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Abstract 

Sigmoid-shaped curves are often used to estimate the probability of individuals surviving or becoming fecund 

(response: y) given some characteristic like age or size (predictor: x). However, the individual observations of 

y used to calibrate the curve are binary (0 or 1) because each individual either survived or not, and was fecund 

or not. A Matlab-based software is here demonstrated by fitting Gompertz and Weibull curves to the 

probabilities of the red alga Gracilaria chilensis becoming fecund depending on frond size. Different 

approaches are possible for parameter estimation, namely, minimizing the error sum of squares or maximizing 

the log-likelihood. Because neither have analytical solution, both were estimated by numerical methods as the 

Gauss-Newton, the Newton-Raphson, the Levenberg-Marquardt and the Matlab built-in fmincon function. 

Assuming x is bell-shape distributed, all these alternatives optimize the curve-fit to the bulk of the data i.e., in 

the middle of the curve. However, in this case the accuracy of the fit in the curve extremes was of utmost 

importance. A misfit could lead to a 124% change in estimated overall spore production. To balance the 

weight of curve sections, the observations were grouped into x classes and the curve was fit to their mean y. 

However, the small sizes of groups in the extremes rouse problems of numerical instability and uncertainty. 

The Gompertz curves were easier fit and could be done by any method while the Weibull curve could only be 

well fit by the Newton-Raphson method. Possible measures to improve convergence were the choice of initial 

guesses, decrease the step-size of the search, use a positive definite matrix re-directing the search or not using 

classes with too little observations inside. 

 

Keywords Gompertz; Weibull; Newton-Raphson; Gauss-Newton; Levenberg-Marquardt; curvefit; sigmoid; 

binary. 

 

 

 

 

1 Introduction 

Binary data (0 or 1) represents a problem common to many ecological and demographic studies, often 

demanding an intricate numerical analysis. Dependent variables like germination, survival and being fecund 

are observed for each individual as 0 (false) or 1 (true) and related with environmental continuous variables 
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like temperature (Dumur et al., 1990; Shafii and Price, 2001). In the present case, the data comprised the 

morphological and physiological state of fronds of the red algae Gracilaria chilensis monitored in several sites 

(Vieira et al., 2018a,b). Here, we focus on how the probability of a frond being fecund (y) depends on its size 

(x) following a sigmoid-shaped curve. The raw data allowing determination of this probability included the 

observations of whether, at a given census, each frond was fecund (1) or not (0) depending on the logarithm of 

its frond volume (log(v), with v measured in cm3). Generalized Linear Models (GLM) is the first method that 

comes to mind, using the logit link function and the Bernoulli distribution. Besides being the commonly 

proposed for binary data, the sigmoid shape of the resulting logistic regression fits the expectations for this 

data-set. However, posterior analysis revealed that the symmetrical s-shape of the logistic function misfits the 

data, with non-symmetrical alternatives as the Gompertz or the Weibull curves yielding better fits. 

Sigmoid-shaped (or S-shaped) curves were developed and have traditionally been used to model 

mortality, survival and growth rates of populations, individuals and cells. The most commonly used are the 

Logistic, the Gompertz, the Weibull and the von Bertalanffy (Austin et al 2011, Paine et al., 2012; Tjørve and 

Tjørve, 2017). Their Sigmoid (or S) class name is due to their shape typically comprising an initial exponential 

increase that, beyond an inflexion point, is smoothed until leveling-off close to an asymptotic 

maximum.However, these curves do not necessarily show the sigmoid shape within the desired range for the 

independent variable. In this work we focus on the Gompertz and on the Weibull curves, both of which have 

been presented in a variety of forms. Most often, the Gompertz is written with three parameters (Gompertz, 

1825; Winsor, 1932; Laird, 1964; Haefner, 1996; Pletcher, 1999; Jukic et al., 2004; Lynch and Fagan, 2009; 

Borah and Mahanta, 2013; Tjørve and Tjørve, 2017) whereas the Weibull is written with four (Dumur et al., 

1990; Haefner, 1996; Lynch and Fagan, 2009; Mahanta and Borah, 2014). These versions have better shaping 

ability than their alternatives, enabling better fits to the data. Generally, parameter estimation is easier when 

minimizing the Sum of Squares of the Error (SSE) in linear regression, as it has a closed form i.e., an 

analytical solution. However, both the Gompertz and the Weibull curves can only be linearized by 

transformation or scaling assuming that at least one of the parameters is previously known (Winsor, 1932; 

