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Abstract 
Causality inference of variables is a research focus in science. Due to its importance, a statistical simulation 

and regression method for causality inference of linearly correlated (scale or interval) variables was proposed 

in present study. First, a statistical simulation and regression method was developed to generate and analyze 

artificial data of linear correlated variables with known causality. The rule was drawn from the simulation and 

regression analysis on artificial data. Finally, causality inference of two linearly correlated variables was 

conducted based on the rule. Full Matlab codes of the method were presented. 
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1 Introduction 

Causality inference has been a frontier area in science for a long time. Past studies on causality inference have 

been mainly focusing on Bayesian methods. Unfortunately, few successful cases have been reported in 

causality inference. In the natural sense, causality will lead to correlation between two variables.  

Causality inferernce can be conducted only the two variables correlate with each other. Theories and 

applications of correlations have been well studied, including that in biology and ecology (Qi and Zhang, 2003; 

Kuang and Zhang, 2011; Huang and Zhang, 2012; Jiang and Zhang, 2015a, b; Zhang, 2007, 2011b, 2012a, 

2014-2018, 2021a-c; Zhang et al., 2014). There are many correlation measures, among which Pearson 

correlation is for interval or scale variables.  

Besides conventional Bayesian methods, statistical simulation methods are widely used to make statistical 

inferences (Solow, 1993; Manly, 1997; Zhang and Schoenly, 1999; Zhang, 2010, 2011a). Zhang (2021a, b) has 

proposed some statisticall simulation methods to conduct causality inference of Boolean variables and nominal 

variables. However, scale or interval variables are most often used in the practical activities. In present study, I 

thus proposed a statistical simulation and regression method for causality inference of linearly correlated scale 

or interval variables. Full Matlab codes were presented for practical uses. 
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2 Correlation and Statistic Test of Linearly Correlated Variables 

2.1 Correlation measure of linearly correlated variables 

As pointed out earlier (Zhang, 2021a, b), causality will result in correlation between two variables. For statistic 

sample data, causality inferernce is available only the two variables are correlated with each other. In present 

study, I use Pearson correlation as the correlation measure of linearly correlated (scale or interval) variables x 

and y (Zhang, 2007, 2011b, 2012a, 2014-2018, 2021a-c; Zhang and Li, 2015): 

 

            r=∑k=1
n ((xk - )(yk- ))/(∑k=1

n (xk - )2 ∑k=1
n (yk - )2)1/2        

 

where -1≤r≤1, =∑k=1
n xk/n, =∑k=1

n yk/n, and n is the sample size. 

2.2 Detection of correlation between two linearly correlated variables 

Causality between two linearly correlated variables can be infered if their linear correlation is statistically 

significant. For the Pearson correlation, calculate t=|r|/[(1-r2)/(n-2)]1/2, and if t>tp(n-2), the linear correlation 

(either positive or negative correlation) between variables x and y is statistically significant. 

 

3 Causality Inference of Two Linearly Correlated Variables 

To find the general rule of causality and correlation between two linearly correlated variables, the artificial 

data of two linearly correlated variables, from the independent variable x to dependent variable y, can be 

constructed and analyzed using statistical simulation and regression method. 

3.1 Causality principle of linearly correlated variables 

Assume that the causality exists between two linearly correlated variables, x and y, and x is the independent 

variable and y is the dependent variable. In a simulation, first, randomly generate a set of data for independent 

variable x with the random size. Second, generate a set of data for dependent variable y following the equation 

(1), with random a and b and a small random error εx: 

 

                y=a+bx±εx                               (1) 

 

Third, standardize the generated data of variables x and y: 

 

                x’=(x-min x)/(max x-min x) 

                y’=(y-min y)/(max y-min y) 

 

And construct the regression relationships with x’ and y’ as independent variable and dependent variable, and y’ 

and x’ as independent variable and dependent variable, respectively: 

 

                y’=α+βx’                                 (2) 

                x’=α’+β’y’                                (3) 

 

It should be noted that for Pearson correlation r between x and y, and r’ between x’ and y’, r=r’. Calculate and 

summarize the mean of absolute residuals for prediction of y’ from x’, rx’y’, and for prediction of x’ from y’, 

ry’x’: 

 

                rx’y’=∑k=1
n| y’k-(α+βx’k)|/n 

                ry’x’=∑k=1
n| x’k-(α’+β’y’k)|/n 
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At the end of the simulation, record r, rx’y’ and ry’x’. Repeat above procedure s times. Finally, calculate the 

mean of Pearson correlation r of all simulations, the ratio of means of rx’y’ and ry’x’, resmr, and the frequency of 

rx’y’>ry’x’, pxy: 

 

                =∑k=1
srk/s 

                resmr= mean rx’y’ / mean ry’x’ 

                pxy=∑k=1
s(rx’y’>ry’x’)/s 

 

