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Abstract 

We consider a discrete-time predator-prey system with Holling type I functional response and Gompertz 

growth of prey population to study its dynamic behaviors. We algebraically show that the predator-prey 

system undergoes a flip bifurcation (FB) and Neimark-Sacker bifurcation (NSB) in the interior of Թା
ଶwhen 

one of the model parameter crosses its threshold value. We determine the existence conditions and direction of 

bifurcations by using the center manifold theorem and bifurcation theorems. We present numerical simulations 

to illustrate theoretical results which include the bifurcation diagrams, phase portraits, appearing or 

disappearing closed curves, periodic orbits, and attracting chaotic sets. In order to justify the existence of chaos 

in the system, maximum Lyapunov exponents (MLEs) and fractal dimension (FD) are computed numerically. 

Finally, chaotic trajectories have been controlled by applying feedback control method. 

 

Keywords predator-prey system; Gompertz growth; bifurcations; Lyapunov exponents; feedback control. 

 

 

 

 

 

 

 

 

1 Introduction 

In ecological systems, the most significant studied theme is the interaction between predator and prey species. 

Many mathematical models have been developed to interpret and analyze qualitative behaviors of such 

systems. One can describe the dynamics of population growth if the functional behavior of growth rate is 

known. Different predator-prey models can be found in the literature (May, 1974; Freedman, 1980; Berryman, 

1992). The simplest mathematical model describing a predator-prey interaction is the following well-known 

Kolmogorov type predator-prey model with Holling type I functional response: 

ሶݔ ൌ ݃ሺݔ, ሻܭ െ ݕݔߙ
ሶݕ ൌ ݕݔߚ െ ݕ݀

           (1) 

where ݃ሺݔ, ሻܭ ൌ  ݔݎ ቀ1 െ
௫

௄
ቁ ݔ ;  and ݕ  stand densities of prey and predator, respectively; 
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,ݎ ,ܭ ,ߙ ,ߚ and ݀ are all positive constants that stand for intrinsic growth rate of the prey, the carrying capacity 

of the prey, capturing rate of prey, conversion rate of predator, and the mortality rate of the predator, 

respectively. In (1), prey grows logistically if predator is absent. The qualitative analysis of solutions for 

system (1) is well established (Freedman, 1980; May, 1974). To investigate the dynamics of a community 

comprising of population of various interacting species, Gompertz (1825) developed an alternative expression 

for the prey birth rate which is similar in effect to logistic growth: ݃ሺݔ, ሻܭ ൌ ݔݎ ln ቀ
௄

௫
ቁ.  

Though most predator-prey theories are based on continuous models governed by differential equations, in 

recent year, a lots of exploratory works have recommend that if population size is small, or population 

generations are relatively discrete (nonoverlapping), studies on discrete predator-prey model are more 

appropriate as it shows richer and very complex dynamics than the corresponding continuous model. Besides, 

for insects with non-overlapping generations, predator-prey system can be modeled in a discrete-time form and 

numerical computation also requires to discretize a continuous-time model (He and Lai, 2011; He and Li, 2014; 

Rana, 2015, 2017, 2019; Liu and Cai, 2019; Zhao et al., 2016; Zhao et al., 2017). These researches found 

many complex properties including attracting fixed point, stable orbits, periodic, quasi-periodic and non-

periodic orbits through the possibility of flip and Neimark-Sacker bifurcations which had been derived either 

by numerically or by normal form and center manifold theory. 

In this paper, we consider the following predator-prey system with Gompertz growth of prey: 

 

ሶݔ ൌ ݔݎ ln ቀ
௄

௫
ቁ െ ݕݔߙ

ሶݕ ൌ ݕݔߚ െ ݕ݀
           (2) 

 

Forward Euler scheme with integral step size ߜ is applied to system (2) to obtain following two-dimensional 

discrete system: 

 

ቀ
ݔ
ቁݕ հ ቆ

ݔ ൅ ߜ ቂݔݎ ln ቀ
௄

௫
ቁ െ ቃݕݔߙ

ݕ ൅ ݕݔߚሾߜ െ ሿݕ݀
ቇ         (3) 

 

Our aim of this study is to see how model parameters affect on the dynamics of system (3).In the discrete 

predator-prey system, the flip and NS bifurcation bifurcations are the main mechanisms to produce complex 

dynamics and cause the system to jump from stable to unstable states and trigger a route to chaos via periodic 

and quasi-periodic states. We analyze systematically the existence condition of these two bifurcationsin the 

interior of Թା
ଶ by using bifurcation theory and center manifold theory (Kuzenetsov, 1998). 

This paper is organized as follows. Section 2 presents the existence condition for fixed points of system (3) 

and their stability criterion. The direction of bifurcation for system (3) under certain parametric condition are 

determined in Section 3. The diagrams of bifurcation, phase portraits, maximum Lyapunov exponents and 

Fractal dimensions of the system (3) for one or more control parameters are presented in Section 4 by 

implementing numerical simulations. In Section 5, we apply the feedback control method to stabilize chaotic 

unstable chaotic trajectories. Finally a short discussion is carried out in Section 6. 

