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Abstract 

An interactive computer program for multiple nonlinear curves fitting has been developed in this work. Several 

optimization algorithms have been implemented in this software for solving constrained and unconstrained 

nonlinear optimization models in order to evaluate and best-estimate the concerning and desired suggested 

mathematical model parameters. Two categories of algorithms have been used in this work. The first category 

is random and stochastic mathematical methods (nondeterministic methods) such as the simulated annealing 

and the adaptive simulated annealing. The second category is the direct search methods (deterministic methods) 

such as Hook–Jeeves pattern search, Fletcher and Reeves conjugate gradient and steepest descent method.  

 

Keywords stochastic algorithms; direct search methods; gradient methods; steepest descent algorithm; curve 

fitting.  

 

 

 

 

 

 

 

1 Introduction 

Mathematical modeling phenomenon is as much as a cornerstone of 20th century science, as it is a collection of 

empirical, experimental and field data. Mathematical modeling is essential to go beyond current knowledge, to 

better understand new or complex phenomena. Many instances arise, in essentially all fields of science, when 

mathematical models of the real world become tested by fitting some parameters to empirical data. Since the 

real world is often nonlinear and stochastic, it is not surprising that often this process involves fitting statistical, 

nonlinear, non-convex functional forms to data. Physical methods of simulated annealing have been found to 

be extremely useful tools for this purpose in a wide variety of examples.  

This work contributes to this methodology by presenting an improvement over previous algorithms. The 

sections of this work give a short outline of several algorithms used such as: the simulated annealing (SA), the 

adaptive (very fast) simulated annealing (ASA), Hooke and Jeeves pattern search (HJPS), Fletcher and Reeves 

conjugate gradient (FRCG), and finally the steepest decent (SD). These algorithms found to be extremely 

useful for multi-dimensional parameter-spaces. A computer program has been implemented and developed to 
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statistically find the best global fit of a nonlinear non-convex loss-function over a multi-dimensional 

parameters-space.  

 

2 Summary of the Adaptive Simulated Annealing Algorithm 

Simulated annealing techniques are implemented for finding global minimum (or maximum) of a target 

function in parameter space. The techniques are adopted from the physical annealing procedure where a liquid 

is cooled down in order to obtain a minimum energy formation. These techniques where developed due to the 

fact that, stochastic and non-linear systems are extremely difficult to be minimized. Stochastic methods such as 

adaptive simulated annealing (very fast simulated re-annealing) have been found to be extremely useful tools 

for a wide variety of minimization problems of large non linear systems.  

Adaptive simulated annealing is a powerful stochastic optimization method applicable to a wide range of 

problems, especially for multi-modal, discrete, non-linear and non-differentiable target functions. The major 

advantage of adaptive simulated annealing over other methods is its ability to avoid becoming trapped at local 

minima. The algorithm employs a random search, which does not only accept changes that decrease the 

objective function, but also accepts some changes that increase it, at least temporarily. 

We will now illustrate the adaptive simulated annealing random search algorithm for solving the following 

multi-variables unconstrained problem:   

( )
n

Minimize v

Subject to v



R
 

where the numerical function ( )v is called the objective (target or loss) function of the problem and 

1( ,..., ) n
nv v v R  is the vector of model parameters (decision variables). 

Using function minimization for illustrative purposes, the algorithm proceeds as follows: 

The algorithm 

Initialization: /*Definition of initial temperatures, radius of sphere, initial solution, iteration control 

parameter*/. Let 

User-defined control parameters: 0 0  , 0r  , 0 nt R  

A user-defined initial solution: 0 nv R  

A user-defined small positive real number close to zero:   

An initial number of iteration: 0i   

Main procedure: Repeat until ( i  ) 

Step 1: /*Applied a random perturbation to each decision parameter*/   

for 1j   to n do 

            { 

             Generate a random number u  between 0 and 1: [0,1]u random   /*by the continuous uniform 

distribution*/ 

             Set   
2 1

1
sgn 0.5 1 1

u

i
j i

j

u t
t


  

         
       /*new random generator*/ 

            Set ˆ i
j j

r
v v

n
       /* r is the radius of sphere centered at the point iv */ 
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            } 

Step 2:  /*Acceptance or rejection of the changes made on the decision parameters*/ 

if ˆ( ) ( )iv v  then set 1 ˆiv v   and go to step 3 

else calculate the probability 
ˆ( ) ( )

1

1

i

i

v v
p

e
 








     /*Boltzmann  distribution*/ 

if [0,1]p random  then set 1 ˆiv v   

else set 1i iv v   

Step 3:  /*Modification of temperatures and iteration control parameter*/ 

for 1j   to n do 

            { 

                Set   

0
1

1
ji

j

t
t

i
 


 

             } 

Set 0
1 1i i

  


 , 1i i   and go to step 1. 

