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Abstract 

In this paper, a mathematical model which considers population dynamics among infected and uninfected 

cancer tumor cells has been proposed. Delay differential equations have been utilized to demonstrate the 

framework to consider the periods of the cell cycle. We examine the steadiness of the framework and 

demonstrate a hypothesis dependent on the contention standard to decide the dependability of a fixed point and 

show that the solidness may rely upon the delay. We show hypothetically as well as through numerical results 

that periodic oscillations may arise through Hopf bifurcations. In this paper we study a stochastic model for the 

conduct of malignancy tumors, depicted by a stochastic differential condition with multiplicative noise term.  

We study the existence of the solution process, as well as its behavior in the framework of stochastic inclusion 

problems and long time behavior.  
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1 Introduction 

Breast cancer is a frequently occurred cancer among women, which is affecting 2.1 million women each year. 

It caused approximately 15% of all cancer deaths among women in 2018 (WHO, 2020). Symptoms of breast 

cancer include breast lump, bloody discharge from the nipple, and changes in the nipple or breast shape or 

texture. The treatment of cancer depends on type of cancer. For instance, chemotherapy, radiation, hormone 

therapy, and surgery some options to treat breast cancer (Diaby et al., 2015). The target organ breast cancer is 

a collection of malignancies in breast epithelial cells. Histological subtypes include ductal (70-80% of 

diagnosed cases), lobular (10-15% of diagnosed cases) or medular (3-5% of diagnosed cases). About 65% of 
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breast cancers are either estrogen receptor (ER) or progesterone receptor (PR) positive (Parise, 2014). These 

hormone receptor-positive cancers tend to have a 5-year survival rate higher than other subtypes (Lehmann, 

2011). Other subtypes include HER2-positive breast cancer, characterized by HER2 protein over expression or 

gene amplification, and triple negative breast cancer (TNBC), lacking expression of ER / PR and HER2 

amplification or over expression. Morphomolecular analyzes revealed new ways to classify breast cancers 

(Sorlie, 2003; Network, 2012). Based on comprehensive genomic classifications, breast cancers were divided 

into four groups: i) the luminal A subtype, which is ER and/or PR-positive and HER2-negative and has a low 

proliferative index of Ki67; ii) the luminal B subtype, which is ER and/or PR-positive and may be HER2-

positive, has a high Ki67 index and a lower prognosis than the luminal A subtype; iii) the HER2-enriched 

subtype ; The latter is a high-grade, fast-growing cancer with the worst prognosis compared to all subtypes 

(Parise, 2014). The triple-negative subtype tends to occur more frequently in younger premenopausal women 

and is believed to be more prevalent in some high-genetic-risk patients as defined in the National 

Comprehensive Cancer Network Clinical Practice Guidelines in Oncology (Criscitiello, 2012; Oncology 

NCCNCPGi, 2015) specifically in BRCA1 mutation carriers21. These high-genetic patients also have an 

increased risk of developing ovarian cancer somewhere in their life (Wong-Brown et al., 2015). To investigate 

the complexities of cancer progression and reaction in breast malignancies, we claim that comprehensive 

mathematical modelling systems are required from a system biology perspective. Such integrated frameworks 

could offer innovative contributions to the clinical women's cancer community, as clinical questions cannot 

always be answered with contemporary clinical and experimental tools. Any breast cancer screening test aims 

at early detection and decrease in cancer-related mortality. As on date, current non-invasive methods for 

monitoring and identifying breast cancers in all subtypes of general risk people provide diagnostic techniques 

such as mammograms and magnetic resonance imaging (MRI) and surgical breast and self-breast examination. 

Screening imaging techniques may be used to monitor and assess improvements in breast tissue, but not often 

provide sufficient responsiveness or specificity (Petrucelli et al., 2010). 

