ݔҧ) 

in the sampling plots is 15.72 and the standard deviation of temperature is 3.55, what is the power of the 

regression model at 0.05 significance level? 

Since the data of x are not standardized,  

  

ଵ ൌ
݁ିଷ.ଶା.ଶଷ଼ሺଵହ.ଶሻ

1  ݁ିଷ.ଶା.ଶଷ଼ሺଵହ.ଶሻ
ൌ

݁.ଶଵ

1  ݁.ଶଵ
ൌ 0.505   

and 

ଶ ൌ
݁ିଷ.ଶା.ଶଷ଼ሺଵହ.ଶାଷ.ହହሻ

1  ݁ିଷ.ଶା.ଶଷ଼ሺଵହ.ଶାଷ.ହହሻ
ൌ

݁.଼

1  ݁.଼
ൌ 0.704  

 

ln = כߚ ቈ
ሺ బ.ళబర
భషబ.ళబర

ሻ

ሺ బ.ఱబఱ
భషబ.ఱబఱ

ሻ
 ൌ 0.845 
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then the power is   ఉܼ ൌ ඥ60 ൈ 0.505ሺ1 െ 0.505ሻ 0.845ଶ െ 1.96 ൌ 1.312 

 

The power for ఉܼ ൌ 1.312 obtained from z-table is 0.905. If the data of temperature are standardized to have 

zero mean and unit standard deviation, the following parameters are obtained for the logistic regression model.  

 ଵ= 0.845ߚ ,=0.021ߚ

then 

ଵ        ൌ
బ.బమభ

ଵାబ.బమభ
ൌ 0.505   

 

ଶ ൌ
݁.ଶଵା.଼ସହ

1  ݁.ଶଵା.଼ସହ
ൌ

݁.଼

1  ݁.଼
ൌ 0.704  

 

ln = כߚ ቈ
ሺ బ.ళబర
భషబ.ళబర

ሻ

ሺ బ.ఱబఱ
భషబ.ఱబఱ

ሻ
 ൌ 0.845. 

Therefore when values are standardized,  ߚଵ=ln (ODDS ratio)= כߚ 

The power is calculated as before. 

2.13 Power calculation for multiple logistic regression model 

The relationship between a binary variable (y =1, y=0) and a set of variables (ݔଵ, ,ଶݔ … ,  ) can be modeledݔ

using a multiple logistic regression. The power for multiple logistic regression model can be obtained using the 

following formula (Hsieh, 1989). 

 

ఉܼ ൌ ට ܰ  ଵܲሺ1 െ   ଵܲሻ כߚ ଶሺ1 െ ଵ,ଶଷ…ሻߩ െ ܼఈ/ଶ 

The power is obtained from z-table using the value of ఉܼ.  

N is the sample size, ܼఈ/ଶ, כߚ and ଵ were explained for a simple logistic regression in the previous section. 

 ଵ,ଶଷ… also known asߩ  .are calculated for the logistic regression using one predictor in the model כߚ ଵ and

ܴଶ is the squared multiple correlation coefficient and is equal to the proportion of the variance of ݔଵ 

explained by the regression relationship with ݔଶ, … ,  . (Hsieh, 1989; Hsieh et al., 1998)ݔ

Example 

Suppose the data of the occurrence of a plant species and the annual temperature and precipitation were 

obtained from 68 sampling units, and a simple logistic regression was fitted between the occurrence of the 

plant species and the annual temperature. If the standardized coefficient of the simple logistic model based on 

temperature is ߚ=0.038 and ߚଵ= 0.872, and the squared multiple coefficient of correlation (ܴଶ) between the 

temperature and precipitation is 0.10. What is power of the model for 0.05= ߙ (ܼఈ/ଶ ൌ 1.96ሻ for detecting 

the effect of temperature while controlling for the effects of precipitation? 

ଵ  ൌ 0.509 

 

ఉܼ ൌ ඥ68 ൈ 0.509ሺ1 െ 0.509ሻ ൈ  0.872ଶሺ1 െ 0.1ሻ െ 1.96 ൌ 1.45 

 

The power for ఉܼ ൌ 1.45 is 0.926 from z-table. 