 

2 Existence Conditions and Stability Analysis of Fixed Points 

2.1 Fixed points and their existence 
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The model system (3) possesses the following two fixed points for all permissible parameters value: 

i. The axial fixed point ܧଵሺܭ, 0ሻ. Biologically it means that the prey population reaches in the carrying 

capacity if predators are absent, 

ii. The coexistence fixed point ܧଶ ቆכݔ ൌ
ௗ

ఉ
, כݕ ൌ െ

௥ L୭୥ቀ
಼ഁ
೏
ቁ

ఈ
ቇ. It exists and unique if ߚ ൐

ௗ

௄
. 

2.2 Dynamical behavior: stability analysis 

We analyze local stability of system (3) at each fixed points by computing the magnitude of eigenvalues of 

Jacobian matrix evaluated at fixed point ܧሺݔ,  ሻ. The Jacobian matrix of system (3) around fixed pointݕ

,ݔሺܧ  ሻtakes the formݕ
 

,ݔሺܬ ሻݕ ൌ ቆ
1 െ ߜݎ െ ߜߙݕ ൅ Logߜݎ ቀ

௄

௫
ቁ െߜߙݔ

ߜߚݕ 1 െ ߜ݀ ൅ ߜߚݔ
ቇ       (4) 

Let ܬሺݔ, ሻݕ ൌ ሺ݆௠௡ሻ,݉, ݊ ൌ 1,2                  (5) 

 

Then the characteristic equation of matrix ܬ is  

ଶߣ ൅ ,ݔሺ݌ ߣሻݕ ൅ ,ݔሺݍ ሻݕ ൌ 0          (6) 

where ,ݔሺ݌  ሻݕ ൌ െܬݎݐ ൌ െሺ݆ଵଵ ൅ ݆ଶଶሻ  and  ݀݁ܬݐ ൌ ݆ଵଵ݆ଶଶ െ ݆ଵଶ݆ଶଵ.For stability conditions of fixed points, 

Jury’s criterion (Elaydi, 1996) has been applied. 

 

At ܧଵሺܭ, 0ሻ, the Jacobian matrix (6) can be obtained as  

ଵሻܧሺܬ ൌ ൬
1 െ ߜݎ െߜߙܭ
0 1 െ ߜ݀ ൅  .൰ߜߚܭ

The eigenvalues of ܬሺܧଵሻ are ߣଵ ൌ 1 െ ଶߣ and ߜݎ ൌ 1 െ ߜ݀ ൅  .ߜߚܭ

Proposition 2.1 For the boundary fixed point ܧଵሺܭ, 0ሻ, the following topological classification true 

a. if ߚ ൏ ௗ

௄
 then ܧଵis a sink if 0 ൏ ߜ ൏ ݉݅݊ ቄଶ

௥
, ଶ

ௗି௄ఉ
ቅ; source if ߜ ൐ ݔܽ݉ ቄଶ

௥
, ଶ

ௗି௄ఉ
ቅ; . non-

hyperbolic if ߜ ൌ ଶ

௥
ߜ  ݎ݋  ൌ ଶ

ௗି௄ఉ
.  

b. if ߚ ൐ ௗ

௄
 then ܧଵis a source if  ߜ ൐ ଶ

௥
; saddle if  ߜ ൏ ଶ

௥
; non-hyperbolic if ߜ ൌ ଶ

௥
.  

c. if ߚ ൌ ௗ

௄
 then ܧଵis always non-hyperbolic. 

It is obvious that when ߜ ൌ
ଶ

௥
  or ߜ ൌ

ଶ

ௗି௄ఉ
, then one of the eigenvalues of ܬሺܧଵሻis െ1 and the other is 

not equal to േ1. Therefore, a flip bifurcation can occur if parameters change in small neighborhood of 

ாభܤܨ
ଵ  or ܤܨாభ

ଶ : 

ாభܤܨ
ଵ ൌ ቄሺݎ, ,ܭ ,ߙ ,ߚ ݀, ሻߜ א ሺ0, ൅∞ሻ: ߜ ൌ

ଶ

௥
, ߜ ്

ଶ

ௗି௄ఉ
, ߚ ൏

ௗ

௄
ቅ, 

orܤܨாభ
ଶ ൌ ቄሺݎ, ,ܭ ,ߙ ,ߚ ݀, ሻߜ א ሺ0,൅∞ሻ: ߜ ൌ

ଶ

ௗି௄ఉ
, ߜ ്

ଶ

௥
, ߚ ൏

ௗ

௄
ቅ. 

