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Abstract

We consider a discrete-time predator-prey system with Holling type I functional response and Gompertz
growth of prey population to study its dynamic behaviors. We algebraically show that the predator-prey
system undergoes a flip bifurcation (FB) and Neimark-Sacker bifurcation (NSB) in the interior of RZwhen
one of the model parameter crosses its threshold value. We determine the existence conditions and direction of
bifurcations by using the center manifold theorem and bifurcation theorems. We present numerical simulations
to illustrate theoretical results which include the bifurcation diagrams, phase portraits, appearing or
disappearing closed curves, periodic orbits, and attracting chaotic sets. In order to justify the existence of chaos
in the system, maximum Lyapunov exponents (MLEs) and fractal dimension (FD) are computed numerically.

Finally, chaotic trajectories have been controlled by applying feedback control method.
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1 Introduction
In ecological systems, the most significant studied theme is the interaction between predator and prey species.
Many mathematical models have been developed to interpret and analyze qualitative behaviors of such
systems. One can describe the dynamics of population growth if the functional behavior of growth rate is
known. Different predator-prey models can be found in the literature (May, 1974; Freedman, 1980; Berryman,
1992). The simplest mathematical model describing a predator-prey interaction is the following well-known
Kolmogorov type predator-prey model with Holling type I functional response:
x = gxK)—axy

y = PBxy-—dy (1

where g(x,K) =rx (1 —%); x and y stand densities of prey and predator, respectively;
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r, K, a, ,and d are all positive constants that stand for intrinsic growth rate of the prey, the carrying capacity
of the prey, capturing rate of prey, conversion rate of predator, and the mortality rate of the predator,
respectively. In (1), prey grows logistically if predator is absent. The qualitative analysis of solutions for
system (1) is well established (Freedman, 1980; May, 1974). To investigate the dynamics of a community
comprising of population of various interacting species, Gompertz (1825) developed an alternative expression
for the prey birth rate which is similar in effect to logistic growth: g(x, K) = rx1In (g)

Though most predator-prey theories are based on continuous models governed by differential equations, in
recent year, a lots of exploratory works have recommend that if population size is small, or population
generations are relatively discrete (nonoverlapping), studies on discrete predator-prey model are more
appropriate as it shows richer and very complex dynamics than the corresponding continuous model. Besides,
for insects with non-overlapping generations, predator-prey system can be modeled in a discrete-time form and
numerical computation also requires to discretize a continuous-time model (He and Lai, 2011; He and Li, 2014;
Rana, 2015, 2017, 2019; Liu and Cai, 2019; Zhao et al., 2016; Zhao et al., 2017). These researches found
many complex properties including attracting fixed point, stable orbits, periodic, quasi-periodic and non-
periodic orbits through the possibility of flip and Neimark-Sacker bifurcations which had been derived either
by numerically or by normal form and center manifold theory.

In this paper, we consider the following predator-prey system with Gompertz growth of prey:

= rxln (g) —axy @)
= pxy—dy

Forward Euler scheme with integral step size § is applied to system (2) to obtain following two-dimensional

discrete system:

(;) . <x +68[rxin (%) - axy]) 3)

y + 8[Bxy — dy]

Our aim of this study is to see how model parameters affect on the dynamics of system (3).In the discrete
predator-prey system, the flip and NS bifurcation bifurcations are the main mechanisms to produce complex
dynamics and cause the system to jump from stable to unstable states and trigger a route to chaos via periodic
and quasi-periodic states. We analyze systematically the existence condition of these two bifurcationsin the
interior of R3by using bifurcation theory and center manifold theory (Kuzenetsov, 1998).

This paper is organized as follows. Section 2 presents the existence condition for fixed points of system (3)
and their stability criterion. The direction of bifurcation for system (3) under certain parametric condition are
determined in Section 3. The diagrams of bifurcation, phase portraits, maximum Lyapunov exponents and
Fractal dimensions of the system (3) for one or more control parameters are presented in Section 4 by
implementing numerical simulations. In Section 5, we apply the feedback control method to stabilize chaotic
unstable chaotic trajectories. Finally a short discussion is carried out in Section 6.