   The full Matlab codes, xyGen, of the statistical simulation and regression analysis for finding relationship 

between causality and statistic parameters are as follows (Fig. 1; see supplementary material also): 

 

clear; 

sel=1;      %sel=1: positive correlation; sel=2: negative correlation 

yerr=0.2;   %Relative error of y following x in a given pattern 

n=100;      %For determining the maximum size of nominal variables x and y 

sim=2000;   %Number of simulations (randomizations)  

for s=1:sim  

nm=floor(n*rand()+30);    %The size, nm, can be fixed, e.g., nm=n  

x=zeros(nm,1); 

y=zeros(nm,1);  

coeff=rand()*5;           %To set regress coefficient: rand()*0.1, *0.5, *4, *10, etc. 

const=rand()*10;          %To set regress constant: rand()*0.3, *0.8, *9, *20, etc. 

x=rand(nm,1); 

yres=rand(nm,1)*yerr; 

si=floor(rand(nm,1)+0.5)+1; 

if (sel==1) 

y=const+coeff*x+(-1).^si.*yres.*x*coeff;         %Normal distributed random error can be used also. 

elseif (sel==2) 

y=max(y)-const-coeff*x-(-1).^si.*yres.*x*coeff;    %Normal distributed random error can be used also. 

end 

x=(x-min(x))/(max(x)-min(x)); 

y=(y-min(y))/(max(y)-min(y)); 

[bxy,bxyint,rxy,rintxy,statsxy]=regress(y,[ones(nm,1) x]); 

[byx,byxint,ryx,rintyx,statsyx]=regress(x,[ones(nm,1) y]); 

r=corr(x,y); 

res(s,:)=[r sum(abs(rxy))/nm sum(abs(ryx))/nm] ; 

end 

rmean=mean(r) 

resmeanratio=mean(res(:,2))/mean(res(:,3)) 

pxy=sum(res(:,2)>res(:,3))/sim 
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3.2 Causality inference of linearly correlated variables 

3.2.1 Rule found from statistical simulation and regressional analysis  

The results of statistical simulation and regression analysis demonstrated that for the causality of two linearly 

correlated variables with x as independent variable and y as dependent variable, resmr<1, pxy<p, p=0.01, 0.05, 

0.1, etc (Fig. 1). 

3.2.2 Causality inference based on observed data of linearly correlated variables 

According to the rule drawn above, resmr<1 can be used as the criteria for possible causality of linearly 

correlated variables x (independent variable) and y (dependent variable), and resmr>1 can be used as the criteria 

for possible causality of linearly correlated variables y (independent variable) and x (dependent variable). 

The full Matlab codes, causalInferLin, of the method for causality inference based on observed data of 

linearly correlated variables are as follows (Fig., 2; see supplementary material also): 

 

clear 

xyd=input('Input the Excel file name of raw data (e.g., xyd.xls: xyd=(dij)n×2, i=1,2,...,n; j=1,2. In the file, column 1 is for 

variable 1 and column 2 is for variable 2): ','s'); 

p=input('Input the statistical significance level p for correlation inference (e.g., 0.001): ');  

xyd=xlsread(xyd); 

n=size(xyd,1); 

x=xyd(:,1); 

y=xyd(:,2); 

r=corr(x,y); 

tvalue=abs(r)/sqrt((1-r^2)/(n-2)); 

alp=(1-tcdf(tvalue,n-2))*2; 

id=0; 

if (alp<p)  

sprintf(['There is a significant Pearson correlation (r=',num2str(r),') between two linearly correlated variables 

(p=',num2str(alp),')\n']) 

id=1; 

else sprintf(['There is not significant Pearson correlation (r=',num2str(r),') between two variables (p=',num2str(alp),')\n']) 

sprintf(['So, causality may not exist between two variables based on Pearson correlation.\n'])     

end 

xs=(x-min(x))/(max(x)-min(x)); 

ys=(y-min(y))/(max(y)-min(y)); 

[bxy,bxyint,rxy,rintxy,statsxy]=regress(ys,[ones(n,1) xs]); 

[byx,byxint,ryx,rintyx,statsyx]=regress(xs,[ones(n,1) ys]); 

resxy=sum(abs(rxy))/sum(abs(ryx)); 

if (resxy<1)  

sprintf(['The variable for column 1 is most likely the independent variable, and the variable for column 2 is most likely the 

dependent variable.\n']) 

elseif (resxy>1)  

sprintf(['The variable for column 2 is most likely the independent variable, and the variable for column 1 is most likely the 

dependent variable.\n']) 

end  
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4 Discussion 

It is suggested that data size (sample size, n) of variables should be large enough in order to enhance the 

reliability of causality inference. The present method is expected to be fundamental because more complex 

functional relationship can be approximated as the linear relationship in the local domain. Further 

improvement of the method includes the estimation of statistic confidence degree for causality inference. 
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