 

At ܧଶሺכݔ,   ሻ, the Jacobian matrix (6) can be obtained asכݕ
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ଶሻܧሺܬ ൌ

ۉ

ۈ
ۇ

1 െ ߜݎ െ
ߜߙ݀
ߚ

Log ߜߚݎ ቀ
௄ఉ

ௗ
ቁ

ߙ
1

ی

ۋ
ۊ

 

where ܬݎݐாଶ ൌ 2 െ ாଶܬݐ݁݀ and,ߜݎ ൌ 1 െ ߜݎ ൅ ଶLogߜ݀ݎ ቀ
௄ఉ

ௗ
ቁ. 

Applying Jury’s conditions, the fixed point ܧଶ is linearly asymptotically stable if and only if 

 

1 ൅ ாଶܬݎݐ ൅ ாଶܬݐ݁݀ ൐ 0, 

1 െ ாଶܬݎݐ ൅ ாଶܬݐ݁݀ ൐ 0, 

ாଶܬݐ݁݀ െ 1 ൏ 0.  

Let Aଵ ൌ Log ݀ݎ ቀ
௄ఉ

ௗ
ቁ,Aଶ ൌ െݎ,Aଷ ൌ 4,and ܮ ൌ ଶܣ

ଶ െ  ଷ.We state following Proposition about stabilityܣଵܣ

criterion of ܧଶ.  

 

Proposition 2.2 Suppose ߚ ൐
ௗ

௄
. Then the fixed point ܧଶሺכݔ,   ሻ of system (3) is aכݕ

i. sink if one of the following conditions holds 

 (i.1) ܮ ൒ ߜ    ݀݊ܽ    0 ൏
ି஺మି√௅

஺భ
;  

 (i.2) ܮ ൏ ߜ    ݀݊ܽ    0 ൏ െ
஺మ
஺భ

;  

ii. source if one of the following conditions holds  

(ii.1) ܮ ൒ ߜ    ݀݊ܽ    0 ൐
ି஺మା√௅

஺భ
;  

(ii.2) ܮ ൏ ߜ    ݀݊ܽ    0 ൐ െ
஺మ
஺భ

;  

iii. non-hyperbolic if one of the following conditions holds  

(iii.1) ܮ ൒ ߜ    ݀݊ܽ    0 ൌ
ି஺మേ  √௅

஺భ
ߜ ; ് െ

ଶ

஺మ
, െ

ସ

஺మ
 

(iii.2) ܮ ൏ ߜ    ݀݊ܽ    0 ൌ െ
஺మ
஺భ

;  

iv. saddle if otherwise.  

From Proposition 2.3, we see that two eigenvalues of ܬሺܧଶሻ are ߣଵ ൌ െ1 and ߣଶ ്  if condition 1ט

(iii.1) holds. If (iii.2) is true, then the eigenvalues of ܬሺܧଶሻ are complex having magnitude one.  

 

Let  

ாమܤܨ
ଵ ൌ ቄሺݎ, ,ܭ ,ߙ ,ߚ ݀, ሻߜ א ሺ0, ൅∞ሻ: ߜ ൌ

ି஺మି√௅

஺భ
, ܮ ൒ 0, ߜ ് െ

ଶ

஺మ
, െ

ସ

஺మ
ቅ, or 

ாమܤܨ
ଶ ൌ ቊሺݎ, ,ܭ ,ߙ ,ߚ ݀, ሻߜ א ሺ0, ൅∞ሻ: ߜ ൌ

െܣଶ ൅ ܮ√
ଵܣ

, ܮ ൒ 0, ߜ ് െ
2
ଶܣ

, െ
4
ଶܣ
ቋ. 

Then system (3) experiences a flip bifurcation around fixed point ܧଶ if parameters vary in small vicinity of 

either set ܤܨாమ
ଵ  or set ܤܨாమ

ଶ . 
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Also let 

ாమܤܵܰ ൌ ൜ሺݎ, ,ܭ ܽ, ,ߙ ,ߚ ݀, ሻߜ א ሺ0, ൅∞ሻ: ߜ ൌ െ
ଶܣ
ଵܣ
, ܮ ൏ 0ൠ, 

Then if the parameters change around the setܰܵܤாమ, system (3) experience a NS bifurcation atܧଶ. 

 

3 Direction and Stability Analysis of Bifurcation 

In this section, we will pay attention to determine the direction and stability of flip and NS bifurcations of 

system (3) around ܧଶ by using center manifold theory. We set ߜ as a real bifurcation parameter. 

3.1 Flip bifurcation 
We take parameter ሺݎ, ,ܭ ,ߙ ,ߚ ݀, ாమܤܨ ሻ arbitrarily locate inߜ

ଵ . For the case of ܤܨாమ
ଶ , one can do similar 

reasoning. Consider the system (3) at the fixed point ܧଶሺכݔ, ாమܤܨ ሻ parameters lie inכݕ
ଵ .  