This algorithm has a good robustness and is easy to be inserted in a code. It does not require 

differentiability of the objective function with respect to the decision variables. Asfahani and Tlas (2007, 

2011), Ingber and Rosen (1992), Ingber (1989, 1993, 1996), Sen and Stoffa (1996), Chen et al. (1998), Corana 

et al. (1987), Kirkpatrick et al. (1983), and Van Laarheven and Aarts (1987) provide more details about the 

simulated annealing algorithms.  

With this mathematical description, a chance will be given to the user to choose and define arbitrarily the 

control parameters (temperature 0 0  , radii 0r  ) and the initial guess 0 nv R , where the convergence 

speed towards the optimal solution and the number of iterations can be augmented or reduced according to 

these choices. 

 

3 Summary of the Simulated Annealing Algorithm 

Initialization: /*Definition of initial temperatures, radius of sphere, reduction parameter, initial solution */. 

Let 

User-defined control parameters: 0 0  , 0r  , 0 1   

A user-defined initial solution: 0 nv R  
A user-defined small positive real number close to zero:   

An initial number of iteration: 0i   
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Main procedure: Repeat until ( i  ) 

Step 1: /*Applied a random perturbation to each decision parameter*/   

for 1j   to n do 

            { 

             Generate a random number   between -1 and 1: [ 1,1]random     /*by the continuous uniform 

distribution*/ 

            Set ˆ i
j j

r
v v

n
       /* r is the radius of sphere centered at the point iv */ 

            } 

 

Step 2:  /*Acceptance or rejection of the changes made on the decision parameters*/ 

if ˆ( ) ( )iv v  then set 1 ˆiv v   and go to step 3 

else calculate the probability 
ˆ( ) ( )

1

1

i

i

v v
p

e
 








     /*Boltzmann   distribution*/ 

if [0,1]p random  then set 1 ˆiv v   

else set 1i iv v   

Step 3:  /*Modification of temperatures */ 

Set 1i i    , 1i i   and go to step 1. 

It should be noted that, there are others mathematical formulas can be used for the reduction control factor

  in both the simulated annealing algorithm and the adaptive simulated annealing method. These formulas 

are given as: 
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Also, the same mathematical formulas can be used for another parameter t in both previous algorithms. 

 

4 Summary of Hooke and Jeeves Direct Search Algorithm  

The Hooke and Jeeves direct search algorithm (1961) is one of the most widely known methods for optimizing 

a numerical function of several real variables on the real space nR .  
The algorithm consists of two distinct phases. The first one is an exploratory search phase, which serves to 

establish a direction of improvement. The second one is a pattern move, which extracts the current solution 

vector to another point in the solution space. The algorithm for minimizing a numerical function proceeds as 

follows: 

Initialisation (Input): 0   is the accuracy parameter; n  linearly independent search directions 1,..., nd d . It 

is possible to take ( 1,..., )j jd h e j n  where hR  and je  denote the jth unit vector, equal to the jth 

column in the unit matrix I ; 0 1   damping factor; nvR is a given initial point.  

Call the subroutine auxiliary procedure v̂  explore ( , )v h  

Main procedure 

While ( h  ) do 

          {we always know two points v  and v̂ } 

if ˆ( ) ( )v v   then  

z = v̂ + ( v̂ - v) 

v = v̂    (Pattern move or search) 

else 

h h

z v




 

end 
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v̂  explore ( , )z h  

end 

Auxiliary procedure (exploratory search) v̂  explore ( , )v h  

begin 

v̂ v  

for 1j   to n do 

 = min{( v̂ - hej),( v̂ ),( v̂ + hej)} 

v̂  Corresponding point 

end 

end 

This algorithm has a good robustness and is easy to be put in a code. It does not require differentiability of 

the objective function with respect to the decision variables. Hooke and Jeeves (1961), Bazaraa and Shetty 

(1979), Nash (1990), Phillips et al. (1976), and Himmelblau (1972) provide more details about this algorithm.  

 

5 Summary of Fletcher and Reeves Conjugate Gradient Method 

The conjugate gradient method of Fletcher and Reeves creates search directions that are a linear combination 

of the steepest decent direction and previous search directions. Weighting factors are applied such that the 

search directions are conjugate. These factors are ratios of the present and past squared norms of the gradient.  