Laird, 1964; Borah and Mahanta, 2013; Tjørve and Tjørve, 2017). Since this is usually not the case, the 

estimation of their parameters is substantially more difficulty. Alternatively, the parameters can be determined 

from Maximum Likelihood Estimates (MLE). Although argued that MLE provide better fits, narrower 

confidence intervals, and are more compatible with a posteriori tests (Pletcher, 1999), the most common option 

has beento use non-linear least-squares regressions(Laird, 1964; Jukic et al., 2004; Lynch and Fagan, 2009; 

Borah and Mahanta, 2013; Mahanta and Borah, 2014). In this case, the minimization of the SSE has no 

analytic solutionwith search algorithms being required. However, these methods are prone to the numerical 

instability (Bates and Watts, 1988; King and Mody, 2010; Lange, 2010), and their application to Sigmoid-

shaped curves are among the most difficult (Jukic et al., 2004; Borah and Mahanta, 2013; Mahanta and Borah, 

2014). The benchmark is the Newton-Raphson method, due to its speed of convergence to a solution (Bates 

and Watts, 1988; King and Mody, 2010; Lange, 2010; Mahanta and Borah, 2014). The algorithm of widest 

spread is the Gauss-Newton method(Bates and Watts, 1988; King and Mody, 2010; Lange, 2010; Weisstein, 

2018), with its several updates - as the Levenberg-Marquardt algorithm - to solve for the frequent numerical 

instability by controlling the search’s step size (Bates and Watts, 1988; King and Mody, 2010; Lange, 2010). 

One particular source of instability is the system of equations being ill-conditioned (Seber and Lee 2003; King 

and Mody, 2010; Vieira et al., 2016). A solution proposed to solve such type of instability is scaling the 

variables (Seber and Lee 2003; Vieira et al., 2016). Although some consider it a false solution that is unable to 
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resolve ill-conditioning problems (at least, theoretically) (King and Mody, 2010), it was observed to 

effectively solve them (Vieira et al., 2016). Here, we tested and compared several solutions to stabilize the 

calculus, as scaling the variables, setting approximate initial conditions, controlling the step-size of the search 

or using a positive definite matrix to re-direct it. 

Most observations belonging to intermediate sizes is another common problem illustrated by this study 

(Fig.1): 4111 of the observations (90% of the sample) had frond volumes within 0.1 cm3 and 200 cm3, whereas 

only 460 of the observations (10% of the sample) had frond volumes beyond these bounds. The scarcity of 

observations in both size extremes undermined the fit and the confidence in the shape of the curve. To 

overcome this problem, it is proposed an alternative to GLM where the Gompertz and Weibull curves are 

estimated balancing the contribution of the different x classes (frond sizes, in this case) to the curve fitting 

process. If, on the one hand, this may improve the curve-fit, on the other hand, it introduces an uncertainty on 

the probabilities estimated for each size class when these have small numbers of individuals. As an example, 

within a size class comprising only three observations, each observation (of 0 or 1) represents a 0.33 change in 

the estimated probability. Such high uncertainty suggests that a minimum number of observations in each size 

class could be required to yield reliable fits. However, discarding size classes considered as presenting 

insufficient numbers of individuals may lead to the absence of data in the extreme parts of the curve that may 

be essential for its definition. In this work we compare the absence of data against data with poor quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Probability density functions of the dependent variable (predictor). The predictor frond volume (v) is presented in linear 
and logarithmic scales, with at least one of the tails of the respective distributions being scarce in observations. 

 

 

Knowing that the common biologist and ecologist does not necessarily master numerical methods and 

programing tools, a software and guiding lines are provided that facilitate fitting Gompertz and Weibull curves 

to their binary data. The solutions estimate all parameters based only on observed data and not requiring that at 

least one of them is known a priori. Several options were tested and compared, namely: 

(i) fitting the Gompertz vs the Weibull curves; 

(ii) estimating the parameters minimizing the SSE vs maximizing the log-likelihood; 
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(iii) using the Newton-Raphson, Gauss-Newton or Levenberg-Marquardt search algorithms; 

(iv) using several options to improve the performance of the search algorithms; 

(v) grouping the data into x classes to improve the accuracy of the fits in the extremes of the curves. 

