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Abstract 
The sanitation plays a very important role to control the spread of infectious diseases and is much effective 

public health intervention. Inadequate sanitation is a major cause of spread of carrier dependent infectious 

diseases such as typhoid, dysentery and cholera. In this paper, a nonlinear mathematical model is proposed to 

study the effect of sanitation on the spread of such diseases in a homogeneously mixed human population. In 

modeling the process, it is assumed that the disease spreads directly from the infectives to susceptibles as well 

as indirectly by the carriers present in the environment. The density of carrier population is assumed to grow 

logistically but it declines due to sanitation effort applied whereas the sanitation effort also follows a logistic 

model with its desired increase taken directly proportional to the density of carrier population. The proposed 

model is also extended to an optimal control problem and is analyzed using Pontryagin Maximum Principle. 

The model analysis reveals that the carrier population density decreases with increase in the sanitation effort 

applied resulting to decrease the infective population and hence decline in the disease prevalence. Thus, the 

spread of carrier dependent infectious diseases can be controlled significantly if suitable sanitation effort is 

applied to curb the carrier population in the environment. Numerical simulations performed also support the 

analytical findings. 

 

Keywords mathematical model; infectious diseases; carrier population; sanitation effort; stability; numerical 

simulation. 

 

 

 

 

 

 

 

1 Introduction 

Sanitation refers to public health conditions such as the one related to clean drinking water, proper 

management of solid and animal waste, environmental hygiene, household cleanliness etc. These sanitation 

facilities aim to protect the health of people by providing a clean environment that helps reducing the 
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transmission of infectious diseases since the improper sanitation has always been a major cause of infectious 

diseases and illness. The spread of diseases due to inadequate sanitation are particularly related with poverty 

and infancy and it alone accounts for about 10% of the global burden of disease (Mara et al., 2010). The cost 

of improper sanitation may lead to economic loss, loss of education and the loss in other economic activities 

(such as tourism) due to polluted environment. As per (WHO) estimate in 2014, 842,000 deaths per year were 

attributable to unsafe sanitation, drinking water and hygiene which included 361,000 deaths of children under 

age five, mostly in developing countries. Despite the several efforts made for proper management of sewage 

disposal, use of toilets etc., 2.3 billion people lacked even basic sanitation facilities, 600 million people used 

limited sanitation services and 892 million people worldwide practiced open defecation (WHO/UNICEF). 

Improved sanitation facilities, good hygienic conditions and clean drinking water are fundamental to good 

health and socioeconomic development, particularly in developing countries. Since sanitation facilities are 

much effective public health interventions, improvement in such facilities not only reduces the morbidity and 

severity of various infectious diseases but also improve the lives of people in developing countries (WHO). In 

view of this, India has taken various steps for providing proper sanitation and has launched vigorous health 

campaigns like School Water and Sanitation towards Health and Hygiene (SWASTHH) and Swachh Bharat 

Abhiyan (Clean India Campaign) which are noted as the world’s largest sanitation programs. This provided 

opportunities to millions of people getting access to toilets and brought about a behavioral change towards 

their usage (Siddiqui, 2016). These public efforts have contributed significantly to make our environment 

clean and free from bacteria, carriers, vectors etc. leading to decline in the spread of infectious diseases. 

There are many infectious diseases which are transmitted from infectives to susceptibles through direct 

human-to-human contacts and also indirectly through carriers such as flies, ticks, mites, snails etc. present in 

the environment. The bacteria of infectious diseases such as measles, typhoid fever, leprosy, cholera, 

gastroenteritis, dysentery, tuberculosis, diarrhea etc. are transported by these carriers from the environment to 

susceptibles leading to faster spread of such diseases in human population (Gonzalez-Guzman, 1989). Some of 

these diseases like dysentery, gastroenteritis, cholera, typhoid fever, etc., called water borne diseases, spread 

by flies carrying the bacteria of these diseases into the food and water of susceptible population. The diseases 

such as tuberculosis and measles are spread by air borne carriers in the environment. The transmission of these 

infectious diseases is further aggravated due to lack of sanitation leading to unhygienic environmental 

conditions in a habitat which provides a very conducive environment to these carriers to flourish. In the last 

few decades, various modeling studies have been made to understand and analyze the spread of carrier- 

dependent infectious diseases like typhoid, cholera, diarrhea, etc. These studies have been made by considering 

the direct transmission of diseases without taking into account the role of carrier population (Agarwal and 

Verma, 2010; Anderson and May, 1979; Hethcote, 2000; Hsu and Zee, 2004; Keeling and Danon, 2009; 

Nadjafikhah and Shagholi, 2017; Nyerere et al., 2018; Zhang et al., 2020). However, to capture the realistic 

dynamics of the spread of infectious diseases where carriers play an important role in spreading such diseases, 

the effect of carrier population present in the environment must be incorporated in the models 

(Balamuralitharan and Radha, 2017; Das et al., 2005; Ghosh et al., 2004; Kalajdzievska and Michael, 2011; 

Kumar and Singh, 2013; Misra et al., 2013; Naresh and Pandey, 2009; Shukla et al., 2011; Singh, 2017; Singh 

et al., 2003; Singh et al., 2005; Singh et al., 2009; Tiwari et al., 2014). In particular, Singh et al. (2003) have 

proposed SIS and SIRS models for carrier dependent infectious diseases with environmental effects and other 

human population related factors. Their study reveals that the spread of infectious diseases increases as carrier 

population density increases. Ghosh et al., (2004) proposed an SIS model for carrier dependent infectious 

diseases by taking into account the direct contact of susceptibles with infectives and the indirect contact of 

susceptibles with carriers assuming the logistic growth for both human population density and the carrier 
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population density. They concluded that the spread of carrier dependent infectious disease increases with 

increase in the growth of carrier population density caused by conducive household discharges. Models have 

also been proposed to analyze the role of vaccination in controlling the spread of such infectious diseases 