Initialization:  Choose the tolerance level 0  and the initial point 1 nv R . 

Let 1 1y v , 1 1( )d y  , 1k j   

Main procedure 

Step 1: If ( )jy   , stop. 

else  find  

arg min ( )

0

j j
j y d

ST

  



 


 

Put 1j j j
jy y d    

If j n , go to step 2, else go to step 3 

Step 2: Let 

1 1( )j j j
jd y d     Where 

21

2

( )

( )

j

j j

y

y










 

1j j  , go to step 1 
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Step 3: Let 

1 1 1k ny v y   , 1 1( )d y  , 1j  , 1k k  , 

Go to step 1. 

The concept of conjugacy is very important in unconstrained optimization problems. If the function to be 

minimized is quadratic, conjugate search directions guarantee that convergence will occur in at most n steps, 

where n is the number of parameters being adapted.  

The conjugate gradient method works also very efficiently for non-quadratic problems, having very modest 

storage requirement. 

 

6 Summary of Steepest Descent Method 

Initialization:  Choose the tolerance level 0  and the initial point 1 nv R , let 1k  . 

Main procedure 

STEP 1: IF ( )kv   , STOP, ELSE GO TO STEP 2 

Step 2: put ( )k kd v  ,  

arg min ( )

0

k k
k v d

ST

  


 


 

1k k k
kv v d    

1k k  and go to step 1. 

The steepest descent method converges if the sequence of points generated is contained in a compact 

subset of nR . It usually works well during early stages of the optimization process, depending on  1 nv R . 

However, as a stationary point is approached, the method usually starts zigzagging, taking small, nearly 

orthogonal steps. References of Bradely et al. (1977), Hillier et al. (1986), Phillips and Ravindra (1988), 

Bazaraa and Shetty (1979), and Himmelblau (1972) provide more details about these algorithms.  

Now, it is noticed that, if some mathematical constraints exist on the decision variables as shown in the 

coming mathematical constrained optimization problem: 

( )

( ) 0 ( 1,..., )i

n

Minimize f v

Subject to g v i m

v

 

R

 

Then, in this case, the penalty function, defined below, as a new objective function of the problem, can be 

used: 

 
1

( ) ( ) ln ( )
m

i
i

n

Minimize v f v r g v

Subject to v




 
   

 



R  

where r (penalty factor) is an arbitrary positive real number chosen to be close to zero. 
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7 The Interactive Computer Code Algorithm 

The interactive menu-driven computer code is developed using C++ programming language and Borland C++ 

Builder. The starting main interface screen contains two rows; the main menu is composed of five tabs entitled: 

(file, options, reopens window and help) and the second row is consisted of three tabs entitled (open, new file 

and save) as shown in Fig. 1. 

 

 

 

Fig. 1 Main menu screen. 

 
The tab "file" is a pop-up menu and consists of three commands (new, open data file, and exit) as seen in 

Fig. 2. 

 
 

 
Fig. 2 The file command. 

 

 

The tab "help" consists of four commands entitled (mathematical signs, reserved words and functions, and 

help) as displayed in Fig. 3. 

 

 

 
Fig. 3 Help command. 

For the rest of tabs, user is invited to deal with them by himself.  
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The proposed code algorithm is composed from the following three steps:  

Step 1 Copy the experimental big data from an Excel file or from another statistical program; 

 Open the tab "file" from the main row and choose the command "new" to open an empty file 

 Open the tab " edit" from the main row and choose the command " past data" 

As described in Fig. 4. 

 

 
Fig. 4 Input experimental data screen. 

 

It is to notice that, always, there are possibilities to change data and weights manually also it can copy it to 

re-use aware in other programs by using from the tab "edit" the command "copy all data". Also it can save the 

data file with extension "owner name.sa" any ware on computer to re-use it later, as clarified in Fig 5. 

 

 
Fig. 5 Saving data screen. 
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Step 2 write the desired forward function in the field addressed "objective function" by using the following 

reserved signs, words and functions: 

 The reserved mathematical signs are: 

 The reserved words and functions in capital or small letters are: 

acos, asin, atan, cos, sin, tan,  cosh, sinh, tanh, ln or log, log10, fact, ceil, floor, round, sign, sqrt, abs, exp, int, 

pi=3.14, e=2.71, as depicted in Fig. 6. 

 

 

 
Fig. 6 Forward function screen. 