Letߜ ൌ ிߜ ൌ
ି஺మି√௅

஺భ
, then the eigenvalues of ܧଶሺכݔ, ிሻߜଵሺߣ ሻ areכݕ ൌ െ1    and    ߣଶሺߜிሻ ൌ 3 ൅ Aଶߜி. 

In order for |ߣଶሺߜிሻ| ് 1, we have 

 

Aଶߜி ് െ2,െ4            (7) 

 

We assume the transformation ݔ෤ ൌ ݔ െ ෤ݕ    ,כݔ ൌ ݕ െ ሻߜሺܣ and write כݕ ൌ ,כݔሺܬ  ሻ. Then we shift theכݕ

fixed point ሺכݔ,  ሻ of system (3) to the origin. After Taylor expansion, system (3) reduces toכݕ

 

൬
෤ݔ
෤൰ݕ ՜ ሻߜሺܣ ൬

෤ݔ
෤൰ݕ ൅ ൬

,෤ݔଵሺܨ ,෤ݕ ሻߜ
,෤ݔଶሺܨ ,෤ݕ ሻߜ

൰          (8) 

where ܺ ൌ ሺݔ෤,   ෤ሻ்is the vector of the transformed systemandݕ

 

,෤ݔଵሺܨ ,෤ݕ ሻߜ ൌ
ଵ

ଶ
ቀെ2ݔ෤ݕ෤ߜߙ െ

௥௫෤మఋ

௫כ
ቁ ൅

ଵ

଺

௥௫෤యఋ

௫כమ
൅ ܱሺצ ܺ ସሻצ

,෤ݔଶሺܨ ,෤ݕ ሻߜ ൌ ߜߚ෤ݕ෤ݔ ൅ ܱሺצ ܺ ସሻצ
            (9) 

The system (8) can be expressed as 

ܺ௡ାଵ ൌ ௡ܺܣ ൅
1
2
,ሺܺ௡ܤ ܺ௡ሻ ൅

1
6
,ሺܺ௡ܥ ܺ௡, ܺ௡ሻ ൅ ܱሺצ ܺ௡  ସሻצ

where ,ݔሺܤ ሻݕ ൌ ቆ
െ

௥௫భ௬భఋ

௫כ
െ ଵݕଶݔሺߜߙ ൅ ଶሻݕଵݔ

ଵݕଶݔሺߜߚ ൅ ଶሻݕଵݔ
ቇ  and ሺݔ, ,ݕ ሻݑ ൌ ቆ

௥௨భ௫భ௬భఋ

௫כమ

0
ቇ  are symmetric multi-linear 

vector functions of ݔ, ,ݕ ݑ א Թଶand ߜ ൌ  ி. In coordinates, we haveߜ

,ݔ୧ሺܤ ሻݕ ൌ ∑  ଶ
௝,௞ୀଵ

ఋమி౟ሺక,ఋሻ

ఋకೕఋకೖ
ฬ
కୀ଴

,ݔ୧ሺܥ ௞ andݕ௝ݔ ,ݕ ሻݑ ൌ ∑  ଶ
௝,௞,௟ୀଵ

ఋమி౟ሺక,ఋሻ

ఋకೕఋకೖఋక೗
ฬ
కୀ଴

݅ ௟ whereݑ௞ݕ௝ݔ ൌ 1,2. 

 

Let ݌, ݍ א Թଶ  be two eigenvectors of ܣ  for eigenvalue ߣଵሺߜிሻ ൌ െ1  such that ܣሺߜிሻݍ ൌ െݍ and 

݌ிሻߜሺ்ܣ ൌ െ݌. Then we have 

ሺ2~ݍ െ ிߜ݀ ൅ ,כݔிߜߚ െߜߚிכݕሻ்and ݌~ሺ2 െ ிߜ݀ ൅ ,כݔிߜߚ   .ሻ்כݔிߜߙ

We use ݌ۃ, ۄݍ ൌ ଵݍଵ݌ ൅ ,݌ ଶ , the standard scalar product in Թଶto normalizeݍଶ݌ ,݌ۃ such that ݍ ۄݍ ൌ 1. To 
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do, we set ݌ ൌ Fሺ2ߛ െ ிߜ݀ ൅ ,כݔிߜߚ Fߛ ሻ், whereכݔிߜߙ ൌ
ଵ

ሺଶିௗఋಷାఉఋಷ௫כሻమିఈఉఋಷ
మ௫כ௬כ

. 

The sign of the coefficient of critical normal form݈ଵሺߜிሻ determines the direction of the flip bifurcation 

and is obtained as 

݈ଵሺߜிሻ ൌ
ଵ

଺
,݌ۃ ,ݍሺܥ ,ݍ ۄሻݍ െ

ଵ

ଶ
,݌ۃ ,ݍሺܤ ሺܣ െ ,ݍሺܤሻିଵܫ  (10)          ۄሻሻݍ

We state the following result on direction and stability of flip bifurcation according to above analysis. 