(Manyombe et al., 2016; Naresh et al., 2008; Zhou and Cui, 2011). In particular, Naresh et al. (2008) studied a 

nonlinear mathematical model for the spread of carrier dependent infectious diseases incorporating the role of 

vaccination and found that with the high efficacy of vaccine the spread of diseases can be controlled. Some 

epidemiological models have also been proposed to minimize the infected individuals in the course of an 

epidemic using treatment and vaccination as control measures (Kumar and Srivastava, 2017; Srivastav and 

Ghosh, 2016; Yusuf and Benyah, 2012). Kumar and Srivastava (2017) proposed a compartmental model to 

analyze the effect of people’s behavioral response due to information on the prevalence of the disease. Optimal 

control strategy has also been used to minimize possible expenditure and disease mortality (Hota et al., 2017; 

Lenhart and Workman, 2007; Mishra et al., 2015). Since vaccination against diseases may not always provide 

permanent immunity, the vaccinated people may again become infected. Thus, if people present a positive 

attitude towards the control of infectious diseases, the resulting behavioral change in population may play a 

vital role in reducing the size of the epidemic. In view of this, various studies incorporated media coverage and 

awareness campaigns as control measures to stop spreading of infectious diseases (Cui et al., 2007; Dubey et 

al., 2015; Greenhalgh et al., 2015; Liu, 2013; Misra et al., 2018; Samanta et al., 2013; Sharma and Misra, 2014; 

Tripathi and Naresh, 2019). For example, Samanta et al. (2013) proposed a mathematical model to study the 

effect of awareness programs through media on the prevalence of infectious diseases and found that the 

execution of awareness programs has a significant effect on curtailing the spread of diseases. 

In some of the above studies, though the carrier population is explicitly modeled but the effect of 

sanitation has not been taken into account. The sanitation provides an important public health intervention to 

curb the spread of carrier dependent infectious diseases (Rai et al., 2019). Keeping this aspect in view, the 

objective of this paper is to model and analyze the effect of sanitation effort to control the spread of such 

diseases. The carrier population is assumed to grow logistically and is suppressed due to application of 

sanitation effort applied. Also due to limited availability of resources, the sanitation effort applied to reduce the 

carrier population is modeled using logistic growth and is also taken to be directly proportional to the increase 

in carrier population density. 

 

2 Mathematical Formulation and Description 

Assuming the homogeneously mixed population in the region under consideration, where disease spreads 

through direct contacts between suseptibles and infectives and indirectly through carriers present in the 

environment. We consider the total human population ܰሺݐሻ divided into two subclasses: the susceptibles 

ܺሺݐሻ and the infectives ܻሺݐሻ at any time ݐ. The density of carrier population is denoted by ܥሺݐሻ at any time 

 in the environment. As pointed out in the introduction, the unhygienic environmental conditions due to poor ݐ

and inadequate sanitation provide favorable and conducive environment to the carrier population to flourish. 

To curb the spread of infectious diseases, a suitable sanitation effort denoted by ܨ௦ሺݐሻ is applied.  

It is assumed that the interaction of susceptibles with infected individuals and carrier population follows 

simple law of mass action so that susceptible population looses individuals on becoming infected by direct 

contacts with infectives with a transmission rate coefficient ߚ and indirectly by carrier population present in 

the environment with a transmission rate coefficient ߣ. The susceptible population, however, increases due to 

constant immigration with the rate A. The susceptible population is further increased due to recovery of 

infected individuals who again become susceptible with a rate coefficient ߥ. The dynamics of susceptible 

population is, therefore, governed by the following equation, 
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ௗ

ௗ௧
ൌ ܣ െ ሺܻߚ  ሻܺܥߣ െ ݀ܺ  ܻߥ .           

(1) 

As discussed above, the infective population increases due to direct interaction of susceptibles with infectives 

and indirectly by the carrier population present in the environment. Thus, the equation governing the dynamics 

of infective population is given by, 

ௗ

ௗ௧
ൌ ሺܻߚ  ሻܺܥߣ െ ሺ݀  ߙ                                                                         .ሻܻߥ

(2) 

where ߙ is the disease-induced death rate. In both the classes, ݀ represents the natural death rate. 

The third equation of the model system governs the density of carrier population assumed to grow logistically. 

The parameter ݏ is the growth rate of carrier population density and ݏଵ is the rate of decrease of carrier 

population due to natural factors such that ሺݏ െ  ଵሻ is the intrinsic growth rate of carrier population andݏ

ܮ ቀ
ሺ௦ି௦భሻ

௦బ
ቁ is its carrying capacity. Since the sanitation effort is applied to curb the carrier population, it is 

assumed that the decrease in the carrier population density is in direct proportion to the sanitation effort 

applied ሺ݅. ݁.  ଶ denotes the depletion rate coefficient of carrier population density due toݏ ௦ሻ, whereܨܥଶݏ

sanitation effort applied.  

ௗ

ௗ௧
ൌ ܥݏ െ

௦బమ


െ ܥଵݏ െ ௦ܨܥଶݏ .           