 

2 Methods 

2.1 Data 

Gracilaria chilensis is a red macroalga with a typical isomorphic biphasic life-cycle alternating between 

diploid (tetrasporophytes) and dioecious haploid (male and female gametophytes) free living generations 

(Kamiya and Kawai, 2002; Guillemin et al., 2013; Vieira et al., 2018a,b). Individuals were monitored in five 

intertidal rock-pools in two sites (Corral 39°52’27”S / 73°24’02” W and Niebla 39°55’47”S / 73°23’57”W) 

within the Valdivia River estuary, from October 2009 to February 2011 at four-month intervals(Vieira et al., 

2018a,b). All individuals were mapped relative to a pair of fixed points. At each census, the presence (1) or 

absence (0) of reproductive structures was recorded for each individual and used as observed response (y). 

Concomitantly, the volume of each individual was recorded and used as explanatory (independent) variable 

after transformation by x=ln(v). The probability of an individual being fecund (ρ) depending on its size (x) was 

estimated for each stage×site×season combination. 

When individuals were grouped, nine size classes were used centered at x={-3, -1, 0, 1, 2, 3, 4, 5 and 7}. 

For each stage×site×season combination, the probability of an individual within a size class to be fecund (y) 

was determined by y=nf/nt, where nf and nt werethe counts of fecund individuals and of all individuals, 

respectively. 

2.2 Software and analysis design 

The SCurves1.m Matlab script fits one curve to a specific data-set using the original ungrouped observations. 

Alternatively, the SCurves2.m Matlab script fits one curve grouping the observations into x classes. The 

SCurves3.m Matlab script fits a curve for each combination of season, site and life cycle stage grouping the 

observations into x classes. 

We show how to choose the options and fit the curves using the latter script as example. The script has an 

initial section for the ‘Settings’ where all options are defined. The ones relative to the data are: 

i) Importing the data (in script line 10). It includes the path and the name of the file. 

ii) Declaring the variables (in script lines 13 to 27). Variables #1 and #2 were for x and y, respectively. We 

only used the {x,ρ} pairs for which v>0. Variables #3 to #5 were for the categorical variables season, site 

and life-cycle stage. 

iii) Defining the size classes by declaring their centers (in script line 30). Their edges are set automatically 

midway between adjacent size classes. The script automatically sets the smallest class as an open interval 

to -∞ and the largest class as an open interval to ∞. 

iv) The minimum number of observations within a size class (nmin) for it to be used in the calculus (in script 

line 33). We compared the curves fitted using nmin=1 and nmin=5. 

2.3 Sigmoid-shaped curves 

The Gompertz curve estimated the probability (ρ) of an individual sized x=ln(v) to be fecund relying on three 

parameters: the asymptotic maximum (K∞), the displacement of the curve along the x axis (b), and the 

increment rate (c) (Equation 1a). The Weibull function estimated the same relation from a slightly different 

structure with an extra parameter: the lower asymptote (K0) (Equation 1b). However, the Weibull function 

does not accept x<0. In this example it implied that we could not use the Weibull function to estimate ρ for 
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individuals sized v<1 cm3. The choice of the type of curve being fit was done in script line 39. 

 
xcebeK


      (1a)       cbxeKKK 
  0           (1b) 

 

2.4 Scaling of x and y 

Because scaling is alleged to stabilize optimization algorithms (Seber and Lee 2003; Vieira et al., 2016), both 

variables were optionally scaled so that ẋ=x/xM and ẏ=y/yM, with xM and yM corresponding to the maximum 

observed values of x and y, respectively. Scaling or not the variables was chosen in script line 36. The 

application of the Gompertz and Weilbull curves to the scaled variables led to the estimation of parameters 

specific to those scaled dimensions: 

 
xcebeKy



  (2a)              cxbeKKKy


 
  0            (2b) 

 

A conversion between original and scaled related parameters was required: (i) prior to the search, to convert 

the initial guess in the form of original parameters into their scaled counterparts, and (ii) after the search, to 

convert the solutions in the form of scaled parameters into their original counterparts. This was done for the 

Gompertz curve by the system of equations (3a), and for the Weibull curve by the system of equations (3b). 
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2.5 Non-linear least squares regression  

The curve parameters, β={K∞,b,c} in the Gompertz case and β={K∞, K0,b,c} in the Weibull case, were 

estimated by non-linear least squares regression. Because it has no closed form (i.e, analytical) solution, it 

required numerical estimation. Search methods were used to find the set of parameters (β) that minimized the 

Sum of Squares of the Error (SSE) (Equation 4): 

 

   20, , , argminK K b c y


                       (4) 

 

The search started with an initial set of parameters βi that was iteratively updated by βi+1=βi+∆β until the SSE 

stabilized in a minimum. The Newton-Raphson method, the Gauss-Newton method and the Levenberg-

