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Abstract 

In this paper we consider a fractional order Logistic model with Caputo-Fabrizio fractional derivative. By 

applying two-step Adams-Bashforth scheme, we obtain a system of difference equations. By using the Schur-

Cohn criterion, stability conditions of the positive equilibrium point of the discrete system are obtained. It is 

observed that the discrete system shows much richer dynamic behaviors than its fractional-order form such as 

Neimark-Sacker bifurcation and chaos. The direction and stability of the Neimark-Sacker bifurcation are 

determined by using the normal form and center manifold theory. In addition, the effect of fractional order 

parameter on the dynamical behavior of the system is investigated. Finally, numerical simulations are used to 

demonstrate the accuracy of analytical results. 

 

Keywords Caputo-Fabrizio fractional derivative; two-step Adams-Basforth Method; Logistic differential 

equation; Neimark-Sacker bifurcation. 

 

 

 

 

 

 

 

 

1 Introduction 

Fractional calculus is a generalization of integer order derivative and integral and is one of the most powerful 

mathematical tools used to model real-life problems in many areas of science, technology and engineering 

(Karaagac, 2019; Saad and Aguilar, 2018; Gomez-Aguilar et al., 2019). We can find many definitions of 

fractional order derivative in literature and the most important of these are Riemann-Liouville and Caputo 

fractional derivative. Although these definitions have successful applications in the literature, they have serious 

disadvantages that their kernel describing the memory effect had singularity. Because of this inconvenience 

Caputo and Fabrizio proposed a new definition of fractional derivative which is called Caputo Fabrizio 

fractional derivative (CF) (Caputo and Fabrizio, 2015). CF fractional derivative is a fractional derivative with a 
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local and non-singular kernel (Karaagac, 2018), and is based on the exponential decay law (Saad and Aguilar, 

2018). The CF fractional derivative has very attractive properties as it can describe heterogeneities and 

configurations of matter at different scales that cannot be command by known local theories and well known 

fractional derivatives (Atangana and Alqahtani, 2016). The calculation is much easier and resulting solutions 

can be expressed by the elemantary function for the fractional differential equation with CF fractional 

derivative sense (Abdulhameed et al., 2017). However CF fractional derivative takes on two different 

representations of temporal variable and spatial variable (Liu et al., 2017.). While in a structure that depends 

on the temporal variable the Laplace Transform is appropriate, in a structure depends on the spatial variable 

the Fourier Transform is more appropriate (Caputo and Fabrizio, 2015). Due to the above mentioned important 

advantages of this definition, CF fractional order derivative has many physical and biological applications in 

the literature (Abdulhameed et al., 2017; Atangana, 2016; Firoozjaee et al., 2018; Ullah et al., 2020; Khan et 

al., 2019; Ullah et al., 2018; Khan et al., 2018; Owolabi, 2019; Ghanbari and Gomez-Aguilar, 2018 and 

Noupoue et al., 2019). Abdulhameed et al. (2017) studied electro-magneto-hydrodynamic flow of the non-

Newtonian behavior of biofluids, with heat transfer, through a cylindrical microchannel. Atangana (Atangana, 

2016) applied the CF derivative to nonlinear Fisher reaction-diffusion model and given an algorithm in order 

to obtain numerical solutions of the model. A type of Fokker-Plank equation with CF derivative is considered 

in (Firoozjaee et al., 2018). In population dynamics, tuberculosis model (Ullah et al., 2020), hepatitis E model 

(Khan et al., 2019), hepatitis B virus model (Ullah et al., 2018), pine wilt disease model (Khan et al., 2018), 

love dynamics model (Owolabi, 2019), nutritient phytoplankton-zooplankton (Ghanbari and Gomez-Aguilar, 

2018), logistic model (Noupoue et al., 2019) are studied via CF derivative. The Caputo fractional derivative of 

order α for a continuous function f is defined by  
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where ܯሺߙሻ is a normalization function such that ܯሺ0ሻ  ൌ ሺ1ሻܯ   ൌ  1. 

As with ordinary differential equations, many nonlinear fractional differential equations do not have an 

analytical solution and numerical approach is needed. There are several methods have been proposed for 

obtaining numerical solutions CF fractional differential equations such as Homotopy Analsysis method 

(Yepez-Martinez and Gomez-Aguilar, 2019), Finite difference approximation (Rangaig, 2018), Laplace 

transform method (Shaikh et al., 2019), MQ-RBF collocation method (Kazemi and Jafari, 2017), discretization 

scheme (Atangana and Gomez-Aguilar, 2017) and Adams- Bashforth scheme (Owolabi and Atangana, 2017). 

