
Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

Article

Interactive statistical computer program for multiple non-linear curves

fitting using stochastic algorithms

Muhammad Tlas1, Bashar Abdul Ghani1, Jamal Asfahani2

1Scientific Services Department, Atomic Energy Commission of Syria, P. O. Box 6091, Syria
2Geology Department, Atomic Energy Commission of Syria, P. O. Box 6091, Syria

E-mail: pscientific31@aec.org.sy

Received 28 April 2021; Accepted 10 June 2021; Published 1 September 2021

Abstract

An interactive computer program for multiple nonlinear curves fitting has been developed in this work. Several

optimization algorithms have been implemented in this software for solving constrained and unconstrained

nonlinear optimization models in order to evaluate and best-estimate the concerning and desired suggested

mathematical model parameters. Two categories of algorithms have been used in this work. The first category

is random and stochastic mathematical methods (nondeterministic methods) such as the simulated annealing

and the adaptive simulated annealing. The second category is the direct search methods (deterministic methods)

such as Hook–Jeeves pattern search, Fletcher and Reeves conjugate gradient and steepest descent method.

Keywords stochastic algorithms; direct search methods; gradient methods; steepest descent algorithm; curve

fitting.

1 Introduction

Mathematical modeling phenomenon is as much as a cornerstone of 20th century science, as it is a collection of

empirical, experimental and field data. Mathematical modeling is essential to go beyond current knowledge, to

better understand new or complex phenomena. Many instances arise, in essentially all fields of science, when

mathematical models of the real world become tested by fitting some parameters to empirical data. Since the

real world is often nonlinear and stochastic, it is not surprising that often this process involves fitting statistical,

nonlinear, non-convex functional forms to data. Physical methods of simulated annealing have been found to

be extremely useful tools for this purpose in a wide variety of examples.

This work contributes to this methodology by presenting an improvement over previous algorithms. The

sections of this work give a short outline of several algorithms used such as: the simulated annealing (SA), the

adaptive (very fast) simulated annealing (ASA), Hooke and Jeeves pattern search (HJPS), Fletcher and Reeves

conjugate gradient (FRCG), and finally the steepest decent (SD). These algorithms found to be extremely

useful for multi-dimensional parameter-spaces. A computer program has been implemented and developed to

Computational Ecology and Software
ISSN 2220­721X
URL: http://www.iaees.org/publications/journals/ces/online­version.asp
RSS: http://www.iaees.org/publications/journals/ces/rss.xml
E­mail: ces@iaees.org
Editor­in­Chief: WenJun Zhang
Publisher: International Academy of Ecology and Environmental Sciences

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

statistically find the best global fit of a nonlinear non-convex loss-function over a multi-dimensional

parameters-space.

2 Summary of the Adaptive Simulated Annealing Algorithm

Simulated annealing techniques are implemented for finding global minimum (or maximum) of a target

function in parameter space. The techniques are adopted from the physical annealing procedure where a liquid

is cooled down in order to obtain a minimum energy formation. These techniques where developed due to the

fact that, stochastic and non-linear systems are extremely difficult to be minimized. Stochastic methods such as

adaptive simulated annealing (very fast simulated re-annealing) have been found to be extremely useful tools

for a wide variety of minimization problems of large non linear systems.

Adaptive simulated annealing is a powerful stochastic optimization method applicable to a wide range of

problems, especially for multi-modal, discrete, non-linear and non-differentiable target functions. The major

advantage of adaptive simulated annealing over other methods is its ability to avoid becoming trapped at local

minima. The algorithm employs a random search, which does not only accept changes that decrease the

objective function, but also accepts some changes that increase it, at least temporarily.

We will now illustrate the adaptive simulated annealing random search algorithm for solving the following

multi-variables unconstrained problem:

()
n

Minimize v

Subject to v



R

where the numerical function ()v is called the objective (target or loss) function of the problem and

1(,...,) n
nv v v R is the vector of model parameters (decision variables).