2 Existence Conditions and Stability Analysis of Fixed Points
2.1 Fixed points and their existence
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The model system (3) possesses the following two fixed points for all permissible parameters value:
i.  The axial fixed point E; (K, 0). Biologically it means that the prey population reaches in the carrying

capacity if predators are absent,

. T Log(KTlB

)> It exists and unique if § > %.

ii.  The coexistence fixed point E, (x* ==,y

=

2.2 Dynamical behavior: stability analysis

We analyze local stability of system (3) at each fixed points by computing the magnitude of eigenvalues of
Jacobian matrix evaluated at fixed point E(x,y). The Jacobian matrix of system (3) around fixed point
E (x, y)takes the form

K
1—rd —yad + réLog (;) —xad ) )

J(x,y) = <
yBé 1—ds + xBs

Let J(x,y) = (mn),m,n = 1,2 )

Then the characteristic equation of matrix J is

2 +p,A+qxy) =0 (6)
where p(x,y) = —tr] = —(j11 + j22) and det] = ji1j22 — ji2j21.For stability conditions of fixed points,
Jury’s criterion (Elaydi, 1996) has been applied.

At E, (K, 0), the Jacobian matrix (6) can be obtained as
1—-716 —Kad
J(Ey) = ( 0 1—d6+Kﬁ6>'
The eigenvalues of J(E;) are Ay =1—rdand 1, =1—dd + KB6.
Proposition 2.1 For the boundary fixed point E; (K, 0), the following topological classification true

. d . L . (2 . . 2 2 ).
a. ifp< < then Ejisasinkif 0 < § < mm{;,m}, source if § > max {;,m}, . non-

2
d-KpB’

hyperbolic if § =§ or § =
b. ifp >% then E;is asource if & > %; saddleif 6 < %; non-hyperbolic if § = %

c. ifp= % then E;is always non-hyperbolic.

It is obvious that when § = % ord = ﬁ, then one of the eigenvalues of J(E;)is —1 and the other is

not equal to *1. Therefore, a flip bifurcation can occur if parameters change in small neighborhood of
FBg or FB :

FBY, = {(rK @ p,d,8) € (0,+00):6 =2,5 = 2, p < £}

orFB3, = {(r,K,a,5,d,6) € (0,+00): 5 = ﬁ,a =2,p<2)

At E,(x*,y"), the Jacobian matrix (6) can be obtained as
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dad
1—78 -

B
B4 Log (%)
a

](Ez) =

where tr), = 2 —ré,and det/p, =1 —1r8 +rdé*Log (%)
Applying Jury’s conditions, the fixed point E, is linearly asymptotically stable if and only if
1+ trjg, +detjg, >0,

1 - tr]Ez + det]Ez > 0,
det]Ez - 1 < 0

Let A; =rd Log (%),Az = —1,A; = 4,and L = A3 — A;A;.We state following Proposition about stability

criterion of E,.

Proposition 2.2 Suppose 8 > %. Then the fixed point E,(x*,y*) of system (3) is a

i. sink if one of the following conditions holds

(i) L>0 and &<

1

(i2) L<O0 and §<-%
1

ii. source if one of the following conditions holds

—A+VL,

(ii.l) L=0 and 6> ;
Ay

(ii2) L<0 and §>-2%
1

iii. non-hyperbolic if one of the following conditions holds

(i) L>0 and §="22E 0 5, 2 4
4, A" A,
(iii.2) L<0 and &= -2z
Aq
iv. saddle if otherwise.
From Proposition 2.3, we see that two eigenvalues of J(E,) are 4; = —1 and A, # +1 if condition

(iii.1) holds. If (iii.2) is true, then the eigenvalues of J(E,) are complex having magnitude one.

Let
FBY, ={(rK,a,B,d,8) € (0, +00):6 =2 [ >0,6% -2, -2} or
1 2 2
) —A, +L 2 4
FBZ =1(rK,a B,d,6) € (0,40): 6 = —2" " [ >0,8#——,——".
2 Ay A A

Then system (3) experiences a flip bifurcation around fixed point E, if parameters vary in small vicinity of
either set FBj or set FBZ .
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Also let
A,
A’

Then if the parameters change around the setNSBg, , system (3) experience a NS bifurcation atEj.