One of the suitable numerical methods for solving nonlinear equations is the Adams-Bashfort method (Koca, 

2018). This method is developed with classical differentiation using the basic theorem of calculus and by 

taking between two times containing ݐ and ݐାଵ (Atangana and Owolabi, 2017). Atangana extended this 

method to solve fractional differential equations with CF derivative and Atangana Baleanu fractional 

derivative.  

Let a non-linear fractional differential equation with Caputo-Fabrizio sense defined by CFܦ
ఈሺݐሻ ൌ

݃൫ݐ, ሺ0ሻݑ       ,ሻ൯ݐሺݑ ൌ                                                                                                                        ሺ3ሻݑ

The numerical solution of (3) is based on the Adams-Bashforth method given as follows (Noupoue et al., 
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2019). 
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Consider fractional logistic differential equation (FLDE) with CF fractional derivative as 

CFܦ௧
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where ݐ  0, ݎ  0,  The existence and uniqueness of the .1 ≥ ߙ>is the fractional order derivative with  0  ߙ

solution of the model (5) are analyzed in (Noupoue et al., 2019). Furthermore, several numerical approaches 

such as generalized Eulers method, power series expansion method and Caputo-Fabrizio method are applied to 

model (5) and the results obtained from these methods are compared with the classical solution. Applying the 

Adams-Bashforth method to fractional logistic differential equation (5) in CF sense, the approximate solutions 

of FLDE obtained as (Noupoue et al., 2019). 
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In this article we deal with stability and Neimark-Sacker bifurcation analysis for the discretized model (6) 

obtained from the Caputo Fabrizio logistic differential equations (5). 

 

2 Stability Analysis 

Using the change of variables ܰሺݐሻ ൌ ଵܺሺ݊ሻ and  ܰሺݐିଵሻ ൌ ܺଶሺ݊ሻwe obtain system of di�erence 

equations as follows 
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where ߙ א ሺ0,1ሿ, ܭ  0 and ܯሺߙሻ  0. We note that system (6) and system (7) have the same equilibrium 

points that is (0,0) and (K,K). Now we deal with the stability analysis of these equilibrium points of system (7). 

Let’s take ܯሺߙሻ ൌ  .ܯ

Theorem 2.1 

 (a) The equilibrium point (0,0) of the system (7) is unstable for  0 ൏ ߙ ൏ 1 . 

 (b) The equilibrium point (0,0) of the system (7) is local asympotically stable for ߙ  1 , ݄ ൏
ఈିଵ

ఈ
  and 

ݎ ൏
ܯ2

െ2  ߙ2 െ ߙ݄
.                                                                                                                              ሺ8ሻ   

Proof. 

Let   ܺሺ݊  1ሻ ൌ  can be calculated ܬ ሺ݊ሻ is linearized system of (7) about (0,0). So the Jacobian matrixܺܬ

as 

ሺ0,0ሻܬ ൌ ൭
ܯ2  ሺ2  ሺെ2  3݄ሻߙሻݎ

ܯ2
ሺ2  ሺെ2  ݄ሻߙሻݎ

ܯ2
1 0

൱, 

which gives the characteristic equation 

ሻߣሺ ൌ ଶߣ  ߣଵ   ൌ 0 , 

where 
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Fig. 1 Numerical solution of fractional logistic equation with Caputo and Caputo-Fabrizio fractional derivative represented 
by blue and red curve respectively ߙ ൌ 0.77 (a), ߙ ൌ 0.78  (b), ߙ ൌ 0.79 (c), ߙ ൌ 0.80 (d), ߙ ൌ 0.81 (e), ߙ ൌ 0.82  
(f), ߙ ൌ 0.83  (g), ߙ ൌ 0.84  (h), ߙ ൌ 0.85  (ı), ߙ ൌ 0.86 (j),   ߙ ൌ 0.87  (k), ߙ ൌ 0.88  (l). Parameters values and 
initial conditionals are ܭ ൌ 267.5301, ݄ ൌ 0.001, ݎ ൌ 0.07060, ଵܺሺ7ሻ ൌ 35. 

 

 

ଵ ൌ െ
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To check asymptotically stable of equilibrium points, we use the following Jury conditions. 

