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Abstract 
In present study I proposed a statistical simulation method for causality inference of nominal variables (i.e., 

categorical variables). A new correlation measure for nominal variables, association coefficient, is firstly 

proposed also. A statistical simulation method was developed to generate artificial data of nominal variables 

with known causality. The law was then drawn from the simulation analysis of the artificial data. For a set of 

data of two nominal variables, the randomization method was first used to test the statistical significance of the 

nominal correlation measure, and then the statistical simulation was used to determine the causality and its 

statistic significance of two nominal variables. Full Matlab codes of the method were presented. 

 

Keywords causality; inference; correlation; nominal variables; contingency measures; association coefficient; 
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1 Introduction 

Causality inference between two variables is a hot topic in science. It is well known that causality will result in 

correlation between two variables. Causality inferernce two variables can be conducted only they correlated 

with each other. Theories and applications of correlations have been well studied, including those in biology 

and ecology (Qi and Zhang, 2003; Kuang and Zhang, 2011; Huang and Zhang, 2012; Jiang and Zhang, 2015a, 

b; Zhang, 2007, 2011b, 2012a, 2014-2018, 2021; Zhang and Zhang, 2019; Xin and Zhang, 2020). There are 

many correlation measures, among which Pearson correlation, Spearman correlation, etc., are for interval 

variables, and point correlation, Jaccard coefficient, etc., are for Boolean (binary) variables, and contingency 

coefficients, are for nominal (categorical) variables. In addition to various methods in parametrical statistics, 

statisticall simulation methods are widely used to make statistical inferences (Solow, 1993; Manly, 1997; 

Zhang and Schoenly, 1999; Zhang, 2010, 2011a). 

   So far there are seldom successful parametrical statistic methods for causality inference of variables. In 

terms of Boolean variables, I have developed a system of statistical simulation methods to make causality 

inference (Zhang, 2021). However, the causality inference of nominal variables is expected to be much 
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complicated compared that for Boolean variables. In present study, I proposed a statistical simulation method 

for causality inference of nominal variables. Full Matlab codes of the method were presented for practical uses. 

 
2 Correlations and Statistic Tests of Nominal Variables 

2.1 Correlation measures of nominal variables 

As mentioned earlier (Zhang, 2021), causality will result in correlation between two variables. Causality 

inferernce is available only the two variables are correlated with each other. There are a lot of correlation 

measures for nominal variables x and y. In present study, I use five nominal correlation (contingency) 

measures as follows (Zhang and Fang, 1982), in which the association coefficient is firstly proposed here:  

 

(1) Association coefficient 

r=S2/(S2+ )  

 

(2) Contingency coefficient 

r=(w2/(w2+n))1/2  

 

(3) Contingency coefficient I 

r=(w2/(n*((p-1)(q-1))1/2))1/2 

 

(4) Contingency coefficient II 

r=(w2/(n*max(p-1,q-1)))1/2  

 

(5) Contingency coefficient III 

r=(w2/(n*min(p-1,q-1)))1/2  

 

where 0≤r≤1; nominal variable x has p types of unique qualitative values, u1, u2, …,up, and nominal variable y 

has q types of unique qualitative values, v1, v2,…, vq; nkl is the number of element pairs with variable x=uk and 

variable y=vl, k=1,2,...,p; l=1,2,...,q, and 

 

      =∑i=1
p∑j=1

qnij/(p*q)  

S2=∑i=1
p∑j=1

q(nij- )2/(p*q) 

      w2=n(∑i=1
p∑j=1

qnij
2/(ninj)-1)  

n=∑i=1
pni  

ni=∑j=1
qnij  

nj=∑i=1
pnij  

       

2.2 Detection of correlation between two nominal variables 

Following the principle of randomization methods (Manly, 1997; Solow, 1993; Zhang, 2007, 2010, 2011a; 

Zhang and Schoenly, 1999), I use the randomization method to test the statistical significance of the nominal 

correlation measures as described above. Suppose that there are m pairs of observed data for two nominal 

variables x and y, as demonstrated bellow: 

 

               x  4  2  2  4  2  3  3  4  2  1  … 

               y  3  1  1  3  4  2  2  4  1  2  … 
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where variable x has p types of unique qualitative values variable y has q types of unique qualitative values, 

and it is better to meet m>>max(p, q). First, calculate the practical correlation r of x and y. Second, randomly 

re-assign elements in x and y respectively, and calculate the theoretical correlation r of re-arranged x and y. 

Repeat the procedure s times, and find the times of theoretical correlations greating than the practical 

correlation, w. If w/s<α, here α=0.01, 0.001, etc., then we conclude that the practical correlation r between 

variables x and y is ststistically significant at the statistical level α. 

 

3 Causality Inference of Two Nominal variables 

Causality between two nominal variables can be expected if their correlation is statistically significant. In order 

to find the general law of causality and correlation between nominal variables, here I will construct the 

artificial data of two nominal variables, from the independent variable x, to dependent variable y.  