We can also determine the power for a simple logistic regression model with precipitation and approximate it 
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for a multiple case. If the standardized coefficients of the simple logistic model based on only precipitation are 

ଵ= -0.762, and ܴଶߚ =-0.004 andߚ ൌ 0.1, the power is 

ଵ ൌ 0.499 

ఉܼ ൌ ඥ68 ൈ 0.499ሺ1 െ 0.499ሻ ൈ ሺെ0.762ሻଶሺ1 െ 0.1ሻ െ 1.96 ൌ 1.02 

The power for ఉܼ ൌ 1.02 is 0.846 from z-table. Generally, sample size for a multiple logistic regression is 

calculated by specifying the probability of an event at the mean value of all the covariates (predictors), and the 

odds ratio of the event corresponding to an increase of one standard deviation from the mean value of the 

specific covariate, given the mean values of the remaining covariates (Hsieh, 1989). Therefore the power for a 

multiple logistic regression can also be calculated without using squared multiple coefficient of correlation (ܴଶ) 

as explained in the following examples. 

Example 

Suppose a multiple logistic regression model was made based on the presence/absence data of a plant species 

and two predictors including annual temperature (ݔଵ) and precipitation (ݔଶ) that were used in the previous 

example. What is the power of the multiple logistic regression model based on the following specifications at 

 ?0.05= ߙ

N=68 

mean of temperature (ݔҧଵ) =15.744  

standard deviation of temperature (ݏଵ) =5.06 

mean of precipitation (ݔҧଶ) =191.76 

standard deviation of precipitation (ݏଶ) = 58.62 

unstandardized coefficients of the multiple logistic regression model: 

 ଶ (for precipitation) = -0.0123ߚ    ,ଵ (for temperature) = 0.162ߚ   , = -0.169ߚ

The power of the model for determining the effect of temperature while controlling for the effects of 

precipitation is calculated as follows:  

 

ଵ ൌ
݁ି.ଵଽା.ଵଶሺଵହ.ସସሻି.ଵଶଷሺଵଽଵ.ሻ

1  ݁ି.ଵଽା.ଵଶሺଵହ.ସସሻି.ଵଶଷሺଵଽଵ.ሻ
ൌ

݁.ଶଷ

1  ݁.ଶଷ
ൌ 0.506   

 

and 

ଶ ൌ
݁ି.ଵଽା.ଵଶሺଵହ.ସସାହ.ሻି.ଵଶଷሺଵଽଵ.ሻ

1  ݁ି.ଵଽା.ଵଶሺଵହ.ସସାହ.ሻି.ଵଶଷሺଵଽଵ.ሻ
ൌ

݁.଼ସଷ

1  ݁.଼ସଷ
ൌ 0.699  

ln = כߚ ቈ
ሺ బ.లవవ
భషబ.లవవ

ሻ

ሺ బ.ఱబల
భషబ.ఱబల

ሻ
 ൌ 0.82 

ఉܼ ൌ ඥ68 ൈ 0.506ሺ1 െ 0.506ሻ 0.82ଶ െ 1.96 ൌ 1.42 

 

The power for ఉܼ ൌ 1.42 obtained from z-table is 0.922. The power of the model for detecting the effect of 

precipitation while controlling for the effects of temperature is calculated as 

ଵ ൌ 0.506   

and 

ଶ ൌ
݁ି.ଵଽା.ଵଶሺଵହ.ସସሻି.ଵଶଷሺଵଽଵ.ାହ଼.ଶሻ

1  ݁ି.ଵଽା.ଵଶሺଵହ.ସସሻି.ଵଶଷሺଵଽଵ.ାହ଼.ଶሻ
ൌ

݁ି.