Using function minimization for illustrative purposes, the algorithm proceeds as follows:

The algorithm

Initialization: /*Definition of initial temperatures, radius of sphere, initial solution, iteration control

parameter*/. Let

User-defined control parameters: 0 0  , 0r  , 0 nt R

A user-defined initial solution: 0 nv R

A user-defined small positive real number close to zero: 

An initial number of iteration: 0i 

Main procedure: Repeat until (i )

Step 1: /*Applied a random perturbation to each decision parameter*/

for 1j  to n do

 {

 Generate a random number u between 0 and 1: [0,1]u random /*by the continuous uniform

distribution*/

 Set  
2 1

1
sgn 0.5 1 1

u

i
j i

j

u t
t


  

         
 /*new random generator*/

 Set ˆ i
j j

r
v v

n
  /* r is the radius of sphere centered at the point iv */

127

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

 }

Step 2: /*Acceptance or rejection of the changes made on the decision parameters*/

if ˆ() ()iv v  then set 1 ˆiv v  and go to step 3

else calculate the probability
ˆ() ()

1

1

i

i

v v
p

e
 








 /*Boltzmann distribution*/

if [0,1]p random  then set 1 ˆiv v 

else set 1i iv v 

Step 3: /*Modification of temperatures and iteration control parameter*/

for 1j  to n do

 {

 Set

0
1

1
ji

j

t
t

i
 



 }

Set 0
1 1i i

  


 , 1i i  and go to step 1.

This algorithm has a good robustness and is easy to be inserted in a code. It does not require

differentiability of the objective function with respect to the decision variables. Asfahani and Tlas (2007,

2011), Ingber and Rosen (1992), Ingber (1989, 1993, 1996), Sen and Stoffa (1996), Chen et al. (1998), Corana

et al. (1987), Kirkpatrick et al. (1983), and Van Laarheven and Aarts (1987) provide more details about the

simulated annealing algorithms.

With this mathematical description, a chance will be given to the user to choose and define arbitrarily the

control parameters (temperature 0 0  , radii 0r ) and the initial guess 0 nv R , where the convergence

speed towards the optimal solution and the number of iterations can be augmented or reduced according to

these choices.

3 Summary of the Simulated Annealing Algorithm

Initialization: /*Definition of initial temperatures, radius of sphere, reduction parameter, initial solution */.

Let

User-defined control parameters: 0 0  , 0r  , 0 1 

A user-defined initial solution: 0 nv R
A user-defined small positive real number close to zero: 

An initial number of iteration: 0i 

128

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

Main procedure: Repeat until (i )

Step 1: /*Applied a random perturbation to each decision parameter*/

for 1j  to n do

 {

 Generate a random number  between -1 and 1: [1,1]random   /*by the continuous uniform

distribution*/

 Set ˆ i
j j

r
v v

n
  /* r is the radius of sphere centered at the point iv */

 }

Step 2: /*Acceptance or rejection of the changes made on the decision parameters*/

if ˆ() ()iv v  then set 1 ˆiv v  and go to step 3

else calculate the probability
ˆ() ()

1

1

i

i

v v
p

e
 








 /*Boltzmann distribution*/

if [0,1]p random  then set 1 ˆiv v 

else set 1i iv v 

Step 3: /*Modification of temperatures */

Set 1i i   , 1i i  and go to step 1.

It should be noted that, there are others mathematical formulas can be used for the reduction control factor

 in both the simulated annealing algorithm and the adaptive simulated annealing method. These formulas

are given as:

129

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

Also, the same mathematical formulas can be used for another parameter t in both previous algorithms.

4 Summary of Hooke and Jeeves Direct Search Algorithm

The Hooke and Jeeves direct search algorithm (1961) is one of the most widely known methods for optimizing

a numerical function of several real variables on the real space nR .
The algorithm consists of two distinct phases. The first one is an exploratory search phase, which serves to

establish a direction of improvement. The second one is a pattern move, which extracts the current solution

vector to another point in the solution space. The algorithm for minimizing a numerical function proceeds as

follows:

Initialisation (Input): 0  is the accuracy parameter; n linearly independent search directions 1,..., nd d . It

is possible to take (1,...,)j jd h e j n  where hR and je denote the jth unit vector, equal to the jth

column in the unit matrix I ; 0 1  damping factor; nvR is a given initial point.