 

Theorem 3.1 If (7) holds, ݈ଵሺߜிሻ ് 0 and the parameter ߜ changes its value in a small vicinity of ܤܨாమ
ଵ , 

then system (3) undergoes a flip bifurcation aroundܧଶሺכݔ, ிሻߜሻ. Moreover, if ݈ଵሺכݕ ൐ 0 (resp., ݈ଵሺߜிሻ ൏ 0) 

then the period-2 orbits that bifurcate from ܧଶሺכݔ,   .ሻ are stable (resp., unstable)כݕ

 

3.2 Neimark-Sacker bifurcation 

Next, we take parameter ሺݎ, ,ܭ ,ߙ ,ߚ ݀,  ாమ. We consider system (3) at fixed pointܤܵܰ ሻarbitrarily locate inߜ

,כݔଶሺܧ  ሻ. Then the roots (eigenvalues) of equation (6), are pair of complex conjugate and given byכݕ

,ߣ ҧߣ ൌ
ି௣ሺఋሻേ௜ටସ௤ሺఋሻ–௣ሺఋሻమ

ଶ
. 

Let ߜ ൌ ேௌߜ ൌ െ
஺మ
஺భ

          (11) 

Therefore, we have|ߣ| ൌ ඥݍሺߜሻ,    ݍሺߜேௌሻ ൌ 1. From the transversality condition, we get  

ௗ|ఒሺఋሻ|

ௗఋ
ቚ
ఋୀఋಿೄ

ൌ െ
஺మ
ଶ
് 0          (12) 

Moreover, nondegenerate condition ݌ሺߜேௌሻ ് 0,1, obviously satisfies 

஺మ
మ

஺భ
് 2,3           (13) 

and we have 

ேௌሻߜ௞ሺߣ ് 1    for  ݇ ൌ 1,2,3,4         (14) 

 

Suppose ݍ, ݌ א ԧଶ are two eigenvectors of ܣሺߜேௌሻ and ்ܣሺߜேௌሻ for eigenvalues ߣሺߜேௌሻ and ߣҧሺߜேௌሻ 

such that  

ݍேௌሻߜሺܣ ൌ തݍேௌሻߜሺܣ      ,ݍேௌሻߜሺߣ ൌ  തݍேௌሻߜҧሺߣ

and 

݌ேௌሻߜሺ்ܣ ൌ ҧ݌ேௌሻߜሺ்ܣ      ,݌ேௌሻߜҧሺߣ ൌ  .ҧ݌ேௌሻߜሺߣ

 

By direct computation we obtain  

ሺ1~ݍ െ ேௌߜ݀ ൅ כݔேௌߜߚ െ ൫1~݌ ሻ் andכݕேௌߜߚെ,ߣ െ ேௌߜ݀ ൅ כݔேௌߜߚ െ ,ҧߣ ൯כݔேௌߜߙ
்
. 

For normalization of vectors ݌  and ݍ,  we set ݌ ൌ NS൫1ߛ െ ேௌߜ݀ ൅ כݔேௌߜߚ െ ,ҧߣ ൯כݔேௌߜߙ
்

, where 

NSߛ ൌ
ଵ

൫ଵିௗఋಿೄାఉఋಿೄ௫ିכఒഥ൯
మ
ିఈఉఋಿೄ

మ ௫כ௬כ
. 

Then it is clear that ݌ۃ, ۄݍ ൌ 1 where ݌ۃ, ۄݍ ൌ ଶݍҧଵ݌ ൅ ,݌ ଵforݍҧଶ݌ ݍ א ԧଶ.  Now, we decompose 
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vector ܺ א Թଶas ܺ ൌ ݍݖ ൅ ݖ ேௌ andߜ close to ߜ ത, forݍҧݖ א ԧ. Obviously, ݖ ൌ ,݌ۃ  Thus, we obtain the .ۄܺ

following transformed form of system (8) for |ߜ| near ߜேௌ:  

ݖ հ ݖሻߜሺߣ ൅ ݃ሺݖ, ,ҧݖ  ,ሻߜ

where ሻߜሺߣ  ൌ ሺ1 ൅ ߮ሺߜሻሻ݁௜ఏሺఋሻ  with ߮ሺߜேௌሻ ൌ 0  and ݃ሺݖ, ,ҧݖ ሻߜ  is a smooth complex-valued function. 

After Taylor expression of ݃ with respect to ሺݖ,   ҧሻ, we obtainݖ

݃ሺݖ, ,ҧݖ ሻߜ ൌ ෍  
௞ା௟ஹଶ

1
݇! ݈!