Human breast cancer growth trend is clinically significant, and it is primarily for predicting the length of 

silent growth pre-diagnosis and planning an optimum post-surgery chemotherapeutic plan. Breast cancer 

growth trends theoretical research has been the topic of significant discussion and contention among 

mathematical oncologists over two decades (Diaby et al., 2015; Petrucelli, 2010). For a more comprehensive 

recent review and theoretical comparison of the various mathematical formulations used to model tumour 

growth dynamics (Ribba, 2014). Unlike Speer et al. (1984), Norton et al. (1988) demonstrated in 1988 that the 

deterministic Gompertz equation was the best fit for clinical breast cancer sizes and post-therapy regression 

rates. Norton developed a conceptual survival curve fitting the classic Gompertzian rise, model to the 

percentage of surviving patients per year after diagnosis In comparison to the stochastic existence of the 

analogous parameter used by Speer et al. The likelihood distribution feature of the rise decay parameter was 

calculated lognormal and based on the current number of tumor cells. While Norton's proposed model fits 

clinical data on untreated breast cancer, it is unclear whether Gompertzian Kinetics (or variant) also refers to 

disease development before or after treatment. Spratt et al. (1993) measured uncontrolled development levels 

in breast cancer before detection in 1993-97. They used data from mammographic breast cancer tumor 

measurements and conducted a minimum square regression analysis to prove that a generalized logistic 

equation was the best fit for the observed data. The mathematical analysis conducted excluded data from 

patients whose tumors were clinically detected between two consecutive mammogram screenings or whose 

tumors showed no size change during clinical observation. Using their growth model, Spratt et al. (1993) 

generated probability distributed tumor duplication functions at mammographic detection and increased 

untreated tumor size after 1-2 years of detection. Whereas the analysis quantitatively underlines the substantial 
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natural variation in growth levels in untreated human breast cancer, whether histological and morph molecular 

features affect simulation outcomes remains unknown from this method. Moreover, the reported mathematical 

results might have been selectively biased towards reflecting the progression of slower growing tumors, as 

these tumors are more representative of clinical cases amenable to detection via regular mammographic 

screening. In a different attempt to model the natural history of breast cancer, Koscielny et al. (1985) 

considered two growth patterns, exponential and Gompertzian, in 1985 to assess the timing of initiation of 

distant metastases using observed data in breast cancer patients. Koscielny et al. (1983) reported that the mean 

metastasis development period is around 3.8 years with all growth rates, and that a 30% decrease in metastasis 

occurrence is expected if primary tumors are handled 12 months sooner. In order to assess the time at which 

metastases are initiated, Koscielny et al. assume a linear relationship between doubling times of primary breast 

tumors and of their metastases. The validity of such a limiting assumption, however, is empirically 

questionable as, to the best of our knowledge; no deterministic relationship has been established in any 

published in vitro or in vivo investigations. Here, we recapitulate scientifically established breast cancer 

development and care information. Whenever possible, we compare and contrast the two malignancies to 

highlight areas where clinically inspired and validated mathematical modeling could contribute substantially.  

We show how current paradigms in the mathematical oncology community focusing on the two 

malignancies do not make comprehensive use of existing clinical data or reflect substantially, and we highlight 

the modeling areas in the most critical need for clinical data integration. They stress that any statistical analysis 

of women's cancers will be directed specifically at solving clinically related problems. 

Cancer is turning into the leading cause of death across our planet but with all of our details on how to 

expand, complementary treatment strategies continue to be a mystery. The growth is caused by the abnormal 

growth of the traditional tissue that attacks parts of our body. The reaction begins when the cell growth area is 

known by our immune cells. Mathematical modeling can be a powerful tool that has the potential to raise an 

understanding of birth defects (Adam et al., 1997; Araujo et al., 2004; Khajanchi, 2018; Kuznetsov et al., 1994; 

Preziosi, 2003; Starkov et al., 2016). 