1  ݁ି.
ൌ 0.332  
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ln = כߚ ቈ
ሺ బ.యయమ
భషబ.యయమ

ሻ

ሺ బ.ఱబల
భషబ.ఱబల

ሻ
 ൌ െ0.723 

 

ఉܼ ൌ ඥ68 ൈ 0.506ሺ1 െ 0.506ሻ ሺെ0.723ሻଶ െ 1.96 ൌ 1.02 

The power for ఉܼ ൌ 1.02 obtained from z-table is 0.846. The powers calculated in this way are close to those 

calculated in the previous section. If the data are standardized using 
௫ି௫ҧ

௦
 to have mean = 0 and variance =1, 

the standardized coefficients of the multiple logistic regression model will be as follows: 

 ଶ (for precipitation)= -0.723ߚ    ,ଵ (for temperature) = 0.82ߚ   , = 0.023ߚ

In this case ଵ ൌ 0.506  using ߚ = 0.023, and for calculating the power based on the effect of temperature 

  .ଶߚ = כߚ ଵ and based on the effect of precipitationߚ= כߚ

 

3 Results and Discussion 

The statistical power in vegetation studies is reported to be 39.8േ 10.2 (mean േ SE) for detecting a medium 

effect size (Jennions and Moller, 2003). This is far lower than the general recommendation of a power of 80% 

(Cohen, 1988). Most ecologists still report non-significant results without indicating the statistical power of the 

test. A non-significant result in a study may be due to a low power (inadequate sample size) and not because 

there is no significant effect or difference (Steidl et al., 1997; Jennions and Moller, 2003). Therefore the non-

significant outcome may be inconclusive in a study designed with a low power. An appropriate power can be 

achieved for a study by selecting an adequate sample size and minimum detectable effect size before data 

collection.  The effect size can also be obtained using a preliminary sampling based on a small sample. 

However most researchers do not take into consideration the power of research in design stage and calculate it 

after data collection and obtaining results. One solution to improve the power of a test after analysis is to use a 

one-tailed hypothesis test if possible. One-tailed (directional) test has more statistical power than two-tailed 

test to detect an effect and is recommended to be used when the effect in one direction can be explained 

(Ruxton and Neuhauser, 2010). For example a one-tailed test can be used to test the hypothesis that plant 

density and biomass is greater in ungrazed stands than in grazed stands or percentage of germinated seeds is 

higher under gibberellin treatment than control condition or plant production increases with increasing 

precipitation. Another solution for increasing the power of a test is to select a higher significance level (e.g., 5% 

instead of 1%). 5% significance level is an acceptable and reasonable significance level for accepting/rejecting 

a null hypothesis and also provides a higher power than significance levels of less than 5%. The power also 

depends on the statistical method itself. For example, the power of paired sample t-test and one sample t-test is 

higher than that of independent two sample t-test (Jennions and Moller, 2003). It must be noted that the 

decision for selection of a powerful statistical test must be made at the sampling design stage and before data 

collection.  

The statistical methods presented in this paper assume a normal distribution of vegetation data (except the 

Chi-square test which is a non-parametric statistic also called a distribution free test). Although some studies 

have indicated that vegetation characteristics such as biomass, density, production, plant height and seed 

production are normally distributed (Naylor 1980; Cleary and Priadjati, 2005; Rosner and Rose, 2006; Hoch 

and Korner, 2009; Giannini et al., 2018). Some others have revealed that distribution of these characteristics is 

not normal (Windle and Franz, 1979; Visscher et al., 2006; Millington et al., 2011; Mascaro and Schnitzer, 

2011; Murphy et al., 2018; Bisi et al., 2018). Therefore it is recommended to test the distribution of vegetation 

data before selection of a statistical test using Kolmogorov–Smirnov test or Shapiro-Wilk test. If the data are 
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not normally distributed, transformation methods such as log, square root, and angular transformation can be 

used to normalize the distribution of data (Bonham, 1989). However non-parametric tests may present more 

efficient results if data are not normally distributed. Non-parametric tests make no assumptions about 

distribution of data. Some non-parametric tests include sign test and Wilcoxon signed rank test for paired 

samples and one sample case, Mann–Whitney U test for two independent samples, Kruskal–Wallis test for 

one-way ANOVA, Spearman rank coefficient for correlation and nonparametric regression methods. It must 

be noted that non-parametric tests are usually less powerful than parametric tests and require a larger sample 

size to achieve the same level of power as a parametric test. The power analysis for non-parametric tests is 

beyond the scope of this paper but can be done using G*Power software. In conclusion, power analysis is more 

valuable in the design or planning stages of research than after data collection. However if power is calculated 

after data collection and testing the hypothesis, presenting confidence interval for an observed effect size, 

significance level and sample size along with the estimated power can provide additional information about the 

null hypothesis that are not rejected.  
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