(3) 

The last equation of the model system governs the logistic growth of sanitation effort with intrinsic growth rate 

߶௦ and carrying capacity 
థೞ
థబ

. It is also assumed that the increase in sanitation effort applied to curb the carrier 

population is directly proportional to the density of carrier population in the environment ሺ݅. ݁.  ௦ሻ, whereܨܥ߶

߶ is the growth rate coefficient of sanitation effort due to increase in carrier population. The decrease in 

sanitation effort due to its consumption in fighting against the carrier population is considered in direct 

proportion to the carrier population density (i.e. ߶ଵܨܥ௦ሻ, where ߶ଵis its depletion rate coefficient.  Further, 

߰ଵ is the rate of sanitation effort applied and ߰ଶ is the rate of decrease of sanitation effort due to some other 

factors. 

ௗிೞ
ௗ௧
ൌ ߶௦ܨ௦ െ ߶ܨ௦ଶ െ ߶ଵܨܥ௦                                                                        .௦ܨܥ߶

(4) 

with initial conditions ܺሺ0ሻ  0, ܻሺ0ሻ  0, ሺ0ሻܥ  ௦ሺ0ሻܨ ,0  0 and ߶௦ ൌ ሺ߰ଵ െ ߰ଶሻ  0. 

Since ܰ ൌ ܺ  ܻ we have, 

ௗ

ௗ௧
ൌ ሺܰߚ െ ܻሻܻ  ሺܰܥߣ െ ܻሻ െ ሺ݀  ߙ   ;ሻܻߥ

ௗே

ௗ௧
ൌ ܣ െ ݀ܰ െ ܻߙ ;           

(5) 

ௗ

ௗ௧
ൌ ܥݏ െ

௦బమ


െ ܥଵݏ െ  ;௦ܨܥଶݏ

ௗிೞ
ௗ௧
ൌ ߶௦ܨ௦ െ ߶ܨ௦ଶ െ ߶ଵܨܥ௦   .௦ܨܥ߶
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The continuity of right hand side of model system (5) and its derivative imply that the model is well posed for 

ܰ  0. All dependent variables and parameters of the model are assumed to be non-negative.  

To show that the model system (5) is epidemiologically feasible, we show that all variables of the model 

system (5) are non-negative for all time t > 0. The following lemma is stated for this: 

Lemma 2.1.1 The solution Y(t), N(t), C(t) and Fs(t) of model system (5) with initial conditions Y(0)  0, 

N(0)  0, ሺ0ሻܥ   0 and Fs (0)  0 are positive for all t > 0.   

The region of attraction giving the bounds of dependent variables is stated in the form of a lemma as follows, 

Lemma 2.1.2 The region of attraction ߗ for the model system (5) is given by, 

Ω ൌ ቄሺܻሺݐሻ, ܰሺݐሻ, ,ሻݐሺܥ ሻሻݐ௦ሺܨ א ܴାସ: 0  ܻ 


ఈାௗ
, 0 ൏ ܰ 



ௗ
, 0  ܥ  ,ܥ 0 ൏ ௦ܨ   ,௦ቅܨ

which attracts all solutions starting in the positive octant, where 

ܥ ൌ
ሺ௦ି௦భሻ

௦బ
 and ܨ௦ ൌ

ሺథିథభሻାథೞ
థబ

. 

 

3 Equilibrium Analysis 

In this section, we find the equilibria of the model system (5) to discuss the qualitative behavior around the 

equilibrium using stability theory of ordinary differential equations and to get the insight regarding disease 

dynamics and sanitation control strategy. The existence of equilibria is carried out by equating the right hand 

side of model system (5) to zero. We obtain the following five feasible non-negative equilibria: 

. ࡱ ቀ,


ࢊ
, , ቁ. This is disease-free equilibrium and its existence is obvious. It implies that in the absence of 

infection in the population, both directly through susceptible-infective interaction and indirectly through 

carrier population, no increased sanitation effort is required to be applied.  In such a case, the human 

population will always remain at its equilibrium ܣ/݀. 

. ࡱሺࢅഥ,ࡺഥ, , ሻ. This is carrier-free equilibrium without sanitation effort. It implies that in the absence of 

carrier population in the system, no sanitation effort is required. However, the disease still persists in the 

population due to direct interaction of susceptibles with infectives and remains at its equilibrium  തܻ with 

human population maintained at its reduced equilibrium ഥܰ. 

.  ࡱ൫,ࡺന, ,  ധധധ൯. This is also disease-free equilibrium with no carriers, the existence of which is obvious࢙ࡲ

where, നܰ ൌ


ௗ
 and ܨ௦ന ൌ

థೞ
థబ

. It implies that since no carrier population is present in the system and disease also 

does not persist, the human population will remain at its equilibrium നܰ. Moreover, in the absence of carrier 

population, the sanitation effort is neither consumed in fight against carrier population nor it increases due to 

growth of carrier population and hence it remains at its natural level ܨ௦ന .  

. ࡱ൫ࢅሷ , ሷ,ࡺ ሷ  , ൯. This is sanitation-free equilibrium. It implies that in the absence of sanitation effort, the 

persistence of disease is higher and hence the human population remains at its reduced equilibrium ሷܰ  with 

carrier population at its carrying capacity ܥሷ. 
 