݅ሻ 1  ଵ    0,   ݅݅ሻ 1 െ ଵ    0,   ݅݅݅ሻ 1 െ   0                                                                          

The first Jury condition leads to 
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and does not satisfy1  ଵ    0 for 0 ൏ ߙ ൏ 1. Therefore equilibrium point (0,0) is unstable for 

0 ൏ ߙ ൏ 1. 

Now we assume that ߙ  1. In this situation we have   1  ଵ    0 under the condition݄ ൏
ఈିଵ
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. 
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ఈ
 and ߙ  1. This completes the proof. 

 

Fig. 2 Asymptotically stable equilibrium point (K,K) of the system (7) for ߙ ൌ 0.8, ܭ ൌ ܯ  ,267.5301 ൌ
0.88715, ݄ ൌ 0.001, ݎ ൌ 0.07060, ଵܺሺ7ሻ ൌ 35, ܺଶሺ7ሻ ൌ 35. 

 

 

Theorem 2.2 

The positive equilibrium point (K,K) of system (7) is local asymptotically stable if  0 ൏ ߙ  1  and  

ݎ ൏
ܯ2

2 െ ߙ2  ߙ݄
 .                                                                                                                                 ሺ9ሻ     
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Proof. 

The Jacobian matrix   ܬ at the equilibrium point (K,K) is the form 

,ܭሺܬ ሻܭ ൌ ൭
ܯ2  ሺെ2  ሺ2 െ 3݄ሻߙሻݎ

ܯ2
െ
ሺ2  ሺെ2  ݄ሻߙሻݎ

ܯ2
1 0

൱ 

that has the characteristic equation 
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for ߙ ൏ 1. This completes the proof. 

 

3 Neimark-Sacker Bifurcation Analysis 

In this section we study Neimark-Sacker bifurcation around the positive equilibrium point (K,K) by using the 

bifurcation theory in (Kuznetsov, 1998; He and Li, 2014; Kartal, 2017, 2018). We choose the parameter ݎ  as 

a bifurcation parameter.  

The eigenvalues of characteristic equation (10) are 
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For the Neimark-Sacker bifurcation these eigenvalues must be complex and so we require           
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then we have ሺݎҧሻ ൌ 1. Now the eigenvalues are 
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In addition from the non-resonance condition, we have  ଵሺݎҧሻ ൌ
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ߙ ്
ଶ

ଶା
. This means that ߣሺݎҧሻ ് 1 for  ݇ ൌ 1,2,3,4. 

Let ݔଵ ൌ ଵܺ െ ଶݔ,ܭ ൌ ܺଶ െ ሻݎሺܣ ,ܭ ൌ ,ܭሺܬ  ሻ. Now we transform the equilibrium point (K,K)  ofܭ
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Now we calculate multilinear function: 
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Let ܥ߳ݍଶ    be an eigenvector of ܣሺݎҧሻcorresponding to the eigenvalues ߣሺݎҧሻ such that, ܣሺݎҧሻݍ ൌ ݁ఏబݍ and 

let ܥ߳ଶ    be an eigenvector of the transposed matrix ்ܣሺݎҧሻ corresponding to its eigenvalue ߣሺݎҧሻതതതതതത such  
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Fig. 3 Phase portraits of the system (7) for values ݎ for ݎ ൌ 3 (a), ݎ ൌ 4 (b), ݎ ൌ 4.42695 (c), ݎ ൌ 5 (d). 

The other parameter values and initial conditions as the same as in Fig. 1. 

 

 

that ்ܣሺݎҧሻ ൌ ݁ିఏబ . 
As a result of necessary calculation we obtain  
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In order to normalize   with respect to ݍ , we choose  ൌ ݉ሺܽ  ܾ݅, ܿሻ where 
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Now it can be easily seen that ۃ, ۄݍ ൌ 1, where ۃ. , . :ଶܥ means the standart scalar product ۄ ,ۃ ۄݍ ൌ ଵݍଵതതത 

 .ଶݍଶതതത

Now we form 

ݔ  ൌ ݍݖ   തതതݍݖ

In this way system (12) can be transformed for sufficiently small|ݎ|into following form 
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ݖ ՜ ݖሻݎሺߣ  ݃ሺݖ, ,ҧݖ                                                               ,ሻݎ

where ߣሺݎሻ can be written as ߣሺݎሻ ൌ ሺ1  ߶ሺݎሻሻ݁ఏሺሻ  (߶ሺݎሻ ݄݅ݐ݅ݓ ݊݅ݐܿ݊ݑ݂ ݄ݐ݉ݏ ݏ ߶ሺݎҧሻ ൌ 0) and ݃ 

is a complex valued smooth function of ݖ, ,ݖwhose Taylor expression with respect to ሺ ݎ ҧ andݖ   ҧሻ areݖ

݃ሺݖ, ,ҧݖ ሻݎ ൌ 
1
݇! ݆!