Mathematical models provide realistic representations and sizes of complex biological systems, as well as 

the clarification of organisms by their effects can provide insight into the shape predictions of the plant under 

different conditions. At the beginning of the nineteenth century, the concept of using a mathematical model of 

tumor-immune interactive dynamics began to be developed, after which a series of mathematical models were 

developed to report the overlap between the competitive anti-disease program by several authors (Kirschner et 

al., 1998; Kuznetsov et al., 1994; Rejniak et al., 2011; Villasana et al., 2003). Many authors like Delaware 

Boer et al. (1985), Goldstein et al. (2004) and Kronic et al. (2008) have used mathematical models to explain 

against the immune response to tumor growth. Several authors (Kuznetsov et al., 1994; Sarkar et al., 2005; El-

Gohary, 2008) have used the idea of dealing with prey in the gastrointestinal tract wherever immune cells play 

a role and other cells in the mammary gland.  

The delay in characterization has long been used in characterizing the cancer model (Forys et al., 2011; 

Miękisz et al., 2011; Piotrowska et al., 2011; Piotrowska et al., 2011). Byrne (1997) looks at the impact of 

your delay on the growth potential of a vascular tumor by introducing a time-delayed problem in cell growth. 

In this study the variability of the sound of the points entered due to the time delay and the possibility of the 

emergence of conflict resolution solutions. Recently, Forys and Kolev (2002) suggested and studied the role of 

time delay in the dynamic growth of tumors. They are studying the delay model according to the law of 

accountability and the mass conservation law. The related (Yafia, 2006) stimulates the interaction between the 

expanding lesion and the quiescent cells with a single delay.  
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2 Formulation of Mathematical Model 

The model contains two types of tumor cells x and y that respectively are the size of uninfected tumor cells and 

infected tumor cells by the virus. In this model r is growth rate of tumor in a logistic fashion, d is death rate. 

The maximum size or space that tumor is allowed to occupy is given by its carrying capacity k. Parameter   

is spread rate of virus in tumor cells (this parameter can be viewed as summarizing the replication rate of the 

virus). Death rate of infected tumor cells by virus represents by a; moreover, s shows growth rate in a logistic 

fashion. Based on these assumption model is given the following form  

xydx
k

yx
rx

dt

dx 





 
 1       (1)

    1
dy x y

x t y t sy y
dt k

          
 

 

where   has the usual meaning for discrete time delay.  

 

3 Stability Analysis with Time Delay  

Generally for the system (1) four equilibrium points are exist, that are 
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. 

In this paper we considered only positive equilibrium *E  because biologically at this point both infected and 
uninfected tumor cell are exist and spread of the virus is stable for the two tumor cells. 

The Jacobian matrix of the system (1) is given by  

2

rx rx
x

k kJ
sy sx sy

e y e x s
k k k

 



   
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       

                (2) 

The characteristic equation of (2) is given by 

   2
1 2 1 2, 0D P P e Q Q                                (3) 
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1Q x    * * * *22 *
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r
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     

Here we can define 0   is a root of equation (3) if and only if 2 0P  . 

3.1 Non-existence of delay induced instability 

Based on the following conditions (Gopalaswamy, 1992) we can discuss the asymptotical stability of the 

system (1) when 0  . 

72



Computational Ecology and Software, 2021, 11(2): 69-82 

 IAEES                                                                                    www.iaees.org

(i) The real parts of all the roots of   , 0D     are negative. 

(ii) For all real L and any 0  ,  , 0D iL    where 1i    

If  , 0D    , then from (3)    2
1 2 1 2, 0D P P Q Q              (4)          

If    1 1 2 20and 0P Q P Q    i.e., * *, and
a

x k x r s


   then the system (1) is asymptotically 

stable. 

Hence system (1) is asymptotically stable at positive equilibrium if  * *, and
a

x k x r s


           

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The following figure shows the positive equilibrium is asymptotically stable for the parameter values as 

10; 1000; 0.676; 0.2; 0.03; 0.3;r k d s        

 

For   20, 0, 0L D P    

For 0L      

   2
1 2 1 2, iLD iL L iPL P e Q iL Q               

Now Let  , 0D iL    and separating the real and imaginary parts 

2
1 2 2

1 2 1

sin cos

cos sin

Q L L Q L L P

Q L L Q L PL

 
 
  
  

                           (5) 

Squaring and adding the above two equations 

4 2
1 2 0L M L M                             (6) 

Where 2 2 2 2
1 1 2 1 2 2 22 ,M P P Q M P Q      

 

Therefore, if 1 20,and 0M M  then the positive equilibrium is asymptotically stable for all 0  (These 
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are sufficient conditions). 