. כࡱሺכࢅ, ,כࡺ ,כ   .ሻ. This is endemic equilibriumכ࢙ࡲ

The existence of equilibria ܧ and  ܧଶ is obvious, as stated above. In the following, we show the existence of 

equilibria ܧଵ, ܧଷ and כܧ. 

3.1 Existence of equilibrium ࡱሺࢅഥ,ࡺഥ, , ሻ 
This equilibrium can be easily obtained as, 

തܻ ൌ  
ఉିௗሺௗାఈାఔሻ

ఉሺఈାௗሻ
,      ഥܰ ൌ  

ିఈ

ௗ
. 
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which exists if ܴ  1, where, the basic reproduction number  ܴ ൌ  
ఉ

ௗሺௗାఈାఔሻ
.  

3.2 Existence of equilibrium ࡱሺࢅ,ሷ ሷ,ࡺ ሷ , ሻ 
From the model system (5) we have 

ሺܰߚ െ ܻሻܻ  ሺܰܥߣ െ ܻሻ െ ሺ݀  ߙ  ሻܻߥ ൌ 0,                                                              

(6) 

ܣ െ ݀ܰ െ ܻߙ ൌ 0,                                                                                     

(7) 

ܥݏ െ
௦బమ


െ ܥଵݏ ൌ 0 ,           

(8) 

From Eq. (8) we have, ሺܥ ് 0ሻ                

ሷܥ ൌ
ሺ௦ି௦భሻ

௦బ
.                                                                                          

(9) 

From Eq. (7) we have, 

ሷܰ ൌ  
ିఈ

ௗ
.                                                                                           

(10) 

putting the values of ܥሷ and ሷܰ  from Eq. (9) and (10) respectively in Eq. (6), we get a quadratic equation in ሷܻ ,           

 ܽ ሷܻ ଶ െ ܾ ሷܻ െ ܿ ൌ 0,                                                                                    

(11) 

where, 

ܽ ൌ ߙሺߚ  ݀ሻ  0, 

ܾ ൌ ߚܣ െ ߙሺߣ  ݀ሻ
ሺ௦ି௦భሻ

௦బ
െ ݀ሺ݀  ߙ   ሻ andߥ

ܿ ൌ
ఒሺ௦ି௦భሻ

௦బ
 0 since ሺݏ   .ଵሻݏ

Since ܽ and ܿ are always positive, from Eq. (11) ሷܻ  has atleast one positive root by Discarte’s rule of sign. 

Using the value of  ሷܻ  so obtained, the value of ሷܰ  can be found using Eq. (10). 

3.3 Existence of equilibrium כࡱሺכࢅ, ,כࡺ ,כ  ሻכ࢙ࡲ

We prove the existence of endemic equilibrium כܧ by solving the following system of algebraic equations 

obtained by setting right hand side of equations in model system (5) to zero, 

ሺܰߚ െ ܻሻܻ  ሺܰܥߣ െ ܻሻ െ ሺ݀  ߙ  ሻܻߥ ൌ 0,                                                              

(12) 

ܣ   െ ݀ܰ െ ܻߙ ൌ 0,                                                                                   

(13) 

ܥݏ  െ
௦బమ


െ ܥଵݏ െ ௦ܨܥଶݏ ൌ 0,                                                                           

(14) 

௦ܨܥ߶ െ ߶ܨ௦ଶ െ ߶ଵܨܥ௦  ߶௦ܨ௦ ൌ 0.                                                                       

(15) 

From Eq. (15) we have, ሺܨ௦ ് 0ሻ                

௦ܨ ൌ
ଵ

థబ
ሾሺ߶ െ ߶ଵሻܥ  ߶௦ሿ.                                                                               
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(16) 

Using Eq. (16) in Eq. (14), we get, ሺܥ ് 0ሻ                

 

כܥ ൌ
ሺథబሺ௦ି௦భሻି௦మథೞሻ

௦బథబା௦మሺథିథభሻ
.                                                                                  

(17) 

provided ߶ሺݏ െ ଵሻݏ   .ଶ߶௦ݏ

Using the value of כܥ from Eq. (17) we can find ܨ௦כ  from Eq. (16). 

Now on solving Eq. (12) and (13) and using the value of כܥ, we get a quadratic equation in ܻכ as follows,   

ଶכଵܻ െ כଶܻ െ ଷ ൌ 0,                                                                                 

(18) 

where, 

ଵ ൌ ߙሺߚ  ݀ሻ  0, 

ଶ ൌ ܣߚ െ ሺߙ  ݀ሻߣ
ሺథబሺ௦ି௦భሻି௦మథೞሻ

௦బథబା௦మሺథିథభሻ
െ ݀ሺ݀  ߙ   ሻ andߥ

ଷ ൌ ߣܣ
ሺథబሺ௦ି௦భሻି௦మథೞሻ

௦బథబା௦మሺథିథభሻ
 0. 

Now using Descarte’s rule of sign, the quadratic Eq. (18) has a unique positive real root of ܻכ if either 

ଶ  0 or ଶ ൏ 0. After finding the value of ܻכ, we can find the value of ܰכ showing the existence of 

unique endemic equilibrium כܧ. 