݃ሺݎሻ
ାஹଶ

,݇           ,ିݖݖ ݆ ൌ 0,1,2, … 

where 

݃ଶ ൌ ,ۃ ,ݍሺܤ ۄሻݍ

ൌ െ
2ሺܽ െ ܾ݅ሻሺ2ܽሺܽ െ ܾ݅ሻଶ  ሺܽ െ ܾ݅ሻଶܿ  ܿଷሻ

ܿሺെሺܽ െ ܾ݅ሻଶ  ܿଶሻܭ
݃ଵଵ ൌ ,ۃ ,ݍሺܤ ۄതሻݍ

       ൌ െ
2ሺܽ െ ܾ݅ሻሺ2ߙሺܽଶ  ܾଶሻ  ሺܽଶ  ܾଶሻܿ  ܿଷሻ

ܿሺെሺܽ െ ܾ݅ሻଶ  ܿଶሻܭ
݃ଶ ൌ ,ۃ ,ݍሺܤ ۄതሻݍ

ൌ െ
2ሺܽ െ ܾ݅ሻሺ2ܽሺܽ  ܾ݅ሻଶ  ሺܽ  ܾ݅ሻଶܿ  ܿଷሻ

ܿሺെሺܽ െ ܾ݅ሻଶ  ܿଶሻܭ
݃ଶଵ ൌ ,ۃ ,ݍሺܥ ,ݍ ۄതሻݍ

ൌ 0               

 

Now the coefficient ݇ሺݎҧሻ which determines the direction of the appearence of the invariant curve in a generic 

system exhibiting Neimark-Sacker bifurcation can be computed via 

݇ሺݎҧሻ ൌ ܴ݁ ቆ
݁ିఏሺҧሻ݃ଶଵ

2
ቇ െ ܴ݁ ቆ

൫1 െ 2݁ఏሺҧሻ൯݁ିଶఏሺҧሻ

2ሺ1 െ ݁ఏሺҧሻሻ
݃ଶ݃ଵଵቇ െ

1
2
|݃ଵଵ|ଶ െ

1
4
|݃ଶ|ଶ.           ሺ19ሻ 

By using the above arguments and the theorems in (Kuznetsov, 1998; He and Li, 2014; Kartal, 2017, 2018), 

we have the following result. 

 

Theorem 3.1 

Let (K,K) is the possitive equilibrium point of the system (7). If  ଵ
ଶ െ 4 ൏ 0, ߙ ്

ଶ

ଶି
, ߙ ്

ଶ

ଶା  
 and 

݇ሺݎҧሻ ൏ 0  (respectively ݇ሺݎҧሻ  0 ), then the Neimark-Sacker of the system at ݎ ൌ ҧݎ  is supercritical 

(respectively subcritical) and closed invariant curve bifurcation from (K,K) for ݎ ൌ  ҧ, which is asymptoticallyݎ

stable (respectively unstable). 

From the conditions of Theorem 2.2, the stable region of the system (7) is obtained as           

ݎ  4.42695  for the parameter values ߙ ൌ 0.8, ܭ ൌ 267.5301, ݄ ൌ 0.001 and ܯ ൌ 0.88715 . For      

ݎ ൌ 0.07060 , which falls in this stable region, the positive equilibrium point (267.5301, 267.5301) of the 

system (7) is local asymptotically stable (Fig. 2). For ݎ ൌ ҧݎ ൌ 4.42695  we have complex conjugate 

eigenvalues  หߣଵ,ଶห ൌ െ0.00199601 െ 0.999998݅  with moduls หߣଵ,ଶሺݎҧሻห ൌ 1. In addition, it can be easily 

seen that transversality condition 
ௗหఒభ,మሺሻห

ௗ
ቚ
ୀҧ

ൌ 0.112945 ് 0   and non-resonance condition ߣሺݎҧሻ ് 1 for  

ߙ ് 1.0005, ߙ ് 0.9995  are satisfied. So the Neimark-Sacker bifurcation occurs around the positive 

equilibrium point (Fig.3, Fig. 4). On the other hand, the Taylor coefficients can be calculated as           