݃௞௟ሺߜሻݖ௞ݖҧ௟,    with    ݃௞௟ א ԧ, ݇, ݈ ൌ  .ڮ,0,1

According to multilinear symmetric vector functions, the coefficients ݃௞௟ are  

݃ଶ଴ሺߜேௌሻ ൌ ,݌ۃ ,ݍሺܤ ேௌሻߜଵଵሺ݃    ,ۄሻݍ ൌ ,݌ۃ ,ݍሺܤ  ۄതሻݍ

݃଴ଶሺߜேௌሻ ൌ ,݌ۃ ,തݍሺܤ ேௌሻߜଶଵሺ݃    ,ۄതሻݍ ൌ ,݌ۃ ,ݍሺܥ ,ݍ  ,ۄതሻݍ

 

The coefficient ݈ଶሺߜேௌሻwhich determines the direction of NS bifurcation in a generic system exhibiting 

invariant closed curve can be calculated via 

݈ଶሺߜேௌሻ ൌ R݁ ቆ
݁ି௜ఏሺఋಿೄሻ݃ଶଵ

2
ቇ െ R݁ ቆ

ሺ1 െ 2݁௜ఏሺఋಿೄሻሻ݁ିଶ௜ఏሺఋಿೄሻ

2ሺ1 െ ݁௜ఏሺఋಿೄሻሻ
݃ଶ଴݃ଵଵቇ െ

1
2
|݃ଵଵ|ଶ െ

1
4
|݃଴ଶ|ଶ, 

where ݁௜ఏሺఋಿೄሻ ൌ   .ேௌሻߜሺߣ

Summarizing above analysis, we present the following theorem for direction and stability of NS 

bifurcation. 

 

Theorem 3.2 If (13) holds, ݈ଶሺߜேௌሻ ് 0 and the parameter ߜ changes its value in small vicinity of ܰܵܤாమ, 

then system (3) passes through a Neimark-Sacker bifurcation aroundܧଶ. Moreover, if ݈ଶሺߜேௌሻ ൏ 0 (resp.,൐

0), then there exists a unique attracting (resp., repelling) invariant closed curve bifurcates from ܧଶ.  

 

Table 1 Parameter values. 

Cases Varying parameter in range Fixed parameters System 

Dynamics  

Case (i) 1.2 ൑ ߜ ൑ ݎ 1.85 ൌ 1.75, ܭ ൌ 3.5, ߙ ൌ 1.25,  ߚ ൌ  0.25,

݀ ൌ 0.25 

FB 

Case (ii) 3.1 ൑ ߜ ൑ ݎ 3.42 ൌ 0.75, ܭ ൌ 3.5, ߙ ൌ 1.25,  ߚ ൌ  0.25,

݀ ൌ 0.25 

NS 

Case (iii) 0.22 ൑ ߚ ൑ ݎ 0.26 ൌ 0.75, ܭ ൌ 3.5, ߙ ൌ 1.25, ݀  ൌ  0.25,

ߜ ൌ 3.42 

NS 

 

 

4 Numerical Simulations 

In this section, numerical simulation are performed to validate our theoretical results, especially, we present 

bifurcation diagrams of system (3) around ܧଶ, phase portraits, maximum Lyapunov exponents and fractal 

dimension corresponding to bifurcation diagrams. We assume that ߜ is a real bifurcation parameter unless 

stated. We consider different set of parameter values for bifurcation analysis as given in table 1. 

 

Example 1: Flip bifurcation of system (3) with respect to bifurcation parameter ߜ. 
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We set values of parameter as given incase (i). By calculation, we obtain a unique fixed point 

,ଶሺ 1.0ܧ 1.75387ሻ of system (3). The critical point for FB is ߜி~1.49096. It is observed that the system (3) 

experiences a FB around ܧଶ  when ߜ  passes its critical value ߜி . At ߜ ൌ ிߜ , the two eigenvalues are 

ଵߣ ൌ െ1, ଶߣ ൌ 0.390811 , ݈ଵሺߜிሻ ൌ 5.765929528187798 and ሺݎ, ,ܭ ,ߙ ,ߚ ݀, ሻߜ א ாమܤܨ
ଵ . This verifies 

Theorem 3.1. 

The bifurcation diagrams shown in Fig. 1(a-b) reveal that stability of fixed point ܧଶ happens for ߜ ൏  ,ிߜ

at ߜ ൌ ߜ ி system (3) loses its stability and forߜ ൐  ி there exists a period doubling phenomena leading toߜ

chaos. There exists period -2,-4, -8orbits occur at ߜ~ሼ1.4925,1.694, 1.7655ሽ respectivelyfor the windowߜ א

ሾ1.2,1.789ሿ and chaotic set for ߜ א ሾ1.789,1.8435ሿ. The MLEs and FD related to Fig. 1(a-b) are computed 

and displayed in Fig. 1(c-d). The status of stable, periodic or chaotic dynamics are compatible with sign of 

MLE as in Fig. 1(c-d). The phase portraits of bifurcation diagrams in Fig. 2(a-b) for different values of ߜ are 

displayed in Fig. 2. 