From the eq.(18), the following remark can be made,  

Remark 1. Effect of ࢙ on כࢅ 

To show the effect of the parameter ݏଶ on ܻכ, differentiating Eqn. (18) with respect to the parameter ݏଶ and 

using it again, we obtain, 

ௗכ

ௗ௦మ
ൌ െ

ఒథబכ൫௦బథೞାሺ௦ି௦భሻሺథିథభሻ൯൫ିכሺఈାௗሻ൯

൫௦బథబା௦మሺథିథభሻ൯
మ
ሺభכమାయሻ

൏ 0.                                             (19) 

This indicates that the equilibrium number of infective population decreases with increase in ݏଶ, the control 

parameter representing the depletion rate coefficient of carrier population density due to sanitation effort. In a 

similar way, we can show that 
ௗכ

ௗఉ
 0 and 

ௗכ

ௗఒ
 0, 

ௗכ

ௗ
 0. Thus, we conclude that the equilibrium 

number of infective population decreases with increase in control parameters whereas it increases if the direct 

and indirect transmission rate coefficient increases. The disease, however, becomes more endemic due to 

immigration of susceptibles in the population. 

 

4 Sensitivity Analysis for ࡾ 

Sensitivity indices measure how the basic reproduction number ܴ changes in response to the small shifts in 

the value of a parameter. The initial disease transmission is directly related to the basic reproduction number 

ܴ which is defined as the average number of secondary infections produced by one infective over the 

duration of the infectious period into a completely susceptible population. By using next generation matrix 

method Van den Driessche and Watmough (2002), the basic reproduction number ሺܴሻ associated to the 

differential system (5) is given by: 

ܴ ൌ
ఉ

ௗሺௗାఈାఔሻ
.           

(20) 
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If ܴ ൏ 1, then the disease cannot pervade the population and the infection will die out over a period of time. 

If ܴ  1, then the infection triggers an epidemic in the population.  

The normalized forward sensitivity index of ܴ, that depends differentially on a parameter ߩ is defined 

by 

ఘߛ
ோబ ൌ

డோబ
డఘ

ൈ
ఘ

ோబ
.           

(21) 

Proceeding in a similar manner, we determine and measure the sensitivity indices of ܴ using the parameter 

values as given in Section 7. Table 1 shows the sensitivity indices of ܴ for the parameters. The parameters 

are ordered from most sensitive to least. In the sensitivity indices of ܴ , since ߛ
ோబ ൌ 1 that means, 

increasing(or decreasing) the recruitment rate of population ሺܣሻ  by 10%, increases(or decreases) the 

reproduction number ܴ by 10%. Similarly increasing (or decreasing) the transmission coefficient rate of 

disease ሺߚሻ by 10%, increases (or decreases) the reproduction number ܴ by 10%. Further, increasing (or 

decreasing) the natural death rate ݀ by 10 % decreases (or increases) ܴ by 13.947 % and in the same 

manner increasing (or decreasing) the recovered rate ሺߥሻ and the disease induced death rate ሺߙሻ  by 10%, 

decreases (or increases) ܴ by 5.263% and 0.789% respectively.  

 

 

Table 1 Sensitivity indices of ܴ evaluated at the parameter values given in Section 7. 

 

 

 

Now the effect of various parameters is shown on Reproduction number ܴ in Figs. 1 and 2. In Fig. 1, the 

effect of variation in ߚ and ܣ is depicted on ܴ. It is noted that as the value of ߚ and ܣ increases, the 

value of ܴ also increases. The effect of other parameters ݀ and ߙ can be seen in Fig. 2. 
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Fig. 1 Surface plot showing the effect of ߚ and ܣ on ܴ. 

 

 

 

Fig. 2 Surface plot showing the effect of ݀ and ߙ on ܴ. 

 

 

 

5 Stability Analysis 

In the following, we present the results of local and nonlinear stability analysis of equilibria ܧ, ,ଵܧ  ଷܧ ,ଶܧ

and כܧ using the method of Jacobian matrix corresponding to the model system (5) and Liapunov method. 

Thus, we get the following results regarding local and nonlinear stability of different equilibria. 

 

Theorem 5.1 The equilibria ܧ, ,ଵܧ ଶܧ  and ܧଷ are unstable and the endemic equilibrium כܧ  is locally 

asymptotically stable provided the following condition is satisfied, 

 

כଶሺܰߣ െ ሻଶכܻ ൏ ቀכܻߚ 
ఒכேכ

כ
ቁ
௦బכ


                               .                          

(22)                                                      

 

Proof : By computing the Jacobian matrix for the model system (5) at the equilibrium ܧሺ݅ ൌ 0,1,2,3ሻ, we can 
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easily find that these equilibria are unstable. Further, to establish the local stability of endemic equilibrium כܧ, 

we consider the following positive definite function  

ଵܷ ൌ
ଵ

ଶ
ሺ݉ݕଶ  ݉ଵ݊ଶ ݉ଶܿଶ  ݉ଷ ௦݂

ଶሻ, 

where ݕ, ݊, ܿ, ௦݂ are small perturbations about כܧ, defined as ܻ ൌ ݕ  ,כܻ ܰ ൌ ݊  ,כܰ ܥ ൌ ܿ    and כܥ

௦ܨ ൌ ௦݂  The positive constants ݉ሺ݅ .כ௦ܨ ൌ 0, 1, 2, 3ሻ are obtained as  

݉ ൌ 1,݉ଵ ൌ
ఉכାఒכ

ఈ
, ݉ଶ ൌ 1 and ݉ଷ ൌ

௦మכ

ሺథିథభሻிೞ
 .כ

We get 
ௗభ
ௗ௧

 to be negative definite showing that ଵܷ  is a Liapunov function and hence כܧ  is locally 

asymptotically stable provided the condition (22) is satisfied. 