3.1 Causality principle of nominal variables 

We suppose that the significant correlation between two nominal variables, x and y, has been confirmed. 

Further, assume that the causality exists between two nominal variables, x and y, and x is the independent 

variable and y is the dependent variable. Set a function mapping from p types of unique values, u1, u2, …,up, of 

variable x, to q types of unique values, v1, v2,…, vq, of of variable y. For a value in independent variable x, the 

value in dependent variable y will most likely be the mapped value from x, mapped with a greater probability. 

The random components in the mapping rule represent the stochastic errors in variable y following variable x.  

3.2 Relationship between causality and statistic parameters 

3.2.1 Statistical simulation 

The deterministic relationship between causality and statistic parameters can be exploited by using statistical 

simulation.   

In a statistical simulation, first construct the data of independent variable x and dependent variable y 

following the method above. Second, calculate the correlation r, and record r, mean of the sum of columns (y) 

of nij (Vy), mean of the sum of rows (x) of nij (Vx), and the ratio of variance of the sum of columns (y) of nij vs. 

variance of the sum of rows (x) of nij (Vyx). Repeat the procedure many times, each time we construct the new 

data of independent variable x and dependent variable y, with random data sizes, p and q and the corresponding 

unique values, and dependency probalbilities, where  

 

      Vy=∑j=1
q∑i=1

pnij/q  

Vx=∑i=1
p∑j=1

qnij/p      

   Vyx=(∑j=1
q(∑i=1

pnij-Vy)
2/q)/(∑i=1

p(∑j=1
qnij-Vx)

2/p) 

 

Finally, calculate the mean r, the proportion of Vyx being less than 1 (i.e., P(Vyx<1)), the Pearson correlation 

between r and Vy<Vx, and the Pearson correlation between r and Vx-Vy, and make statistic tests on the two 

Pearson correlations. 

   The full Matlab codes, xyGen, of the statistical simulation for finding relationship between causality and 

statistic parameters are as follows (see supplementary material also): 

 

clear; 

sel=1; 

sig=0.001;    %Statistic significance level for detecting Pearson correlation between nominal variables' correlation r and some 

statistic measure 

yprob=0.5;    %Basic probabiliy of y following x in a given pattern 
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m=200;      %For determining the maximum size of nominal variables x and y 

sim=5000;    %Number of simulations (randomizations)  

for s=1:sim  

mn=floor(m*rand()+100);  %The size, mn, can be fixed, e.g., mn=m  

x=zeros(mn,1); 

y=zeros(mn,1);  

p=floor(rand()*mn/20+3);     

q=floor(rand()*mn/20+3);   

pc=randperm(p); 

qc=randperm(q); 

if (p>q)  

for j=1:p-q 

b(j)=floor(rand()*q+1); 

end     

qc=[qc b(1:p-q)]; 

elseif (q>p) 

for j=1:q-p 

b(j)=floor(rand()*p+1); 

end     

pc=[pc b(1:q-p)]; 

end 

nn=size(pc,2); 

x=floor(rand(mn,1)*p+1); 

yp=rand(mn,1)+yprob; 

for j=1:mn 

temp=rand(); 

for k=1:nn  

if ((x(j)==pc(k)) & (temp<yp(j))) y(j)=qc(k); break; 

elseif ((x(j)==pc(k)) & (temp>=yp(j))) y(j)=qc(floor(rand()*nn+1)); break; 

end; end; end   

[rs,nij,nx,ny,str]=nominalcorr(sel,x,y); 

vy=mean(sum(nij)); 

vx=mean(sum(nij')); 

vyx=var(sum(nij))/var(sum(nij')); 

res(s,:)=[rs vy vx vyx]; 

end 

varyVSvarx=sum(res(:,4)<1)/sim                     %Prob of Vyx<1 

r=mean(res(:,1)) 

Pearson_corr_lt=corr(res(:,1),res(:,2)<res(:,3))          %r and Vy<Vx  

tvalue=abs(Pearson_corr_lt)./sqrt((1-Pearson_corr_lt.^2)/(sim-2)); 

alpha=(1-tcdf(tvalue,mean(sim)-2))*2; 

if (alpha<=sig) 

sprintf(['Pearson correlation between r and vy<vx is statistically significant (p=',num2str(alpha),')\n']) 

else sprintf(['Pearson correlation between r and vy<vx is not statistically significant at p=',num2str(sig),'\n']) 

end    
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Pearson_corr_minus=corr(res(:,1),res(:,3)-res(:,2))       %r and Vx-Vy  

tvalue=abs(Pearson_corr_minus)./sqrt((1-Pearson_corr_minus.^2)/(sim-2)); 

alpha=(1-tcdf(tvalue,mean(sim)-2))*2; 

if (alpha<=sig) 

sprintf(['Pearson correlation between r and vx-vy is statistically significant (p=',num2str(alpha),')\n']) 

else sprintf(['Pearson correlation between r and vx-vy is not statistically significant at p=',num2str(sig),'\n']) 

end           

 

function [r,nij,nx,ny,str]=nominalcorr(sel,x,y)  