NSBg, = {(r, K,aa B, d, &) € (0,40):8 = — L< o},

3 Direction and Stability Analysis of Bifurcation
In this section, we will pay attention to determine the direction and stability of flip and NS bifurcations of
system (3) around E, by using center manifold theory. We set & as a real bifurcation parameter.

3.1 Flip bifurcation
We take parameter (r,K,a,B,d, ) arbitrarily locate in F Bb1~2. For the case of F Béz, one can do similar

reasoning. Consider the system (3) at the fixed point E,(x*,y*) parameters lie in F Béz.

VL

Let§ = 6 = _Ai—_, then the eigenvalues of E,(x*,y*) are 1;(86r) = —1 and A,(8¢) = 3 + A,6r.
1

In order for |1,(6r)| # 1, we have
Aybp # —2,—4 (7

We assume the transformation ¥ = x —x*, ¥ =y —y* and write A(§) = J(x*,y*). Then we shift the

fixed point (x*,y*) of system (3) to the origin. After Taylor expansion, system (3) reduces to

()10 ()+ (nz75) ®

where X = (%, 7)7is the vector of the transformed systemand

+0(l X 1%

F(%5,6) = %(—2)?370:6 — ”ZZS) 17%368

x* + g x*2
- - )
R 9,6) =xyps+0(X1I1*)

The system (8) can be expressed as
1 1

_ TX1Y16 _ TU1X1Y16
where B(x,y) = ( x* @d(x2y1 + X1y 2)> and (x,y,u) = ( x*? ) are symmetric multi-linear
BS(x2y1 + X1¥2) 0

vector functions of x,y,u € R?and § = 8. In coordinates, we have

2 52Fi(¢.,6)

w2 BPFi(ED) OPFiE.6)
Bi(x' }’) - Jkl=1 68j68x6¢; £=0

Jk=1"5¢ 8¢,

x;jyy and Ci(x, y,u) = Xjyiu, where i =1,2.
0

é=

Let p,q € R? be two eigenvectors of A for eigenvalue A,(6p) = —1 such that A(5r)q = —qand
AT(8)p = —p. Then we have
q~2 — d&p + BSpx*,—py*)Tand p~(2 — dSp + BSpx*, adpx™)T.
We use (p,q) = p1q1 + P2q- , the standard scalar product in R%*to normalize p,q such that (p,q) = 1. To
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1

do, we set p = yg(2 — ddr + BOpx™, ade*)T: where yp = (2-d8p+BSpx*)2—afSix*y*’

The sign of the coefficient of critical normal forml; (§z) determines the direction of the flip bifurcation

and is obtained as

L(8F) = =(p,C(q,9,9)) —5 (P, B(q, (A — N7*B(q,9))) (10)

We state the following result on direction and stability of flip bifurcation according to above analysis.

Theorem 3.1 If (7) holds, [;(6r) # 0 and the parameter § changes its value in a small vicinity of FBg—z,
then system (3) undergoes a flip bifurcation aroundE,(x*, y*). Moreover, if 1,(6z) > 0 (resp., ,(6r) < 0)
then the period-2 orbits that bifurcate from E,(x* y*) are stable (resp., unstable).

3.2 Neimark-Sacker bifurcation
Next, we take parameter (7, K, a,,d, §)arbitrarily locate in NSBg,. We consider system (3) at fixed point

E,(x*,y*). Then the roots (eigenvalues) of equation (6), are pair of complex conjugate and given by

1i= -p(8)+i /4q(5)—p(6)2

2

Let § = Oy = — 22 (11)
A
Therefore, we have|A| = /q(8), q(Sys) = 1. From the transversality condition, we get
d|A(8)| Az
22N =-22x0 12
dé 5=6ps 2 ( )

Moreover, nondegenerate condition p(dys) # 0,1, obviously satisfies

4423 13
L2, (13)
and we have

AK(Bys) =1 for k=1,2,3,4 (14)

Suppose q,p € C? are two eigenvectors of A(Sys) and AT (Sys) for eigenvalues A(Sys) and A(Sys)
such that

A(b6ns)q = A(6ns)q,  A(Sns)G = 1(5Ns)q

and

AT(Bns)p = ABws)p, AT (8ns)D = A(Sns)P-
By direct computation we obtain
q""(l - d(SNS + ﬁ@Nsx* - A, _ﬁ(SNSy*)T and p""(l - d6NS + ﬁ(SNSX* - 1, a6N5x*)T.