Theorem 5.2 The endemic equilibrium כܧ is nonlinearly asymptotically stable in the region ߗ provided the 

following conditions are satisfied: 

 

ߙ2    ቀߚ 
ఒ
כ
ቁ ൏                           ,                                       ݀ߚ

(23) 

    ݉ ൌ ߚ ቀ
௦బ

ቁ െ ଶߣ ቀ

ேିככ

כ
ቁ
ଶ
 0                              .                         

(24) 

Proof : We consider the following positive definite function to establish the nonlinear stability of endemic 

equilibrium כܧ, 

ܷଶ ൌ ݇ ൬ܻ െ כܻ െ כܻ ln
ܻ
כܻ
൰ 

݇ଵ
2
ሺܰ െ ሻଶכܰ  ݇ଶ ൬ܥ െ כܥ െ כܥ ln

ܥ
כܥ
൰ 

               ݇ଷ ቀܨ௦ െ כ௦ܨ െ כ௦ܨ ln
ிೞ
ிೞ
                                                    ,ቁכ

where, ݇ሺ݅ ൌ 0,1,2,3ሻ are positive constants obtained as  

݇ ൌ 1, ݇ଵ ൌ
ଵ

ఈ
ቀߚ 

ఒ
כ
ቁ , ݇ଶ ൌ 1 and ݇ଷ ൌ

௦మ
ሺథିథభሻ

. 

We get 
ௗమ
ௗ௧

 to be negative definite showing that ܷଶ is a Liapunov function and hence כܧ is nonlinearly 

asymptotically stable provided the condition (23) and (24) are satisfied. 

Remark 2. If the transmission coefficient ߣ of disease through indirect contact of susceptibles with carrier 

population tends to zero, then condition (24) will be satisfied automatically showing that  ߣ  has a 

destabilizing effect on the model system (5). 

 

6 The Optimal Control Model 

In this section, the model system (5) is extended for the formulation of optimal control problem,   

ௗ

ௗ௧
ൌ ሺܰߚ െ ܻሻܻ  ሺܰܥߣ െ ܻሻ െ ሺ݀  ߙ   ;ሻߥ

ௗே

ௗ௧
ൌ ܣ െ ݀ܰ െ                                                                                     ;ܻߙ

(25) 

ௗ

ௗ௧
ൌ ܥݏ െ

௦బమ


െ ܥଵݏ െ  ;௦ܨܥଶݏ
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ௗிೞ
ௗ௧
ൌ ߶௦ܨ௦ െ ߶ܨ௦ଶ െ ߶ଵܨܥ௦   .௦ܨܥሻݐሺݑ

satisfying the initial conditions ܺሺ0ሻ  0, ܻሺ0ሻ  0, ሺ0ሻܥ  0, ௦ሺ0ሻܨ  0. The control parameter ݑሺݐሻ (say) 

represents the control of carrier population density by applying sanitation effort. Our main aim is to maximize 

the rate of sanitation effort with minimal cost of control to minimize the infective population. 

The control parameter ݑሺݐሻ is a Lebesgue measurable function on a finite interval ൣ0, ܶ൧. The objective 

functional for the above problem is given by, 

ሻݑሺܬ ൌ  ሺܻܲሺݐሻ  ሻሻݐଶሺݑܳ
்
  ,ݐ݀

where the parameter ܲ  0 and ܳ  0 represents the weight constant which help to balance the units of 

integrand. For simplicity, we denote ݑሺݐሻ ൌ  .ݑ

Our objective in this section is to find the optimal control כݑሺݐሻ such that  

ሻכݑሺܬ ൌ min௨א ሻݑሺܬ ,           

(26)                                                                                             

where U, the control set is defined as 

ܷ ൌ ൛ݑሺݐሻ: Lebesgue measurable and 0  ሻݐሺݑ  1 for  ݐ א ൣ0, ܶ൧ൟ. 

 

6.1 Existence of the control  

Theorem 6.1.1 There exist an optimal control parameter כݑ א ܷ for the system (25) and Eq. (26). 

Proof : Here the state and control variables are positive. From the prior bounds, the solutions of the system (25) 

are bounded and right hand side functions of system (25) satisfy the Lipschitz condition with respect to state 

variables. Then by applying Picard’s Lindelof theorem, we see that the set of solution of system (25) with 

control variable in ܷ is non-empty. The control set ܷ is closed and convex by definition and the system (25) 

can be written as a linear function in control variable ݑ with coefficient depending on state variable and time. 

Furthermore, the integrand of the functional ሺܻܲ   ଶሻ is convex due to quadratic nature of control variableݑܳ

in the control. Also set ܷ and the state variables are bounded. Thus, we conclude that there is a control pair 

ሻכݑሺܬ  such that כݑ ൌ min ሺܬሺݑሻሻ. 

6.2 Characterization of optimal control functions 

Theorem 6.2.1 Let כݑ be the optimal control parameter and ܻכ, ,כܰ  are corresponding optimal כ௦ܨ and כܥ

state variables of the control system (25) and Eq. (26). Then there exists adjoint variable ߣ ൌ ሺߣଵ, ,ଶߣ ,ଷߣ ସሻߣ א

ܴସ that satisfies the following equations:   

 

ௗఒభ
ௗ௧

ൌ െ
డு

డ
,
ௗఒమ
ௗ௧

ൌ െ
డு

డே
,
ௗఒయ
ௗ௧

ൌ െ
డு

డ
  and 

ௗఒర
ௗ௧

ൌ െ
డு

డிೞ
 , 

with transversality conditions 

ଵ൫ߣ ܶ൯ ൌ 0, ଶ൫ߣ ܶ൯ ൌ 0, ଷ൫ߣ ܶ൯ ൌ 0  and ସ൫ߣ ܶ൯ ൌ 0 .           