 

 

 (a)                                (b) 

 

 (c)                           (d) 

Fig. 1 Flip bifurcation and Lyapunov exponent of system (3) with parameter ߜ. (a) FB in prey, (b) FB in predator, (c) MLEs 

related to (a-b), (d) FD corresponding to (a). Initial value ሺݔ଴, ଴ሻݕ ൌ ሺ0.99,1.75ሻ. 
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The phase portraits of bifurcation diagrams in Fig. 3(a-b) for different values of ߜ are displayed in Fig. 4, 

which clearly illustrates the act of smooth invariant curve how it bifurcates from the stable fixed point and 

increases its radius. As ߜ grows, disappearance of closed curve occurs suddenly and a period-16 orbits 

appears at 3.4072~ߜ. 

 

(a)                     (b) 

 

(c)                     (d) 

Fig. 3 NS bifurcation and Lyapunov exponent of system (3) with parameter ߜ. (a) NS bifurcation in prey, (b) NS bifurcation in 

predator, (c) MLEs related to (a-b), (d) FD associated with (a). Initial value ሺݔ଴, ଴ሻݕ ൌ ሺ0.99,0.75ሻ. 

 

Example 3: NS bifurcation of system (3) with respect to bifurcation parameter ߚ. 

With the variation of other parameter values (e.g., parameter ߚ), the predator-prey system (3) may exhibit 

another richer dynamical behaviors. Consider the parameter values as given in case (iii). After calculation, we 

find a unique fixed point ܧଶሺ1.0867273640123714, 0.7017553241350036ሻ. It is shown that the system (3) 

experiences a NS bifurcation around ܧଶ (which is disposed in Fig. 5(a-b)) when ߚ passes its critical value 

 ,value ߚ However, with the increase of .ߚ ேௌ. The system firstly shows stable dynamics for small value ofߚ

the stability of the system changes through a NS bifurcation occurring atߚ ൌ  ேௌ~0.2300485. differentߚ

nonlinear characteristics to compared Figures 3 and 4 are found in this case, such as route to chaos, invariant 

curves, chaotic attractors, periodic and quasi-periodic states. The MLE corresponding to Fig. 5(a-b) is 
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of attraction for the parameter values ߜ א ሾ3.1, 3.42ሿ and ߚ א ሾ0.22, 0.28ሿ and rest of parameter values as in 

case (ii).It is simple to find values of control parameters for which the dynamics of system (3) is in status of 

non-chaotic, periodic or chaotic. The red and blue regions for an attracting fixed point and/or for stable 

periodic cycles. The white region corresponds to those parameters values for which the solution trajectories 

may be quasi-periodic (invariant curves) or non-periodic (chaos, strange attractors). The black region is the set 

of parameters for which the solution trajectories diverge to infinity.  

From 2D parameter space (Fig. 7) we observe that the increases values of control parameters ߜ and ߚ, the 

system dynamics significantly change from non-chaotic to chaotic states, i.e., the behaviors of system (3) 

change from non-periodic to an attracting fixed point or stable periodic cycle.     

 

 (a)                                  (b) 

 

(c)                                (d) 

Fig. 5 NS bifurcation and Lyapunov exponent of system (3) with parameter ߚ. (a) NS bifurcation in prey, (b) NS bifurcation in 

predator, (c) MLEs related to (a-b), (d) FD associated with (a). Initial value ሺݔ଴, ଴ሻݕ ൌ ሺ0.17,2.11ሻ. 

 

The measure of fractal dimensions characterizes the strange attractors of a system. By using Lyapunov 

exponents, the fractal dimension (Cartwright, 1999; Kaplan and Yorke, 1979) is defined by 

݀௅ ൌ ݆ ൅
∑  ௝
௜ୀଵ ݄௜
| ௝݄|
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and 

௡ݑ ൌ െ݇ଵሺݔ௡ െ ሻכݔ െ ݇ଶሺݕ௡ െ ,כݔሻ where ݇ଵand  ݇ଶ are the feedback gains and ሺכݕ  ሻ represent positiveכݕ

fixed point of system (3).The Jacobian matrix ܬ௖ of the controlled system(15) is given by 

,כݔ௖ሺܬ ሻכݕ ൌ ൬
݆ଵଵ െ ݇ଵ ݆ଵଶ െ ݇ଶ
݆ଶଵ ݆ଶଶ

൰        (16) 

where ݆௣௤, ,݌ ݍ ൌ 1,2 given in (5) are evaluated at ሺכݔ,  ሻ. The characteristic equation of (16) isכݕ

 

ଶߣ െ ሺܬݎݐ௖ሻߣ ൅ ௖ܬݐ݁݀ ൌ 0         (17) 

where ܬݎݐ௖ ൌ ݆ଵଵ ൅ ݆ଶଶ െ ݇ଵ and ݀݁ܬݐ௖ ൌ ݆ଶଶሺ݆ଵଵ െ ݇ଵሻ െ ݆ଶଵሺ݆ଵଶ െ ݇ଶሻ. Let ߣଵ  and  ߣଶ be the roots of (17). 