Marquardt algorithm diverged in the determination of ∆β. The choice of search method was done in script line 

42. To guarantee that stabilization occurred in the desired global minimum and not in a different local 

minimum, the initial βi was already close enough from the solution (Bates and Watts, 1988; Jukic et al., 2004; 

King and Mody, 2010; Lange, 2010; Borah and Mahanta, 2013; Vieira et al., 2016). These initial conditions 

were defined in script lines 60 to 77. To aid choosing the initial βi, when plotting the results, the script added a 
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dotted red line representing the initial curve. But even with good initial guesses, search algorithms were still 

prone to give steps (∆β) too large, overshooting the solution (Bates and Watts, 1988; King and Mody, 2010; 

Lange, 2010; Borah and Mahanta, 2013). We adopted the most common and simplest solution of decreasing 

the step size by a factor, leading to ∆βnew = ∆β· shift-cut with 0≤shift-cut≤1. If this did not reduce the SSE, the 

∆βnew was iteratively decrease by the same shift-cut until the SSE was reduced. The shift-cut value was set in 

script line 48. This strategy was only applied with the Newton-Raphson and the Gauss-Newton methods. More 

intricate strategies to decrease the ∆β exist, as is the case of the Levenberg-Marquardt algorithm. 

The Gauss-Newton method solved the normal equations for ∆β(equation 5a). It required the residuals 

between observations and estimates (∆ρ=y-ρ) and the Jacobian matrix (J) of the curve function in order to the 

k parameters given the j observations (i.e., ∂ρj/∂βk). The ρ, ∆ρ and J were updated during each iteration. Given 

the possibility that observations were not all equally important, the ∆β was also solved weighting the 

observations relative to their variance (equation 5b). In this case the weighting matrix W was the diagonal 

matrix of the reciprocal of the variance-covariance matrix of the observations i.e., W=diag(cov(yj)
-1). The 

choice to weight the observations was done in script line 45. 

 

       '' 1 JJJ                             (5a) 

 

       WJJWJ '' 1
                 (5b) 

 

The Jacobian matrix (J) of the Gompertz curve considering the observations j={1,2,…, j} was given by 

Appendix equation (Ia), with its matrix entries given in Appendix equations (Ib-Id). The Jacobian matrix (J) of 

the Weibull curve considering the observations j={1,2,…, j} was given by Appendix equation (IIa), with its 

matrix entries in equations (IIb-IIe). 

The Levenberg-Marquardt algorithm improved the convergence ability of the Gauss-Newton method by 

implementing its damped versions, with the cost of increased calculus (Levenberg, 1944; Marquardt, 1963). 

The standard search was done by equation (6a) whereas the weighted search by equation (6b). The diagonal of 

J’J scaled the components of the search according to the curvature, thus increasing the step-size along the 

directions with small gradients. This method included a primary (parent) search for ∆β within which was 

executed a secondary (child) search for the damping factor λ. Within the child search, an initial damping factor 

λ0 was set to a value slightly above 1 (in script line 51). The effective damping factor λ=λ0.v
lm was iteratively 

estimated setting v to a value slightly above 1 (in script line 54) and testing lm=-1 to lm=7. We started by lm=-

1, fit the curve and then compared the new SSE to the old SSE. If no improvement in the curvefit was 

observed, lm was iteratively increased by 1, a new curve was fit, and the SSE updated. If the fit was improved 

before lm>7 the child search stopped and the parent search progressed to the next iteration. But if there was no 

improvement even when lm=7, the whole method (i.e., both searches) stopped and the current β was assumed 

as the final solution. 

 

        ''' 1 JJJdiagJJ                                  (6a) 

 

        WJJJdiagJWJ ''' 1
                      (6b) 

 

When β minimized the SSE the derivative ∂SSE/∂β=0. The Newton-Raphson method converged to its roots 
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iteratively estimating ∆β=-J-1u, where u=∂SSE/∂β and J=∂2SSE/∂β2 (King and Mody, 2010, Lange 2010, 

Mahanta and Borah, 2014). When using the Gompertz curve, u assumed the form in Appendix equation (IIIa) 

with the partial derivatives corresponding to Appendix equations (Ib-Id), while J assumed the form in 

Appendix equations (IIIb) with partial derivatives given by Appendix equations (IIIc-IIIh). When using the 

Weibull curve, u assumed the form in Appendix equation (IVa) with partial derivatives given by Appendix 

equations (IIb-IIe), while J assumed the form in Appendix equation (IVb) with partial derivatives given by 

Appendix equations (IVc-IVl). Far from the solution, this method is equally happy to converge or diverge its 

search. Forcing it to converge can be achieved replacing J by a positive definite matrix (Lange, 2010). We 

used the identity matrix. 