3.2 Length of delay to preserve stability 

Here, we consider the equilibrium E * is asymptotically stable in the absence of delay. By continuity and for 

sufficiently small 0  , all eigen values of (3) have negative real part provided one can guarantee that no 

eigen value with positive real part bifurcates from infinity (which could happen since it is a retarded system). 

To discuss the stability we applied Nyquist criterion (Fredman et al., 1986). To do this, we consider the system 

(1) and the space of real valued continuous function defined on  ,   satisfying the initial conditions. Then 

(1) can be written as  

1 2( ) ( )
du

A u t A v t
dt

  
              (7)

 

1 2 3 4( ) ( ) ( ) ( )ivdv
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2
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k
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k
      ; * *

3 4; ivB y B x   ; 

Let ( ), ( )u S v S  are the Laplace transformation of ( ), ( )u t v t  respectively. Taking the Laplace 

transformation of the system (7), we have 

 1 2( ) ( ) (0)s A u S A v S u     

 2 1 3 3 1 4 4 2( ) ( ) ( ) ( ) ( ) ( ) (0)St St iv St iv Sts B v S B u S B u S e B e K S B e v S B e K S v                 (8) 

Where 
0 0

1 2( ) ( ) ; ( ) ( )St StK S e u t dt K S e v t dt
 

 

 

    

The inverse Laplace transform of ( )u S will have terms which exponentially increase with time, if ( )u S has 

poles with positive real parts. As E* to be locally asymptotically stable, it is necessary and sufficient that all 

poles of ( )u S have negative real parts. We shall employ the Nyquist criterion which states that if s is the arc 

length of a curve encircling  the right half place, the curve ( )u S  will encircle the origin a number of times 

equal to the difference between the number of poles of ( )u S  in the right half plane. 

Let  2
1 2 1 2( ) SF S S PS P e Q S Q      (from 4), then the condition for local asymptotic stability of 

E* is given by Freedman et al. (1989). 

0 0Im ( ) 0and Re ( ) 0F iv F iv                    (9) 

Here 0v  is the smallest root of the above equation. 
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Therefore, 

1 0 2 0 1 0 0sin cosPv Q v Q v v         

2
0 2 2 0 1 0 0cos sinv P Q v Q v v                

Now to find the length of the delay we have to consider the following conditions 

1 2 1sin cosPv Q v Q v v                (10) 

2
2 2 1cos sinv P Q v Q v v                                  (11) 

Therefore, E* is stable if (11) is satisfied and 0v v  is the I positive root of (10). Next we have to find the 

upper bound v  of 0v  and also it is free from . 

Maximizing right hand side of (11) with the conditions sin 1, cos 1v v    then 

2
2 2 1v P Q Q v                (12) 

and the positive solution is given by 
 2

1 1 2 24

2

Q Q P Q
v

  
  

To find   we have to take inequality (10) and rearranging terms in (10) by sin v v   

and 2 21
1 cos

2
v v   , we obtain 2 21

2 1̀ 1( ) 0
2

Q
v Q P Q               (13) 

Thus (10) satisfies if 2
0 0 0 0A B C    , where 21

0 0 2 0 1 1; ;
2

Q
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Thus from Nyquist criterion exist in 0     and 
2

0 0 0

0

4

2

B B A C

A


  
  will give the length of the 

delay for which stability is preserved. 