For normalization of vectors p and q, we set p=yNs(l—d6N5+[36N5x*—/T,a6N5x*)T, where

1
T (1-d8ys+BSnsx*-1) —af St exty*

VNs
Then it is clear that (p,q) =1 where (p,q) = P1q, + P2q.for p,q € C2. Now, we decompose
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vector X € R%as X = zq + zq, for § close to Sys and z € C. Obviously, z = (p, X). Thus, we obtain the
following transformed form of system (8) for |§| near Syg:
ze AM6)z+ g(z,z,06),
where A(8) = (1 + ¢(6))e?©® with ¢@(Sys) =0 and g(z,2,6) is a smooth complex-valued function.
After Taylor expression of g with respectto (z,Z), we obtain
9(2,2,6) = z ﬁ Gu(®)z57, with gy €C k=01,

k+122
According to multilinear symmetric vector functions, the coefficients g; are

92000ns) =(p, B(4,9)), 911(6ns) = (p,B(q,9))
9o2(0ns) = (0, B(q,Q)), 921(6ns) =(p,C(q,9,9)),

The coefficient l,(Sys)which determines the direction of NS bifurcation in a generic system exhibiting

invariant closed curve can be calculated via

e—i9(51vs)g21 (1— zei9(51vs))e—2i9(5zvs) 1 1
l,(6ys) =Re| ————— ) — : 920911 __|911|2 - _|902|2
2 2(1 - 619(51\15)) 2 4 ’

where e@6ns) = 1(8ys).

Summarizing above analysis, we present the following theorem for direction and stability of NS

bifurcation.

Theorem 3.2 If (13) holds, [,(6ys) # 0 and the parameter & changes its value in small vicinity of NSBg,,
then system (3) passes through a Neimark-Sacker bifurcation aroundE,. Moreover, if [,(5ys) < 0 (resp.,>
0), then there exists a unique attracting (resp., repelling) invariant closed curve bifurcates from E,.

Table 1 Parameter values.

Cases Varying parameter in range Fixed parameters System
Dynamics
Case (i) 1.2<6<185 r=175 K =35 a=125 B =025 FB
d = 0.25
Case (ii) 31<6 <342 r =075 K=235 a=125 B =025 NS
d = 0.25
Case (iii) 0.22 < B <0.26 r=075 K=235 a=125 d=025 NS
6 =342

4 Numerical Simulations

In this section, numerical simulation are performed to validate our theoretical results, especially, we present
bifurcation diagrams of system (3) around E,, phase portraits, maximum Lyapunov exponents and fractal
dimension corresponding to bifurcation diagrams. We assume that § is a real bifurcation parameter unless

stated. We consider different set of parameter values for bifurcation analysis as given in table 1.

Example 1: Flip bifurcation of system (3) with respect to bifurcation parameter §.
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We set values of parameter as given incase (i). By calculation, we obtain a unique fixed point
E,(1.0,1.75387) of system (3). The critical point for FB is §z~1.49096. It is observed that the system (3)
experiences a FB around E, when & passes its critical value 8. Atd = dr, the two eigenvalues are
Ay =-1,4,=0.390811, [;(6r) =5.765929528187798 and (r,K,,B,d,8) € FB,}2 . This verifies
Theorem 3.1.

The bifurcation diagrams shown in Fig. 1(a-b) reveal that stability of fixed point E, happens for § < &,
at § = 6 system (3) loses its stability and for § > & there exists a period doubling phenomena leading to
chaos. There exists period -2,-4, -8orbits occur at §~{1.4925,1.694,1.7655} respectivelyfor the windowd €
[1.2,1.789] and chaotic set for § € [1.789,1.8435]. The MLEs and FD related to Fig. 1(a-b) are computed
and displayed in Fig. 1(c-d). The status of stable, periodic or chaotic dynamics are compatible with sign of
MLE as in Fig. 1(c-d). The phase portraits of bifurcation diagrams in Fig. 2(a-b) for different values of § are
displayed in Fig. 2.