2.6 Maximum Likelihood Estimation (MLE) 

The curve parameters, β={K∞,b,c} in the Gompertz case and β={K∞, K0,b,c} in the Weibull case, were 

estimated by Maximum Likelihood applied to the ungrouped observations. Given a set of identical 

independently distributed (idd) observations y={y1,y2,…,yn}, their likelihood was given by L(ρ;y) (equation 7). 

However, in this case it was more convenient to work with the log-likelihood ℓ(ρ;y) (equation 8). 

 

   
1

; |
n

i
i

y f y 


L

                   

(7) 

 

    
1

1
; ln |

n

i
i

y f y
n

 


 

           

(8) 

 

The ρ was the probability of drawing y=1 input into the Bernoulli distribution (equation 9) along with the y 

observations (0 or 1).Usually, the Bernoulli distribution refers to p. However, to avoid confusion with the 

significance p, throughout this article it was replaced by ρ. In the simplest case, ρ is a constant estimated from 

the maximum log-likelihood, i.e., ρ assumes the value that maximizes the log-likelihood (equation 10).The ρ 

value maximizing the log-likelihood can even be searched and found manually, which is a good exercise to 

understand and practice this method. However, this case was more complicated since ρ was not a constant but 

a variable dependent from ln(v) following the Gompertz (equation 1a) or the Weibull (equation 1b) curves. 

Hence, it was required to find the Kinf, K0, b and c values yielding the ρ that maximized the log-likelihood 

(equation 11). 

 

   1| 1 ii yy
if y                                   (9) 

 

 arg max ; y


                                          (10) 

 

   inf 0, , , arg max ;K K b c y


                  (11) 

 

When β={Kinf,K0,b,c} maximized ℓ, the derivative ∂ℓ/∂β=0. The Newton-Raphson method iteratively 

converged to its roots applying βt+1=βt+∆β and estimating ∆β=-J-1u (King and Mody, 2010, Lange 2010), 

where u=∂ℓ/∂β and J=∂2ℓ/∂β2. When using the Gompertz curve, u assumed the form in Appendix equation 

(Va), with first order partial derivatives given by Appendix equations (Ib-Id), while J assumed the form in 
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equations (Vb and Vc) with first order partial derivatives given by Appendix equations(Ib-Id)and second order 

partial derivatives given by Appendix equations (Vd-Vi). When using the Weibull curve, u assumed the form 

in equation (VIa), requiring the first order partial derivatives presented in equations (IIb-IIe), while J assumed 

the form in equations (VIb and Vc) requiring the first order partial derivatives (equations IIb-IIe) together with 

the second order partial derivatives presented in equations (VIc-VIh): 

Alternatively to MLE using the Newton-Raphson method, the MLE using the Matlab embeded fmincon 

function provided in its Optimization Toolbox, was also tested. Since this is a multidimensional optimization 

problem, the application of the fmincon function is not as straight-forward as in Matlab’s tutorial. The 

programming sequence used is presented hereafter. Prior to the calculations, it was defined a custom @myfun 

function to be invoked during calculations. For the Gompertz curve it was created the Gompertz_MLE.com 

script with the code lines: 

 

function l = Gompertz_MLE(x,y,n,beta) 

Kinf = beta(1); 

b    = beta(2); 

c    = beta(3); 

yest = Kinf.*exp(-b.*exp(-c*x)); 

fBer = yest.^y.*(1-yest).^(1-y); 

l    = -1/n*sum(log(fBer)); 

 

This script yields the -ℓ of the Gompertz curve given β={K∞,b,c} and assuming that the observations follow a 

Bernoulli distribution. The -ℓ was used because it was wished to find the β maximizing ℓ but the fmincon is a 

minimization algorithm. The adaptation to the Weibull curve required introducing an extra line for K0, 

adapting β for K0 and replacing for the Weibull equation in the ‘yest’ line. The next step was running the 

Scurves1.m script until line 83 with the objectives of (i) selecting the explanatory (x) and response (y) 

variables, (ii) defining the sample size (n), (iii) selecting the stage×month×pool combination to test, and (iv) 

defining the initial K∞, b and c parameters. Then, defining the fmincon options was required. Its Active-Set 

search algorithm was the only consistently providing solutions to the optimization problem. Hence, in 