Call the subroutine auxiliary procedure v̂  explore (,)v h

Main procedure

While (h ) do

 {we always know two points v and v̂ }

if ˆ() ()v v  then

z = v̂ + (v̂ - v)

v = v̂ (Pattern move or search)

else

h h

z v




end

130

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

v̂  explore (,)z h

end

Auxiliary procedure (exploratory search) v̂  explore (,)v h

begin

v̂ v

for 1j  to n do

 = min{(v̂ - hej),(v̂),(v̂ + hej)}

v̂  Corresponding point

end

end

This algorithm has a good robustness and is easy to be put in a code. It does not require differentiability of

the objective function with respect to the decision variables. Hooke and Jeeves (1961), Bazaraa and Shetty

(1979), Nash (1990), Phillips et al. (1976), and Himmelblau (1972) provide more details about this algorithm.

5 Summary of Fletcher and Reeves Conjugate Gradient Method

The conjugate gradient method of Fletcher and Reeves creates search directions that are a linear combination

of the steepest decent direction and previous search directions. Weighting factors are applied such that the

search directions are conjugate. These factors are ratios of the present and past squared norms of the gradient.

Initialization: Choose the tolerance level 0  and the initial point 1 nv R .

Let 1 1y v , 1 1()d y  , 1k j 

Main procedure

Step 1: If ()jy   , stop.

else find

arg min ()

0

j j
j y d

ST

  



 



Put 1j j j
jy y d  

If j n , go to step 2, else go to step 3

Step 2: Let

1 1()j j j
jd y d     Where

21

2

()

()

j

j j

y

y











1j j  , go to step 1

131

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

Step 3: Let

1 1 1k ny v y   , 1 1()d y  , 1j  , 1k k  ,

Go to step 1.

The concept of conjugacy is very important in unconstrained optimization problems. If the function to be

minimized is quadratic, conjugate search directions guarantee that convergence will occur in at most n steps,

where n is the number of parameters being adapted.

The conjugate gradient method works also very efficiently for non-quadratic problems, having very modest

storage requirement.

6 Summary of Steepest Descent Method

Initialization: Choose the tolerance level 0  and the initial point 1 nv R , let 1k  .

Main procedure

STEP 1: IF ()kv   , STOP, ELSE GO TO STEP 2

Step 2: put ()k kd v  ,

arg min ()

0

k k
k v d

ST

  


 


1k k k
kv v d  

1k k  and go to step 1.

The steepest descent method converges if the sequence of points generated is contained in a compact

subset of nR . It usually works well during early stages of the optimization process, depending on 1 nv R .

However, as a stationary point is approached, the method usually starts zigzagging, taking small, nearly

orthogonal steps. References of Bradely et al. (1977), Hillier et al. (1986), Phillips and Ravindra (1988),

Bazaraa and Shetty (1979), and Himmelblau (1972) provide more details about these algorithms.

Now, it is noticed that, if some mathematical constraints exist on the decision variables as shown in the

coming mathematical constrained optimization problem:

()

() 0 (1,...,)i

n

Minimize f v

Subject to g v i m

v

 

R

Then, in this case, the penalty function, defined below, as a new objective function of the problem, can be

used:

 
1

() () ln ()
m

i
i

n

Minimize v f v r g v

Subject to v




 
   

 



R

where r (penalty factor) is an arbitrary positive real number chosen to be close to zero.

132

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

7 The Interactive Computer Code Algorithm

The interactive menu-driven computer code is developed using C++ programming language and Borland C++

Builder. The starting main interface screen contains two rows; the main menu is composed of five tabs entitled:

(file, options, reopens window and help) and the second row is consisted of three tabs entitled (open, new file

and save) as shown in Fig. 1.

Fig. 1 Main menu screen.

The tab "file" is a pop-up menu and consists of three commands (new, open data file, and exit) as seen in

Fig. 2.

Fig. 2 The file command.

The tab "help" consists of four commands entitled (mathematical signs, reserved words and functions, and

help) as displayed in Fig. 3.

Fig. 3 Help command.

For the rest of tabs, user is invited to deal with them by himself.