(27) 

The optimal control כݑ is given as, 

כݑ ൌ min ቄ݉ܽݔ ቄ0,െ
ఒరிೞ
ଶொ

ቅ , 1ቅ. 

 

Proof: By Pontryagin Maximum principle, there exists adjoint variables ߣଵ, ,ଶߣ  ସ which satisfies theߣ ଷ andߣ

following equations: 

ௗఒభ
ௗ௧

ൌ െ
డு

డ
ൌ െܲ െ ܰߚଵ൫ߣ െ ܻߚ2 െ ܥߣ െ ሺ݀  ߙ  ሻ൯ߥ   ;ߙଶߣ

11



Computational Ecology and Software, 2021, 11(1): 1-20 

 IAEES                                                                                     www.iaees.org 

 

ௗఒమ
ௗ௧

ൌ െ
డு

డே
ൌ െߣଵሺܻߚ  ሻܥߣ   ;ଶ݀ߣ

 

ௗఒయ
ௗ௧

ൌ െ
డு

డ
ൌ െߣଵ൫ߣሺܰ െ ܻሻ൯  ଷߣ ቀݏ െ 

ଶ௦బ


െ ଵݏ െ ௦ቁܨଶݏ െ ௦ܨݑସሺߣ െ ߶ଵܨ௦ሻ; 

 

ௗఒర
ௗ௧

ൌ െ
డு

డிೞ
ൌ ܥଶݏଷߣ െ ܥݑସሺߣ െ 2߶ܨ௦ െ ߶ଵܥ  ߶௦ሻ. 

 

with transversality conditions given in (27) where Hamiltonian ܪ  is defined as, 

 

ܪ ൌ ܻܲ  ଶݑܳ  ଵߣ ሶܻ  ଶߣ ሶܰ  ሶܥଷߣ  ௦ሶܨସߣ ,     

     

ൌ ܻܲ  ଶݑܳ  ሺܻܰߚଵሺߣ െ ܻሻ  ሺܰܥߣ െ ܻሻ െ ሺ݀  ߙ  ሻܻሻߥ  ܣଶሺߣ െ ݀ܰ െ  ሻܻߙ

 

ߣଷ ቆܥݏ െ 
ଶܥݏ

ܮ
െ ܥଵݏ െ ௦ቇܨܥଶݏ  ௦ܨܥݑସሺߣ െ ߶ܨ௦ଶ െ ߶ଵܨܥ௦  ߶௦ܨ௦ሻ. 

 

Now from optimality condition, we have 

డு

డ௨
ൌ 0 at ݑ ൌ  ,כݑ

Thus we get, 

כݑ ൌ min ൜݉ܽݔ ൜0,െ
௦ܨܥସߣ
2ܳ

ൠ , 1ൠ. 

 

7 Numerical Simulation and Discussion 

We give here the numerical solution of the model system (5) to show the existence of equilibrium values and 

to check the feasibility of stability conditions. For this, we integrate the systems by fourth order Runge-Kutta 

method using MATLAB with the following set of parameter values, 

ܣ ൌ 120, ߚ ൌ 0.0005, ߣ ൌ 0.00002, ߥ ൌ 0.2, ݀ ൌ 0.15, ߙ ൌ 0.03, ݏ ൌ 0.4, ݏ ൌ 0.9,   

ଵݏ ൌ 0.2, ଶݏ ൌ 0.0004, ߶ ൌ 0.5, ߶ ൌ 0.26, ߶ଵ ൌ 0.04, ߰ଵ ൌ 0.3, ߰ଶ ൌ 0.003, ܮ ൌ 500.   

The optimality system is solved numerically by using forward-backward sweep method (Lenhart and 

Workman, 2007), with initial condition ܻሺ0ሻ ൌ 10,ܰሺ0ሻ ൌ 650, ሺ0ሻܥ ൌ 100, ௦ሺ0ሻܨ ൌ 150 and choosing the 

weight constant ܲ ൌ 10 and ܳ ൌ 10 & ܷ௫ ൌ 1. 

The equilibrium values of endemic equilibrium כܧis computed as, 

כܻ ൌ 63.544, כܰ ൌ 787.291, כܥ ൌ 79.572, כ௦ܨ ൌ 141.924 . 

The eigenvalues corresponding to Jacobian matrix of endemic equilibrium כܧare: -0.0630, -0.1385, -

0.1439, -36.8996. Since all the eigenvalues are found to be negative, therefore, the endemic equilibrium כܧ is 

locally asymptotically stable for the above set of parameter values. The results of the numerical simulation are 

displayed graphically in Figs. 3-13. In Fig.3, we have shown the solution trajectories for initial starts, as given 

below, of the total human populationሺܰሻ, infective population ሺܻሻ and carrier population density ሺܥሻ which 

approach towards equilibrium point showing that endemic equilibrium כܧ is nonlinearly asymptotically stable. 

The initial starts of all trajectories are taken as follows, 
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(1) ܻሺ0ሻ ൌ 100, ܰሺ0ሻ ൌ 450, ሺ0ሻܥ ൌ 200, ௦ሺ0ሻܨ ൌ 150. 