Matlab’s command window was typed: 

 

options=optimset('Algorithm','active-set','MaxFunEvals',1000); 

 

Although it was chosen admitting up to 1000 iterations, the algorithm usually converged in less than 20. The 

fmincon function could finally be run typing in the command window: 

 

[beta,~,~,~]=fmincon(@(beta)Gompertz_MLE(x,y,n,beta),beta,[],[],[],[],[],[],[],options); 

Kinf             = beta(1); 

b                  = beta(2); 

c                  = beta(3); 

 

This particular fmincon syntax states that the -ℓ is minimized searching the optimal β and not the x, y or n, 

without constrains for equalities or inequalities, and without upper and/or lower boundaries. 
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3 Results and Discussion 

When the curves were estimated from the original (ungrouped) observations, 126 to 458 observations were 

comprised within each stage×month×pool combination. These large sample sizes were fundamental for the 

stability of the SSE minimization, leading all search algorithms to always converge into similar curves. The 

strategies used to stabilize the searches were of little relevance and the searches were little sensitive to the 

initial conditions. On the contrary, when the curves were estimated from MLE the calculus was often unstable. 

The Newton-Raphson method was unable to find the MLE solution for 2 out of the 18 stage×month×pool 

combinations, while the Matlab embedded fmincon function was unable to find the MLE solution for 4 

combinations. When the curves were estimated from grouped observations, 5 to 9 groups were comprised 

within each stage×month×pool combination, with the calculus becoming highly unstable. Hence, the first task 

was tuning the search algorithms. Only afterwards could the grouped binary data be tested with confidence. 

As commonly happens with Sigmoid-shaped functions, the Gompertz and Weibull equations used in this 

study had intricate structures that easily pointed the optimization algorithms to search in the wrong direction or 

to overshoot the solution. Hence, providing good initial guesses for the curve parameters is a key aspect in the 

application of search algorithms (Jukic et al., 2004; King and Mody, 2010; Lange, 2010; Oswald et al., 2012). 

When applying the grouping method, good initial guesses could always be obtained from a former parameter 

estimation from ungrouped observations. 

When using the Newton-Raphson method to estimate the Gompertz curve parameters the searches easily 

started drifting erratically. Hence, this method was only useful after stabilization, which required the 

simultaneous use of (i) a positive definite matrix preventing the search to move in the wrong direction, and (ii) 

a shift-cut ≤0.46preventing the search to over-shoot the solution. When these two options were simultaneously 

applied, the search converged to adequate solutions (Figs 2 and 3). In these cases, scaling the variables was 

useless and often had a deleterious effect. The numerical instability was more severe when the Newton-

Raphson method was applied to the Weibull curve. Then, obtaining good fits for all curves required 0.1≤ shift-

cut ≤0.2.In rare occasions it was better to scale the variables, but usually this option was irrelevant. Despite all 

the difficulties, the Newton-Raphson method was the only able to fit Weibull curves on a regular basis and 

with a single tuning. 

When the Gauss-Newton method converged, it was exactly to the same solutions as the Newton-Raphson 

method (Fig. 3). However, the Gauss-Newton method was the most unstable of them all, the reason why it was 

the least preferred for this dataset. Either applied to estimate the Gompertz or the Weibull curves, convergence 

required initial guesses very close to the final solution. Using the same initial guesses as in the previous test 

with the Newton-Raphson, and it was impossible to fit all curves i.e., whatever the tuning, there were always a 

few curves for which the search did not converge. Scaling the variables or weighting the observations was 

useless. 
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Fig. 2 Tuning the Newton-Raphson method to fit the Gompertz curve. The accuracy of the fits are given by the Root Mean 
Square Error (RMSE), with the searched method using a positive definite matrix and a shift-cut (a: in x axis), or without using a 
positive definite matrix and a shift-cut (b: in y axis). The solid grey line is the 1:1 line. The effect of scaling or not both variables 
is also shown. All fits started from reasonably close initial guesses. 
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Fig. 3 Comparing sigmoid curves. Observations and estimates for the (ρ) probability of fronds with (v) volume being fecund. 
Curvefits split among life-cycle stages Males, Females and Diploids, seasons Autumn (aut), Winter (win), and Summer (sum), 
and sites Corral (C) and Niebla (N)., and using all size classes with at least one observation. The observations (G obs) were used 
to fit the Gompertz curve (G fit) by any of the methods with the search starting from initial guesses (initial). The observations (W 
obs) were used to fit the Weibull curve (W fit) by the Newton-Raphson method. 