133

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

The proposed code algorithm is composed from the following three steps:

Step 1 Copy the experimental big data from an Excel file or from another statistical program;

 Open the tab "file" from the main row and choose the command "new" to open an empty file

 Open the tab " edit" from the main row and choose the command " past data"

As described in Fig. 4.

Fig. 4 Input experimental data screen.

It is to notice that, always, there are possibilities to change data and weights manually also it can copy it to

re-use aware in other programs by using from the tab "edit" the command "copy all data". Also it can save the

data file with extension "owner name.sa" any ware on computer to re-use it later, as clarified in Fig 5.

Fig. 5 Saving data screen.

134

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

Step 2 write the desired forward function in the field addressed "objective function" by using the following

reserved signs, words and functions:

 The reserved mathematical signs are:

 The reserved words and functions in capital or small letters are:

acos, asin, atan, cos, sin, tan, cosh, sinh, tanh, ln or log, log10, fact, ceil, floor, round, sign, sqrt, abs, exp, int,

pi=3.14, e=2.71, as depicted in Fig. 6.

Fig. 6 Forward function screen.

Step 3 Choose one of the following five algorithms from the field addressed "Optimization methods":

3-1 Standard simulated annealing method

a. Choose the key '"initialization", for setting the initial guess for all reserved parameters with respect to

the following inequalities: 0Alpha  , 0R  and 0 1Beta  , as displayed in Fig. 7.

(), {}, [] Parenthesis

^ Power

-+ Addition and Subtraction

/* Division and multiplication

% Modula

135

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

Fig. 7 Reserved parameters screen.

b. Pressing the key "Parameters", will show the forward model parameters to be estimated. Set initial

guess for all parameters arbitrary as represented in Fig. 8.

Fig. 8 Forward model parameters screen.

c. Choose one of the following estimation methods from the field addressed "Loss function formula" as

clarified in Fig. 9:

 Minimize the sum of squared deviations:

136

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

 



n

1i

2
ii PredObsMin

 Minimize the sum of absolute deviation:





n

1i
ii PredObsMin

 Minimize the sum of weighted squared deviations:

 



n

1i

2
iii PredObswMin

 Minimize the sum of weighted absolute deviations:





n

1i
iii PredObswMin

 Maximize the likelihood function:

    







 



n

1i

2
ii2

PredObs
σ2

1
σ2πlnnMin

 Normalization method:

 
2

n

1i

2
ii2

PredObs
nσ2

1

σ2π

n
lnςMin





















 



 User defined. There is a possibility to construct owner loss function by using the reserved

mathematical term _obs pred defined as follows:

^

1

_ (0)
qn

q
i i i

i

obs pred weight obs pred q


   

137

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

Fig. 9 Loss function formula.

d. Choose one of the following damping rate formulas from the field addressed "Annealing rate

formulas", as shown in Fig.10.

 Cauchy annealing:
1i

α
α 0

1i 


 Boltzmann annealing:  2iln

α
α 0

1i 


 Exponential annealing 1:   1i1β
01i eαα 

 

 Geometric annealing: i1i αβα 

 Decreasing annealing 1:
 1/n

0
1i

1i

α
α




 Power annealing:   1i
1i β1α 
 

 Decreasing annealing 2:
 β

0
1i

1i

α
α




 Exponential annealing 2:  1/n1iβ
01i eαα 

 

138

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

Fig. 10 Damping rate formulas.

e. Choose "calculate", then the code starts to compute the forward model parameters

f. Choose "stop" for stopping the execution any time or the code will stop automatically when the

stopping criterions of algorithms are satisfied. The code can provide, at each step of execution the

values of model parameters, loss function, R squared, and standard error.

g. Choose "Graph" to draw the curve in two dimensions, as illustrated in Fig. 11.

Fig. 11 Curve graph.

It should be pointed out that there are possibilities to save, copy and print all code outputs on computer

any were to re-use or reopen it later with extension "owner name.sa", as represented in Fig. 12:

139

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

Fig. 12 Save, print, and reopen code output.

Also, the code permits possibilities to treat, simultaneously, more than one experimental data file since

it uses "multithreading" technique which aids users to open more than one window at a time.

3-2 Adaptive simulated annealing method

Repeat the same steps as explained in paragraph 3-1with respect to the following inequalities: 0Alpha  ,

0R  , 0 1Beta  , 0 1c  and 0iT  for all i.