(2) ܻሺ0ሻ ൌ 150, ܰሺ0ሻ ൌ ሺ0ሻܥ ,500 ൌ 250, ௦ሺ0ሻܨ ൌ 150. 

(3) ܻሺ0ሻ ൌ 200,ܰሺ0ሻ ൌ ሺ0ሻܥ ,550 ൌ 300, ௦ሺ0ሻܨ ൌ 150. 

(4) ܻሺ0ሻ ൌ 250, ܰሺ0ሻ ൌ ሺ0ሻܥ ,600 ൌ 350, ௦ሺ0ሻܨ ൌ 150. 

 

 

Fig. 3 Variation of total human population with infective population and carrier population density. 

 

 

Fig. 4 and 5 show the variation of carrier population density and that of infective population respectively 

with time t for distinct values of parameter ݏ, the growth rate of carrier population density. It is seen that with 

increase in the growth rate of carrier population, the carrier population density increases (Fig. 4) which 

ultimately increases the infective population (Fig. 5). This implies that the increased carrier population density 

which leads to increase the infective population needs to be controlled by using suitable sanitation effort to 

curb the carrier population density. In Fig. 6 and 7, the variation of carrier population density and that of 

infective population, respectively, is displayed with time t for distinct values of rate of decrease of carrier 

population due to sanitation effort i.e. ݏଶ. It is found that as the rate of decrease of carrier population due to 

sanitation effort increases, the carrier population declines (Fig. 6) and consequently infective population also 

decreases (Fig. 7). Thus, if proper sanitation effort is applied to eradicate the carrier population density present 

in the environment, the spread of carrier dependent infectious diseases can be controlled. The effect of ߶, the 

growth rate coefficient of sanitation effort due to increased carrier population density is shown on carrier 

population density and infective population with time t in  Figs. 8 & 9 respectively. From these figures, it is 

observed that with increase in the rate of sanitation effort applied due to increased carrier population, the 

carrier population density present in the environment declines (Fig. 8). This decrease in the carrier population 

density due to increased sanitation effort ultimately reduces the infective population (Fig. 9). This implies the 

increased sanitation effort, applied in proportion to increased carrier population, not only helps diminish the 

carrier population density but subsequently reduce the spread of disease in the population. Thus, the proper 

implementation of sanitation strategy applied for curbing the carrier population density present in the 

environment can be of immense help to control the spread of carrier dependent infectious diseases in the 

population. In Figs. 10 and 11, the effect of optimal control is shown on carrier population density and 

infective population respectively. It is seen from these figures that the carrier population density (Fig. 10) and 

infective population (Fig. 11) have reduced significantly when optimal control is applied than without optimal 

control. The control profile ݑሺݐሻ with time t can be seen as given in Fig. 12. In Fig. 13, the nonlinear stability 

condition ݉ (condition 24) with respect to the critical parameter ߣ is plotted to study the effect of the 

parameters on stability condition. It can be seen from Fig. 13 that ݉ remains positive for 0.0000825 > ߣ and 

becomes negative for 0.0000825 < ߣ. This implies that stability condition (24) is satisfied for 0 <  ߣ < 

8.25E-5. Hence, ߣ has destabilizing effect on the model system (5). 
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Fig. 4 Variation of carrier population density with time for distinct values of ݏ. 

 

 
Fig. 5 Variation of infective population with time for distinct values of ݏ. 

 

 

Fig. 6 Variation of carrier population density with time for distinct values of ݏଶ. 
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Fig. 7 Variation of infective population with time for distinct values of ݏଶ. 

 

 

Fig. 8 Variation of carrier population density with time for distinct values of ߶. 

 

 

Fig. 9 Variation of infective population with time for distinct values of ߶. 
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Fig. 10 Variation of carrier population density with and without optimal control. 

 
 
 

 

Fig. 11 Variation of infective population with and without optimal control. 
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Fig. 12 Control profile of ݑ with time. 

 

 

Fig. 13 Variation of stability condition ݉ with ߣ. 

 
 
8 Conclusions 

In this paper, a nonlinear mathematical model is proposed to study the effect of sanitation effort on the spread 

of carrier dependent infectious diseases in a homogeneously mixed human population. It is assumed that the 

infectious diseases spread through direct human-to-human contacts between susceptibles and infectives and 

indirectly through carrier population present in the environment. In the modeling process, it is assumed that the 
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density of carrier population grows logistically with its intrinsic growth rates. Since the sanitation effort is 

applied to curb the carrier population density, it is assumed that the decrease in the carrier population density is 

in direct proportion to the sanitation effort applied. The sanitation effort applied is also assumed to follow 

logistic model with its intrinsic growth rate and carrying capacity. Further, the increase in sanitation effort 

applied to curb the carrier population is taken to be directly proportional to the density of carrier population in 

the environment. However, the sanitation effort applied decreases due to its consumption in fighting against 

the carrier population and is considered in direct proportion to the carrier population density. The proposed 

model has five non-negative equilibria. The model has been analyzed using the stability theory of differential 

equations and numerical simulation and certain inferences have been drawn by establishing the local and 

nonlinear stability results. The effect of various parameters and optimal control on carrier population density 

and infective population are shown graphically for different parameter values. The analysis of the model 

reveals that the increase in sanitation effort applied helps to eradicate the carrier population density present in 

the environment which ultimately reduces the infective population and hence the spread of disease in the 

population is controlled. Thus, the spread of carrier dependent infectious diseases can be controlled 

significantly if suitable sanitation effort is applied to curb the carrier population in the environment.  
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