 

 

The Levenberg-Marquardt algorithm was the most stable and easiest to apply with the Gompertz curve. 

Tuning it to 0.1≤λ≤5 and 1<v<3 led the searches to always converge, fitting curves identical to the ones 

provided by the Newton-Raphson method and the Gauss-Newton method at their finest performance (Fig. 3). 

Therefore, it was the favorite method for fitting the Gompertz curve. This was expectable as the Levenberg-

Marquardt was the last of these methods to be developed, and precisely aiming to solve the stability issues of 

its predecessors (Levenberg, 1944; Marquardt, 1963). However, when fitting the Weibull curve, things 

changed drastically. There was no effective tuning of the Levenberg-Marquardt algorithm leading all searches 

to converge. A few curves were always left unfit. Again, scaling the variables or weighting the observations 

was useless, both for fitting the Gompertz or the Weibull curves. From all these tests was concluded that there 

is no overall better method. Their performances change with the data properties and the curve being fit 
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(Levenberg, 1944; Marquardt, 1963; Bates and Watts, 1988; Jukic et al., 2004; King and Mody, 2010; Lange, 

2010; Borah and Mahanta, 2013). 

The threshold number of observations within a class for itto be accepted in the ‘grouping the data’ method 

was tested comparing between using all classes with at least one or with at least five observations. For this test, 

Gompertz curves were fit applying the Levenberg-Marquardt algorithm. In 11out of the 18 curves, both 

thresholds made no difference (Fig.4). In five of the cases where using a n≥5 threshold eliminated size classes, 

this made no (or little) difference for the curve-fits. In these cases, also using the size classes with n<5 

confirmed the adequacy of the curve-fit for a wider range of the explanatory x variable, and thus conferred 

more confidence on these fits. In the remaining two cases, using less classes decreased the quality of the fits, 

leading to conspicuously different and less credible curves. Our tests suggest that it is preferable to use the 

largest quantity of data (i.e., x classes) possible, even if the quality of the extra data is lower (i.e., there is less 

confidence on the y averaged for these x classes). Nonetheless, these are only preliminary results and more 

extensive testing is required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Data quantity vs quality.Gompertz curves were fit by the Levenberg-Marquardt algorithm using size classes with at least 
one observation (n>0) or just the size classes with at least 5 observations (n>4). Where the black lines are not visible it is because 
they are covered behind by the red curves. Values (obs) observed and (est) estimated for the (ρ) probability of fronds with (v) 
volume being fecund. Curvefits split among life-cycle stages Males, Females and Diploids, seasons Autumn (aut), Winter (win), 
and Summer (sum), and sites Corral (C) and Niebla (N). 
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The estimation of Gompertz curves from observations grouped into size classes was compared against their 

estimation directly from the original ungrouped observations, either by minimizing the SSE or maximizing the 

log-likelihood. For many of the stage×month×pool combinations, both ‘grouped’ and ‘ungrouped’ methods 

yielded resembling curves (Fig.5). In these cases, the advantage of grouping observations is only the visual 

effect of the plots. The remarkable visual fits between lines and size class averages are intuitively accepted. On 

the contrary, the exact same lines are intuitively questioned when plotted against raw observations that are 

either 0 or 1, despite in both cases the supporting raw data being exactly the same. In the stage×month×pool 

combinations where the ‘grouped’ and ‘ungrouped’ methods yielded conspicuously different curves, these 

diverged mainly in their extremes (Fig. 5), which is precisely where the application of the ‘grouped’ method is 

expected to be advantageous. While in the center of the curves, where the bulk of the observations are, the 

‘ungrouped’ method should provide better fits because the searches provided the parameters optimizing the fits 

to this bulk; in the curves’ extremes the ‘grouping’ method, by enhancing the weights of the observations 

therein, should generally provide better fits. To tests the accuracy of the fits specifically in these extremes we 

estimated the root mean square deviation (RMSE) using only observations of fronds smaller than 0.02 cm3 or 

larger than 200 cm3 (Fig. 6). Comparing to the ungrouped- SSE method, in 10 out of the 18 stage×month×pool 

combinations the ‘grouped’ method provided better fits (i.e., smaller RMSE), and only in 4 cases was it the 

other way around. This contrast was even more stringent when comparing to the ungrouped- MLE methods, 

and we recall that these latter were even unable to find the solutions for several curve-fits. Maybe in most 

applications of the Gompertz and Weibull curves is more important to focus on the accuracy of the curves at 