Then 

ଵߣ ൅ ଶߣ ൌ ݆ଵଵ ൅ ݆ଶଶ െ ݇ଵ         (18) 

and 

ଶߣଵߣ ൌ ݆ଶଶሺ݆ଵଵ െ ݇ଵሻ െ ݆ଶଵሺ݆ଵଶ െ ݇ଶሻ        (19) 

 

 

Fig. 7 Diagnostic of system (3) in a 2D parameter space.(a) parametric basins of attraction in ሺߜ,  .ሻ-planeߚ

 

The solution of the equations ߣଵ ൌ േ1  and  ߣଵߣଶ ൌ 1 determines the lines of marginal stability. These 

conditions confirm that |ߣଵ,ଶ| ൏ 1. Suppose that ߣଵߣଶ ൌ 1, then from (19) we have  

݈ଵ: ݆ଶଶ݇ଵ െ ݆ଶଵ݇ଶ ൌ ݆ଵଵ݆ଶଶ െ ݆ଵଶ݆ଶଵ െ 1. 

Assume that ߣଵ ൌ 1, then from (18) and (19) we get  

݈ଶ: ሺ1 െ ݆ଶଶሻ݇ଵ ൅ ݆ଶଵ݇ଶ ൌ ݆ଵଵ ൅ ݆ଶଶ െ 1 െ ݆ଵଵ݆ଶଶ ൅ ݆ଵଶܽଶଵ. 

Next, assume that ߣଵ ൌ െ1, then from (18) and (19) we obtain  

݈ଷ: ሺ1 ൅ ݆ଶଶሻ݇ଵ െ ݆ଶଵ݇ଶ ൌ ݆ଵଵ ൅ ݆ଶଶ ൅ 1 ൅ ݆ଵଵ݆ଶଶ െ ݆ଵଶ݆ଶଵ. 

 

We determine a triangular region in the ሺ݇ଵ, ݇ଶሻ-plane by plotting the lines ݈ଵ, ݈ଶ, and  ݈ଷ (see Fig. 8(a)) 

which keeps eigenvalues with magnitude less than 1. In order to check how the implementation of feedback 

control method works and controls chaos at unstable trajectories, we have carried out numerical simulations. 

With fixed ߜ ൌ 3.42 and rest parameters as in case (ii), we consider the feedback gains are as݇ଵ ൌ

0.1  and  ݇ଶ ൌ െ2.1. The initial value is ሺݔ଴, ଴ሻݕ ൌ ሺ0.99,0.75ሻ and Fig. 8(b) and 8(c) show that at the fixed 
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point ሺ1.0, 0.751658ሻ, the chaotic trajectory is stabilized.  

 

6 Discussion 

This work is concerned with the dynamics of a discrete-time predator-prey system with Holling type I 

functional response and Gompertz growth of prey population in the closed first quadrant Թା
ଶ . We determine 

the existence condition and direction of flip and NS bifurcations of system (3) around ܧଶ by using the center 

manifold theory. In particular, we show that at unique fixed point ܧଶ the system (3) can undergo a flip and NS 

bifurcation if ߜ varies around the sets ܤܨாమ
ଵ  or ܤܨாమ

ଶ  and ܰܵܤாమ. Based on Figures, we notice that the small 

integral step sizeߜ can stabilize the dynamical system (3), but the large integral step size may destabilize the 

system producing more complex dynamical behaviors. In addition, we see that the appropriate choice of the 

 

(a) 

 

(b)                            (c) 

Fig. 8 Control of chaotic trajectories of system (15). (a) Stability region in ሺ݇ଵ, ݇ଶሻ plane (b-c) Time series for states ݔ and ݕ 

respectively. 

 

parameter ߚ(conversion rate of predator) can stabilize the dynamical system (3). However, the high values of 

 destabilize system (3).Numerical simulations present unpredictable behaviors of the system through a flip ߚ

bifurcation which include orbits of period -2, -4, -8 orbits and through a NS bifurcation which include an 
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invariant cycle, orbits of period -14, -16, -19, -22, and period -24orbits and chaotic sets respectively. These 

indicate that at the state of chaos, the system is unstable and particularly, the predator goes to extinct or goes to 

a stable fixed point when the dynamic of prey is chaotic. We compute MLEs and FD for justification about the 

existence of chaos. The two bifurcations (FB and NSB) both trigger a route to chaos via periodic and quasi-

periodic states; that is, chaotic dynamics appear or disappear along with the emergence of bifurcations. 

Moreover, we plot the parametric basins of attraction for system (3) by the variation of two control parameters 

which shows very rich nonlinear dynamical behaviors and so one can directly observe from the 2D parametric 

spaces when the system dynamics will be periodic, quasi-periodic and chaotic. Finally, the chaotic trajectories 

at unstable state are controlled by implementing the strategy of feedback control.   
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