݃ଶ ൌ 6.00451x10ି െ 5.96866x10ି݅,   ݃ଵଵ ൌ 3.13112x10ିଶଵ  0.00300228x10ି݅,     ݃ଶ ൌ

െ6.00451x10ି െ 5.96866x10ି݅  and ݃ଶଵ ൌ 0  with ߠ ൌ 1.52729 . Therefore the critical real point is 

obtained as݇ሺݎҧሻ ൌ െ4.4889x10ି that is Neimark-Sacker bifurcation is supercritical. In addition, we also 

compute Lyapunov exponents corresponding to Fig. 4 to confirm further complexity of the dynamical 

behaviours. Fig. 5 demostrates the existence of the chaotic regions and period orbits in the parametric space. 
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Fig. 4 Bifurcation diagram for ሺݎ െ ଵܺሻ plane. The other parameter values and initial conditions as the same as 
in Fig. 1. 

 

 

4 Results and Discussion 

In this study, by applying two-step Adams-Bashforth scheme to the Caputo-Fabrizio fractional logistic 

equation, we obtain the system of difference equations (7). The parameter values are taken from the data 

resulting from the experimental observation of the annual growth rate of the helianthus plant and these data 

can be found in (Noupoue et al., 2019; Reed and Holland, 1919). The height of the plants measured at a 

constant spacing time of 7 days given in centimeters. Stability analysis show that the positive equilibrium point 

(K,K) of the discrete system (7) is local asymptotically stable under the some algebraic conditions depending 

on the parameter ݎ (Fig. 2). When we compare solution of Caputo and Caputo-Fabrizio fractional logistic 

equations we find that both fractional differential equations give closer results in the interval ߳ߙሾ0.8 െ 0.82ሿ. 

Considering this harmony we take the fractional order parameter ߙ as 0.80. As ߙ exceeds this value and 

approaches to 1 the difference between the solutions of the two equations increases. We also deal with the 

bifurcation analysis of the discrete system and show that system (7) undergoes a Neimark-Sacker bifurcation at 

the critical parameter value ݎ ൌ 4.42695 that leads to stable limit cycle around the positive equilibrium point 

(Fig. 3 and Fig. 4).Maximum Lyapunov exponents show that the discrete system exhibit chaotic dynamic 

according to changing parameter ݎ (Fig. 5). From Fig. 5, it is observed that some Lyapunov exponents are 

bigger than 0, some are smaller than 0, so there exists stable fixed point or stable quasi-periodic windows in 

the chaotic region. In addition we choose normalization function ܯ as ܯ ൌ 1 െ ߙ 
ఈ

ሺఈሻ
 which satisfies      

ሺ0ሻܯ ൌ ሺ1ሻܯ ൌ 1 (Bastos, 2018). The phase portrait of the system for increasing value of fractional order 

parameter ߙ is given in Fig. 6. This figure demonstrates the process of how a smooth invariant circle appears 
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and disappears from the fixed point. The critical Neimark-Sacker bifurcation according to the fractional order 

parameter ߙ  can be determined as ߙത ൌ  0.598995  (Fig. 6). From this figure, we observe that stable 

behavior of system destabilize for increasing the fractional order parameter ߙ. 

 

 

 

Fig. 5 Maximum Lyapunov exponents corresponding to Fig. 4. 
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Fig. 6 Phase portrais for values of ߙ and normalization function ܯ for ߙ ൌ 1, ܯ ൌ 1 (a), ߙ ൌ ܯ   ,0.9 ൌ 0.942201 
(b), ߙ ൌ 0.8, ܯ ൌ 0.88715 (c), ߙ ൌ 0.7, ܯ ൌ 0.839268 (d), ߙ ൌ 0.61, ܯ ൌ 0.805903 (e), ߙ ൌ 0.598995, ܯ ൌ
0.80261  (f), ߙ ൌ 0.58, ܯ ൌ 0.797326  (g), ߙ ൌ 0.45, ܯ ൌ 0.778643  (h), ߙ ൌ 0.44, ܯ ൌ 0.778558  (ı), 
ߙ ൌ 0.4, ܯ ൌ 0.78033 (j), ߙ ൌ 0.35, ܯ ൌ 0.787463 (k),  ߙ ൌ ܯ,0.3 ൌ 0.800281 (l). The other parameter values 
and initial conditions as the same as in Fig. 1. 
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