their centers, where the bulk observations are. In such cases, not grouping the observations seems as good a 

choice as grouping them. However, there are applications where the most important is to have curves that are 

accurate at their extremes despite the reduced number of observations therein. In such cases, grouping the 

observations will likely provide better curve-fits. 
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Fig. 5 Curve fits of grouped vs ungrouped observations, and SSE vs MLE. The probability (ρ) of individuals being fecund was 
dependent on their frond volume following a Gompertz curve. Curvefits split among life-cycle stages Males, Females and 
Diploids, seasons Autumn (aut), Winter (win), and Summer (sum), and sites Corral (C) and Niebla (N). The parameters were 
estimated by non-linear regression minimizing the error sum of squares using the Levenberg-Marquardt algorithm (SSE), by 
maximum likelihood estimation using the Newton-Raphson method (MLE \ N-R) and by maximum likelihood estimation using 
Matlab’s fmincon function with the Active-Set algorithm (MLE \ fmincon). The parameters were estimated from the original 
observations (ungrouped) or the observations grouped into size classes (grouped). The MLE was always applied with ungrouped 
observations. 
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Fig. 6 RMSE of grouped vs ungrouped observations, and SSE vs MLE. Root Mean Square Deviation (RMSE) of the Gompertz 
curves fit grouping and not grouping the observations, and minimizing the SSE or maximizing log-likelihood. 

 

 

In biological, ecological and evolutionary research it is fundamental to accurately fit non-linear growth, 

survival and fecundity(Austin et al., 2011; Oswald et al., 2012; Paine et al., 2012; Barbour et al., 2013; Wilson 

et al., 2017; Rosenbaum and Rall, 2018). This case study is an example of when the accuracy of the fit at the 

curve extremes is of paramount importance: the fecundity of Gracilaria chilensis was approximately constant 

per unit frond volume, resulting in a strong allometric relation between spore production and frond length. 

Hence, despite the bulk of the observation being of intermediate-size fronds, the bulk of the spores were 

produced by the few larger fronds (Vieira et al., 2018b). Exceptionally large fronds occurred even among 

stands dominated by small fronds (Vieira et al., 2016). Under these circumstances, the focus was on accurately 

estimating the probability of larger fronds to be fecund, while the accuracy of this estimate for the 

intermediate-sized fronds was of lesser relevance. We illustrate it with the estimation of carpospores produced 

by females at Corral during the summer of 2010. The fecund females produced an average of 21.3 spores per 

cm3 of thallus; which was multiplied by the volume of each thallus and by its probability of being fecund to 

obtain the likeliest carpospore production (Fig. 7). Because most of the carpospores were produced by the few 

larger female fronds, the estimated overall carpospore production was highly dependent on the method used to 

estimate the probability (ρ) of a female to be fecund. In fact, the difference between the likeliest carpospore 

production by the single biggest female frond depending on the ρ curve used, was larger than the likeliest 

carpospore production by all the other female fronds pooled together. 
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Fig. 7 Likeliest fecundity by size-class. The likeliest quantity of spores produced by each female monitored at Corral during the 
summer was dependent on the volume of its frond. This estimated spore production differed with the method (grouped vs 
ungrouped) used to estimate the probability of a frond to be fecund. 

 

 

For many of the cases of larger size classes, our fits estimated K∞>1, implying probabilities >1, which is 

apparently incoherent. However, in practical terms, this is meaningless as it simply implies that individuals of 

those sizes are always fecund. We illustrate with the stochasticity of Individual Based Models: when applying 

these models, we simulate the fate of individuals one-by-one, and one-by-one we determine whether the 

individual is going or not to be fecund by randomly drawing a number between 0 and 1. If this number <K∞ 

the individual is going to be fecund, otherwise, is not. In practical terms, when individuals of a certain 

category are always fecund, it is irrelevant whether K∞ is exactly 1 or how much larger than 1.In several 

stage×month×pool combinations the ρ did not show a leveling-off trend with increasing size (Figs 3-5). The 

most conspicuous cases were those of the females and diploids at Corral during the summer. In these cases, a 

K∞>1 was fundamental for the generation of curves accurately fitting the observations. 
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Supplementary Material 

File Data.mat has the Gracilaria chilensis data. 

File SCurves1.m fits one curve to a specific data-set using the original ungrouped observations. 

File SCurves2.m fits one curve grouping the observations into x classes. 

File SCurves3.m fits a curve for each combination of season, site and life cycle stage grouping the 

observations into x classes. 
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