 

3.3 Preservation of stability and Hopf-bifurcations  

Let 0  and substituting iv    in (4) and separating the real and imaginary parts then we obtain 

 2 2
1 2 1 2 1cos sin 0v P P e Q Q v e Q v v                          (14) 

 1 1 2 12 sin cos 0v Pv e Q Q v e Q v v                               (15) 

If  0and 0v    and at the values of   we have to discuss the change stability in E* and also taking 

is function of  then from the equations (14) and (15)  

   4 2 2 2 2 2
1 2 1 2 22 0v P P Q v P Q                              (16) 
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To establish the Hopf bifurcation at   , we have to show that 0
d

d



 . For this differentiating (14) and 

(15) with respect to   and , 0and v v     we get 

d dv
L M U

d d
d dv

M L V
d d


 

 

 

  
                           (17) 

where 

 

L = P1-Q2τcosvτ+ Q1cosvτ-Q1vτsinvτ; M = -2v-Q2τsinvτ+ Q1sinvτ+Q1vτcosvτ; 
U = Q2vsinvτ-Q1v

2cosvτ; V = Q2vcosvτ+Q1v
2sinvτ; 

 

Soling (17) we get 

  2 2

d LU MV

d L M

 






and the sign of  d

d

 


 is same as LU MV . 

   3 2 2 2 2
1 2 1 2 1 1 12 sin 2 cosLU MV PQ v Q v v Q v PQ v v Q v        

      =     2 2
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Let 2
1 2( )h h A h A     

Clearly ( )h is the L.H.S. of (16) with 2v h  and 
2( ) 0v   then v  is the first positive root of (16) and 

0
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

  at   and stability cannot take the place these values of   and  

   
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2
2 2

d v d
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d L M dh

 



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 where 
3

1 2 1 1 2
2

2 1 1 2 2
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arctan , 0,1,2,3...

( )

Q v P Q PQ v n
n

v v Q PQ P Q v
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 
 

By Hopf bifurcation theorem we can state that if  1 20,and 0M M 
 

, then there exist 0   such that 

E* possesses a supercritical type Hopf-bifucrcation as  increases and passes through . 

 

4 Stochastic Stability Analysis  

In this section we presented the environmental disturbances on the system (1) by white noise theory. These 

results are discussed at positive equilibrium point. To discuss the stability of the stochastic system, we 

consider the linearized model with the perturbations 1 2andx x . By using mean-square fluctuations we 

characterized the stochastic stability of the system. The stochastic perturbed system with delay is given by  

1 1

( )
1 ( )

dx t x y
rx dx xy dt q t

dt k
                       (18)
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    2 2

( )
1 ( )

dy t x y
x t y t sy y dt q t

dt k
                 

 

Linearising above system with the perturbations 1 2( ) ( )x t and x t  i.e., * *
1 2,x x x y x y    then 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The trajectories and phase graphs of system (1) with the parameter values as 

2; 400; 0.211; 0.035; 0.01; 0.814;and 0.09r k d s          is stable. 

 

 

Fig. 3 The trajectories and phase graphs of system (1) with the parameter values as 

2; 400; 0.211; 0.035; 0.01; 0.814;and 0.2r k d s         is unstable and a periodic orbit bifurcate from E* 

 

 

* *
*1 1 2

2 1 1

( ) 2
( )

dx t rx x rx x
x x q t

dt k k
  

   
                  (19)  

 
* *

2 1 2
1 2 2

( ) 2
( )

dx t sy x sy x
x t q t

dt k k
        

Applying Fourier transforms both sides and we obtain, 
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* *
*

1 1 1 2

2
( ) ( ) ( )

rx rx
q t i x x x

k k
    

   
      
   

 

   
* *

2 2 1 2

2
( ) isy sy

q t e x i x
k k

       
      
     

The matrix form of above system is given by 

     M X                        (20) 

 and denoting the elements of  M   are 11 12 21 22, , &m m m m (row wise) then           

  11 12

21 22

m m
M

m m


 
  
 

 where 

  1 1

2 2

( )

( )

q t

q t


 


 

  
   

;   1

2

( )

( )

x
X

x





 

  
 

; 
* *

*
11 12

2
;

rx rx
m i m x

k k
     ; 

* *

21 22

2
;isy sy

m e m i
k k

     . 