s = 16
075
145+
05
13
1.206 13 1.415 152 1625 173 1635 1.206 13 1.415 152 1625 173 1635
(a) (b)
03 ] 15
i
|
02 .II [
1251
01 |
1t
0 | 5
g g
%01 | B 075
E 2
&
02 '
05F
03
0251
0.4
050 L L L L L a ol L L L L | — 11l n
1.206 13 1.415 152 1625 173 1635 1.206 13 1.415 152 1625 173 1635
(c) (d)

Fig. 1 Flip bifurcation and Lyapunov exponent of system (3) with parameter &. (a) FB in prey, (b) FB in predator, (c) MLEs
related to (a-b), (d) FD corresponding to (a). Initial value (xq,y,) = (0.99,1.75).
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Example 2: NS bifurcation of system (3) with respect to bifurcation parameter §.

With the variation of parameter &, the system (3) exhibits much richer dynamics through the emergence of
NS bifurcation. We take parameters as given in case (ii). After calculation, we find a unique fixed point
E,(1.0,0.751658). A NS bifurcation point is obtained asd = §ys~3.19294. It isshown that the system (3)
experiences a NS bifurcation around E, when § passes its critical value 6yg. Also at § = dygwe have

4,4 =-0.19735+ 0.9803321,
g20 = —0.4726035296020685 + 0.3977188376549927 i,
g11 = 0.9557701100152843 — 1.1673536227050705 i,
Joz = 2.3841437496326363 + 1.9627912980150555 i,
g.1 = 2.8673103300458544 + 3.502060868115212 i,
and [,(6ys) = —1.6346230671868578. It is obvious that (r,K,a,f,d,5) € NSBg,. This verifies the

correctness of Theorem 3.2.

Fig. 2 Phase portraits (xy-plane) of bifurcation diagrams Fig. 1(a-b) for different values of §.

The bifurcation diagrams shown in Fig. 3(a-b) demonstrate that Eis stabile ford < &yg, loses its stability
at § = 6ys and an attracting invariant curve appears if § > 8ys. We dispose the MLEs in Fig. 3(c) relating
bifurcation in Fig. 3(a-b), which confirm the existences of chaos and periodic orbits as parameter § varying.
These results indicate that NS bifurcation instigates a route to chaos, through a dynamic transition from a
stable state, to invariant closed cycle, with periodic and quasi-periodic states occurring in between, to chaotic

sets. For instance, when §~3.42, the sign of MLE confirming presence of chaos.
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The phase portraits of bifurcation diagrams in Fig. 3(a-b) for different values of § are displayed in Fig. 4,
which clearly illustrates the act of smooth invariant curve how it bifurcates from the stable fixed point and
increases its radius. As § grows, disappearance of closed curve occurs suddenly and a period-16 orbits

appears at §~3.4072.

(a) (b)

005/ 1 |

&

=

@
Fractal dimension

e 1
o5t {

(© (d)
Fig. 3 NS bifurcation and Lyapunov exponent of system (3) with parameter §. (a) NS bifurcation in prey, (b) NS bifurcation in

predator, (c) MLEs related to (a-b), (d) FD associated with (a). Initial value (xq,¥,) = (0.99,0.75).

Example 3: NS bifurcation of system (3) with respect to bifurcation parameter S.

With the variation of other parameter values (e.g., parameter (), the predator-prey system (3) may exhibit
another richer dynamical behaviors. Consider the parameter values as given in case (iii). After calculation, we
find a unique fixed point E,(1.0867273640123714,0.7017553241350036). It is shown that the system (3)
experiences a NS bifurcation around E, (which is disposed in Fig. 5(a-b)) when [ passes its critical value
Bus- The system firstly shows stable dynamics for small value of . However, with the increase of [ value,
the stability of the system changes through a NS bifurcation occurring atf = Sys~0.2300485. different
nonlinear characteristics to compared Figures 3 and 4 are found in this case, such as route to chaos, invariant

curves, chaotic attractors, periodic and quasi-periodic states. The MLE corresponding to Fig. 5(a-b) is
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computed and plotted in Fig. 5(c), which confirm the existences of chaos and periodic orbit as parameter f
varying. Also at 8 = Byswe have
A, A = —0.2824982854378154 + 0.9592678034442178 i,

go0 = —0.6667791365360252 + 0.16041550694510853 i,

g11 = 1.0090245303587855 — 1.3490208109805368 i,

Joz = 2.6848281972535943 + 1.6698518248707563 i,

g21 = 2.785494956066913 + 3.7240825684182757 i,
and I,(6ys) = —2.168610988511843.