3-3 Hooke and Jeeves method

Repeat the same steps as explained in 3-1with respect to the following inequalities: 310epsilon  ,

0delta  and 0 1gamma  .

3-4 Steepest descent method

Repeat the same steps as explained in 3-1with respect to the following inequalities: 310epsilon  and
310H  .

3-5 Fletcher and Reeves algorithm

Repeat the same steps as explained in 3-1with respect to the following inequalities: 310epsilon  and
310H  .

8 Conclusions

A user-friendly interactive computer program for multiple nonlinear curves fitting has been proposed and

developed in this work. The code algorithm is mainly based on famous mathematical optimization methods

well-known in optimization theory such as: Standard simulated annealing, adaptive (very fast) simulated

annealing, Hooke and Jeeves pattern search algorithm, Fletcher and Reeves conjugate gradient and steepest

descent method.

The code is implemented and programmed using C++ programming language within Borland C++ Builder

environment. "Software.rar" file contains examples of input data files, testing examples and the exe-file of this

software which can be loaded directly when it is needed.

140

Computational Ecology and Software, 2021, 11(3): 126-141

 IAEES www.iaees.org

Acknowledgment

Authors wish to thank Prof. I. Othman, the Director General of the Syrian Atomic Energy Commission for his

valuable support and encouragement throughout this work.

References

Asfahani J, Tlas M. 2007. A robust nonlinear inversion for the interpretation of magnetic anomalies caused by

faults, thin dikes and spheres like structure using stochastic algorithms. Pure and Applied Geophysics, 164:

2023-2042

Asfahani J, Tlas M. 2012. Fair function minimization for direct interpretation of residual gravity anomaly

profiles due to spheres and cylinders. Pure and Applied Geophysics, 169: 157-165

Bazaraa MS, Shetty CM. 1979. Nonlinear Programming: Theory and Algorithms. John Wiley and Sons Inc,

New York, NY, USA

Bradely SP, Cax AC, Magnanti TL. 1977. Applied Mathematical Programming. Addison-Wesley Publishing

Company, USA

Chen S, Luk BL, Liu Y. 1998. Application of adaptive simulated annealing to blind channel identification with

HOC fitting. Electronics Letters, 34: 234-235

Corana A, Marchesi M, Martini C, Ridella S. 1987. Minimizing multimodal functions of continuous variables

with the simulated annealing algorithm. ACM Transactions on Mathematical Software, 13: 262-280

Hillier FS, Lieberman GJ. 1986. Introduction to Operation Research. Holden-Day Inc, Australia

Himmelblau DM. 1972. Applied Nonlinear Programming. McGraw-Hill Inc, New York, USA

Hooke R, Jeeves TA. 1961. Direct search solution of numerical and statistical problems. Journal of the ACM,

8

Ingber L. 1989. Very fast simulated re-annealing. Mathematical and Computer Modelling, 12(8): 967-973

Ingber L. 1993. Simulated annealing: practice versus theory. Mathematical and Computer Modelling, 18: 29-

57

Ingber L. 1996. Adaptive simulated annealing (ASA): lessons learned. Journal of Control and Cybernetics, 25:

33-54

Ingber L, Rosen B. 1992. Genetic algorithms and very fast simulated re-annealing: A comparison.

Mathematical and Computer Modelling, 16(11): 87-100

Kirkpatrick S, Gelatt JCD, Vecchi MP. 1983. Optimization by simulated annealing. Science, 220: 671-680

Nash JC. 1990. Compact Numerical Method for Computers, Linear Algebra and Function Minimization.

Adam Hilger, UK

Phillips DT, Ravindra A, Solber JJ. 1976. Operations Research Principles and Practice. John Wiley and Sons

Inc, USA

Sen M, Stoffa PL. 1996. Bayesian inference, Gibbs’ sampler and uncertainty estimation in geophysical

inversion. Geophysical Prospecting, 44: 313-350

Van Laarheven PJM, Aarts EHI. 1987. Simulated Annealing: Theory and Applications. D. Reidel, Dordrecht,

Netherlands

141