Here  M   is non-singular matrix then inverse of this matrix exist, therefore from (20) 

         1X M N                                  (21) 

Where    

 
 

 
 

 
 

 
 

22 12

11 12 1

21 22 21 11

m m

M Mn n
N M

n n m m

M M

 
 

 
 
 



 
 

           
  

 

Now from the spectral density, we define 

 

    2

limg
T

g
S d

T


 




 

Where  g t a random function with is mean zero and  gS   represents the variance of the elements of 

 g t  within the interval , d   . 

The inverse transform of  gS   is the auto covariance function is given by 

   1

2
i

g gC S e d  







    
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and the variance function  g t
 

is given by 

 2 1
0

2g g gC S d 






    

From (21), the mean value of the population is  
2

1

where , , 1,2i ij j ij
j

x n b i j 


   

Therefore,    
2 2

1

, 1,2
ix j ij

j

S q n i


   

The fluctuations of  1,2ix i   are given by 

 
2 22

1

1 1

2 2i ix x j ij
j

S d q n d   
 

 

 

     

Therefore, from above variances and from system (18), we can find 

 
 

 
 1

2 2

22 122
1 2

1

2x

m m
q d q d

M M

 
  

  

 

 

   
 
 
   

 
 

 
 2

2 2

21 112
1 2

1

2x

m m
q d q d

M M

 
  

  

 

 

   
 
 
   

Where      1 2M M iM     and                                                 

 
* * * * *

2 2 *
1 2

3
cos cos

rsx y s x y r x
M x

k k k

     
 

      
 

 

 
* * *

2 *
2

2 2
sin sin

sy rx r x
M x

k k k

     
 

      
 

 

The variances of  1,2ix i   are given by 

 
   

 
   1

2 2

22 122
1 22 2 2 2

1 2 1 2

1

2x

m m
q d q d

M M M M

 
  

    

 

 

 
  

   
   

 
   

 
   2

2 2

21 112
1 22 2 2 2

1 2 1 2

1

2x

m m
q d q d

M M M M

 
  

    

 

 

 
  

   
           (22) 

Where 

2 2* *
2 22 *

11 12

2
;

rx rx
m m x

k k
 

   
      

   
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 
2 2* *

2 22 2
21 22

2
cos sin ;

sy sy
m m

k k
    

   
       
   

 

The results in (22) gives the variances of the system (18) populations x and y. Generally, to find these integrals 

it is very difficult. Therefore, by using numerical simulations we can explain these results easily. Taking 

different parameter values and for the some time lag we can calculate variance and this is small then the 

corresponding population is stable, otherwise unstable.  

 

5 Conclusion and Discussions  

In this paper we have formulated a delayed cancer model with infected cells and antiseptic tumor cells. Breast 

cancer risk assessments using statistical data based on epidemiologic data are valid; however, no single model 

includes family history, estrogen-dependent mechanisms, and abnormal breast disease. For this reason it is 

helpful to use different models in a specialized risk assessment clinic, but this requires a full understanding of 

the strengths and powers of a particular relationship. 

From Fig. 2, we have a tendency to look at how quickly the positive balance of program (1) is stabilized 

as at home. Modeling within this state of affairs produces sustainable energy. With the same set of parameter 

values, we find that when the system is stable, it can be seen in Fig. 2 and when it is unstable Fig3 with 

constant stability. That means the system changes its behavior from stable to unstable when time delay crosses 

its critical value, which gives Hopf-bifurcation. From the biological point of view delay has influence in 

spread of virus in tumor cells. Conjointly one should bear in mind the pause to allow for the management of 

the germ cell growth. The existence of time-resolved solutions is consistent in cancer models. It means that the 

tumor level can get around a difficult and immediate purpose despite no other treatment. We have 

accomplished numerical simulation of the random model quickly so as to add the increasing white noise of the 

same amount of fluctuations present in the system and that we often look at the fluctuations in the amplitude of 

the sounds (Fig. 4). 

 

       

                     Fig.4 The trajectories of system (18) with the parameter values as         

                     1 2 1 2

2; 400; 0.211; 0.035; 0.01; 0.814;and

0.1, 0.4 (left figure) & 0.7, 0.9 (right figure)

r k d s

q q q q

      
   
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