We notice that system dynamics is stable if § < Sys, loses its stability at § = Sys and an attracting
invariant closed curve appears if 8 > Bys. That is increased values of parameter [ causes complex system
dynamics which trigger a route to chaos via NS bifurcation. As fincreases, closed curve suddenly disappear
and a period -16, -19, -22, -24, and -14 orbits and attracting chaotic sets appear at
B~{0.2444,0.2472,0.2488,0.2564,0.2584,0.26} respectively.

=

Wiz

Fig. 4 Phase portraits (xy-plane) of bifurcation diagrams Fig. 3(a-b) for different values of &.

Example 4: Parametric basins of attractions.

The system (3) may exhibit more complex dynamic behavior when two more parameters change through
its critical values. Ina 2D parameter space the parametric basins of attraction (Gkana, 2013) is plotted to notice
how the system dynamics qualitatively change as parameter values increase. This plot (Fig. 7) is a numerical

analysis tool in which the different colors describe different stability states. So, we plot the parametric basins
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of attraction for the parameter values § € [3.1,3.42] and S € [0.22,0.28] and rest of parameter values as in
case (ii).It is simple to find values of control parameters for which the dynamics of system (3) is in status of
non-chaotic, periodic or chaotic. The red and blue regions for an attracting fixed point and/or for stable
periodic cycles. The white region corresponds to those parameters values for which the solution trajectories
may be quasi-periodic (invariant curves) or non-periodic (chaos, strange attractors). The black region is the set
of parameters for which the solution trajectories diverge to infinity.

From 2D parameter space (Fig. 7) we observe that the increases values of control parameters § and f3, the
system dynamics significantly change from non-chaotic to chaotic states, i.e., the behaviors of system (3)

change from non-periodic to an attracting fixed point or stable periodic cycle.

02 07 024 0.25 026
[
(a) (b)
0.15F r
0125 bl |L'l 1|
; | L i
M i ,I'J. 18 I.|||
1
o VI "
0.075 N "-| | 4 15} 'Jl
| dl
005 4 i
0.025 1 | % 12 i |
] ] | g
é 0 e LY | &
[ 3 0sl
0,025 | | E
005k |
06}
0,075 |
0.1} i ‘ 03l | | |
0125+ 1 ‘ ‘
Y 07 024 0.25 026 §2 07 024 0.25 026
[ [
(© (d)

Fig. 5 NS bifurcation and Lyapunov exponent of system (3) with parameter f. (a) NS bifurcation in prey, (b) NS bifurcation in

predator, (c) MLEs related to (a-b), (d) FD associated with (a). Initial value (xq,y,) = (0.17,2.11).

The measure of fractal dimensions characterizes the strange attractors of a system. By using Lyapunov

exponents, the fractal dimension (Cartwright, 1999; Kaplan and Yorke, 1979) is defined by

J
i=1 hi

d, =j+
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where hq, h,,..., h, are Lyapunov exponents and j is the largest integer such that Z{:l h; >0 and
Y <o.
For our two-dimensional system (3), the fractal dimension takes the form

hy

d =1+~
L iy

hy >0 > hyand hy + h, < 0.

With parameter values as in Table 1, the fractal dimension of system (3) is plotted in Fig. 1(d), 2(d) and 3(d).
The strange attractors given in these figures and its corresponding FD illustrate that the increase values of

parameter & and [ cause a chaotic dynamics for the predator-prey system (3).

Fig. 6 Phase portraits (xy-plane) of bifurcation diagrams Fig. 3(a-b) for different values of f3.