 

 

Step 3 Choose one of the following five algorithms from the field addressed "Optimization methods":  

 

3-1 Standard simulated annealing method 

a. Choose the key '"initialization", for setting the initial guess for all reserved parameters with respect to 

the following inequalities: 0Alpha  , 0R  and 0 1Beta  , as displayed in Fig. 7. 

 

(), {}, [] Parenthesis 

^ Power 

-+  Addition and Subtraction 

/* Division and multiplication 

% Modula 
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Fig. 7 Reserved parameters screen. 

 

 

b. Pressing the key "Parameters", will show the forward model parameters to be estimated. Set initial 

guess for all parameters arbitrary as represented in Fig. 8. 

 

 

 

Fig. 8 Forward model parameters screen. 

 

c. Choose one of the following estimation methods from the field addressed "Loss function formula" as 

clarified in Fig. 9: 

 Minimize the sum of squared deviations: 
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 



n

1i

2
ii PredObsMin  

 Minimize the sum of absolute deviation: 





n

1i
ii PredObsMin  

 Minimize the sum of weighted squared deviations: 

 



n

1i

2
iii PredObswMin  

 Minimize the sum of weighted absolute deviations: 





n

1i
iii PredObswMin  

 

 Maximize the likelihood function: 

    







 



n

1i

2
ii2

PredObs
σ2

1
σ2πlnnMin  

 Normalization method: 

 
2

n

1i

2
ii2

PredObs
nσ2

1

σ2π

n
lnςMin





















 



 

 User defined. There is a possibility to construct owner loss function by using the reserved 

mathematical term _obs pred defined as follows: 

^

1

_ ( 0)
qn

q
i i i

i

obs pred weight obs pred q


   
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Fig. 9 Loss function formula. 

 

d. Choose one of the following damping rate formulas from the field addressed "Annealing rate 

formulas", as shown in Fig.10. 

 Cauchy annealing: 
1i

α
α 0

1i 
  

 Boltzmann annealing:  2iln

α
α 0

1i 
  

 Exponential annealing 1:   1i1β
01i eαα 

   

 Geometric annealing: i1i αβα   

 Decreasing annealing 1: 
 1/n

0
1i

1i

α
α


  

 Power annealing:   1i
1i β1α 
   

 Decreasing annealing 2: 
 β

0
1i

1i

α
α


  

 Exponential annealing 2:  1/n1iβ
01i eαα 

   
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Fig. 10 Damping rate formulas. 

 

 

e. Choose "calculate", then the code starts to compute the forward model parameters 

f. Choose "stop" for stopping the execution any time or the code will stop automatically when the 

stopping criterions of algorithms are satisfied. The code can provide, at each step of execution the 

values of model parameters, loss function, R squared, and standard error.  

g. Choose "Graph" to draw the curve in two dimensions, as illustrated in Fig. 11. 

 
Fig. 11 Curve graph. 

 

 

It should be pointed out that there are possibilities to save, copy and print all code outputs on computer 

any were to re-use or reopen it later with extension "owner name.sa", as represented in Fig. 12: 
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Fig. 12 Save, print, and reopen code output. 

 

 

Also, the code permits possibilities to treat, simultaneously, more than one experimental data file since 

it uses "multithreading" technique which aids users to open more than one window at a time. 

3-2 Adaptive simulated annealing method 

Repeat the same steps as explained in paragraph 3-1with respect to the following inequalities: 0Alpha  ,

0R  , 0 1Beta  , 0 1c   and 0iT   for all i. 

3-3 Hooke and Jeeves method 

Repeat the same steps as explained in 3-1with respect to the following inequalities: 310epsilon  ,

0delta  and 0 1gamma  . 

3-4 Steepest descent method 

Repeat the same steps as explained in 3-1with respect to the following inequalities: 310epsilon  and 
310H  . 

3-5 Fletcher and Reeves algorithm 

Repeat the same steps as explained in 3-1with respect to the following inequalities: 310epsilon  and 
310H  . 

 

8 Conclusions 

A user-friendly interactive computer program for multiple nonlinear curves fitting has been proposed and 

developed in this work. The code algorithm is mainly based on famous mathematical optimization methods 

well-known in optimization theory such as: Standard simulated annealing, adaptive (very fast) simulated 

annealing, Hooke and Jeeves pattern search algorithm, Fletcher and Reeves conjugate gradient and steepest 

descent method.   

The code is implemented and programmed using C++ programming language within Borland C++ Builder 

environment. "Software.rar" file contains examples of input data files, testing examples and the exe-file of this 

software which can be loaded directly when it is needed.   
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