5 Chaos Control
To stabilize chaos at the state of unstable trajectories of system (3), a state feedback control method (Elaydi,
1996) is applied. By adding a feedback control law as the control force u,, to system (3), the controlled form

of system (3) becomes

Xp41 = Xp+0 [rxn In (ﬁ) — ozxnyn] +u,

Yn+1 = Ynt 6[ﬁann - dYn]

(15)
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and
Uy, = —ky(x, —x*) — ky(y, — ¥*) where k;and k, are the feedback gains and (x*,y*) represent positive

fixed point of system (3).The Jacobian matrix /. of the controlled system(15) is given by

e,y = (fn i e ) (16)
J21 J22

where j,4,p,q = 1,2 givenin (5) are evaluated at (x*,y"). The characteristic equation of (16) is

A2 —(tr])A+det]. =0 (17)

where tr], = ji1 + jo2 — ki and det]. = j,5(j11 — k1) — j21 (12 — k3). Let 4; and A, be the roots of (17).
Then

M+ =j11+ )2 — ke (18)
and
MAz = Jo2 (11 — k1) = J21 U1z — k2) (19)

beta
0280 4

0.273 4

0285 o

0.258 4

0.250

0.243

[keicic}

0.228

n.2z0
3100 3140 3180 3220 3260 3300 3340 3380 3420
delta

Fig. 7 Diagnostic of system (3) in a 2D parameter space.(a) parametric basins of attraction in (8, 8)-plane.

The solution of the equations A; = +1 and A;4, = 1 determines the lines of marginal stability. These
conditions confirm that |4, ,| < 1. Suppose that A;4, = 1, then from (19) we have
ly:jazky = Jarka = ji1jza = J1zj21 — 1.
Assume that A; = 1, then from (18) and (19) we get
(1 = ja2)ka + jarka = jax +Jj22 = 1 = jivjzz + 12021
Next, assume that 4; = —1, then from (18) and (19) we obtain

l3: (1 + jo2)kq — joakz = jin + J22 + 1+ jidj2z — JizJ21-

We determine a triangular region in the (kq,k,)-plane by plotting the lines l,l,,and l; (see Fig. 8(a))
which keeps eigenvalues with magnitude less than 1. In order to check how the implementation of feedback
control method works and controls chaos at unstable trajectories, we have carried out numerical simulations.
With fixed 6§ = 3.42 and rest parameters as in case (ii), we consider the feedback gains are ask; =

0.1 and k, = —2.1. The initial value is (xg, ¥y) = (0.99,0.75) and Fig. 8(b) and 8(c) show that at the fixed
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point (1.0,0.751658), the chaotic trajectory is stabilized.

6 Discussion

This work is concerned with the dynamics of a discrete-time predator-prey system with Holling type I
functional response and Gompertz growth of prey population in the closed first quadrant R%. We determine
the existence condition and direction of flip and NS bifurcations of system (3) around E, by using the center
manifold theory. In particular, we show that at unique fixed point E, the system (3) can undergo a flip and NS
bifurcation if § varies around the sets F Béz or F BEZ and NSBg,. Based on Figures, we notice that the small
integral step sized can stabilize the dynamical system (3), but the large integral step size may destabilize the

system producing more complex dynamical behaviors. In addition, we see that the appropriate choice of the

la

3
- slabie sipervalues

(2)

'DC—|

"
. \\\\’||'ff;lIy-ﬁ.,.,,-ﬁ..\._\\.,._,_.,,, .
A L

. . . .
] 100 T 300 “n 100 ) 300

(b) (c)
Fig. 8 Control of chaotic trajectories of system (15). (a) Stability region in (kq, k,) plane (b-c) Time series for states x and y

respectively.

parameter [(conversion rate of predator) can stabilize the dynamical system (3). However, the high values of
B destabilize system (3).Numerical simulations present unpredictable behaviors of the system through a flip

bifurcation which include orbits of period -2, -4, -8 orbits and through a NS bifurcation which include an
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invariant cycle, orbits of period -14, -16, -19, -22, and period -24orbits and chaotic sets respectively. These
indicate that at the state of chaos, the system is unstable and particularly, the predator goes to extinct or goes to
a stable fixed point when the dynamic of prey is chaotic. We compute MLEs and FD for justification about the
existence of chaos. The two bifurcations (FB and NSB) both trigger a route to chaos via periodic and quasi-
periodic states; that is, chaotic dynamics appear or disappear along with the emergence of bifurcations.
Moreover, we plot the parametric basins of attraction for system (3) by the variation of two control parameters
which shows very rich nonlinear dynamical behaviors and so one can directly observe from the 2D parametric
spaces when the system dynamics will be periodic, quasi-periodic and chaotic. Finally, the chaotic trajectories

at unstable state are controlled by implementing the strategy of feedback control.
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