m=max(size(x)); 

nx=unique(x); p=max(size(nx)); 

ny=unique(y); q=max(size(ny)); 

for k=1:p  

for j=1:q  

nij(k,j)=0; 

for i=1:m 

if ((x(i)==nx(k)) & (y(i)==ny(j))) nij(k,j)=nij(k,j)+1; end 

end; end; end 

for k=1:p  

ni(k)=sum(nij(k,:)); 

end 

n=sum(ni); 

for k=1:q  

nj(k)=sum(nij(:,k)); 

end 

wsquare=0;  

for k=1:p  

for j=1:q  

wsquare=wsquare+nij(k,j)^2/(ni(k)*nj(j)); 

end; end  

wsquare=n*(wsquare-1); 

switch (sel)  

 case 1 

     r=var(nij(:))/(var(nij(:))+mean(nij(:))); str='association coefficient';    

 case 2 

     r=sqrt(wsquare/(wsquare+n)); str='contingency coefficient'; 

 case 3  

     r=sqrt(wsquare/(n*sqrt((p-1)*(q-1)))); str='contingency coefficient I'; 

 case 4 

     r=sqrt(wsquare/(n*max(p-1,q-1))); str='contingency coefficient II'; 

 case 5 

     r=sqrt(wsquare/(n*min(p-1,q-1))); str='contingency coefficient III'; 

end 
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3.2.2 Law found from statistical simulation 

The results of statistical simulation indicated that for the causality of two nominal variables with x as 

independent variable and y as dependent variable, there is a significant Pearson correlation between nominal 

correlation r and Vy<Vx, and between nominal correlation r and Vx-Vy; P(Vyx<1)<α, where α is the significant 

level, e.g., =0.05, 0.1, etc. 

3.3 Statistical simulation for causality inference based on observed data of nominal variables 

According to the law drawn above, the two rules Vx>Vy and Vyx>1 can be used as the criteria for possible 

causality of nominal variables x (independent variable) and y (dependent variable), and the two rules Vx<Vy 

and Vyx<1 can be used as the criteria for possible causality of nominal variables y (independent variable) and x 

(dependent variable). 

   First, assume that the nominal correlation between the two nominal variables is statistically significant. 

Following the principle of randomization tests (Manly, 1997; Solow, 1993; Zhang, 2007, 2010, 2011a; Zhang 

and Schoenly, 1999), I propose a statistical simulation method to find the causality based on the observed data 

of two nominal variables x and y.  

In each simulation process, two phases are implemented: the first one with x and y as independent and 

dependent variables respectively, and the second one with y and x as independent and dependent variables 

respectively. In the first phase, for x, randomly generate m values of p types of unique values following their 

frequency in the data of variable x, and for each value in x, randomly generate a value of q types of unique 

values in y following its frequency in the data of variable y. Finally, calculate and record V’x, V’y, and V’yx. 

Perform the same procedure in the second phase with y and x as independent and dependent variables 

respectively, and calculate and record V’’x, V’’y, V’’yx. Matlab algorithm for the the two-phase procedure is as 

follows: 

 

for i=1:m 

tem=rand(); 

if (tem<pni(1)) xx1(i)=nx(1); continue; end 

for j=2:p 

if ((tem>=pni(j-1)) & (tem<pni(j))) xx1(i)=nx(j); break; 

end; end 

tem=rand(); 

if (tem<pnj(1)) xx2(i)=ny(1); continue; end 

for j=2:q 

if ((tem>=pnj(j-1)) & (tem<pnj(j))) xx2(i)=ny(j); break; 

end; end 

end 

for i=1:m 

for j=1:p 

if (xx1(i)==nx(j)) ids=j; break; end 

end 

tem=rand(); 

if (tem<pnij(ids,1)) yy1(i)=ny(1);  

else 

for j=2:q 

if ((tem>=pnij(ids,j-1)) & (tem<pnij(ids,j))) yy1(i)=ny(j); break; 

end; end; end    
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for j=1:q 

if (xx2(i)==ny(j)) ids=j; break; end 

end 

tem=rand(); 

if (tem<pnji(ids,1)) yy2(i)=nx(1); 

else 

for j=2:p 

if ((tem>=pnji(ids,j-1)) & (tem<pnji(ids,j))) yy2(i)=nx(j); break; 

end; end; end    

end  

[rs1,nijs1,nxs1,nys1,str]=nominalcorr(sel,xx1,yy1); 

[rs2,nijs2,nxs2,nys2,str]=nominalcorr(sel,xx2,yy2); 

if (isnan(rs1) | (rs1==Inf) | isnan(rs2) | (rs2==Inf)) continue; end 

ss=ss+1; 

vyy1=mean(sum(nijs1)); vyy2=mean(sum(nijs2)); 

vxx1=mean(sum(nijs1')); vxx2=mean(sum(nijs2')); 

vyxyx1=var(sum(nijs1))/var(sum(nijs1')); vyxyx2=var(sum(nijs2))/var(sum(nijs2')); 

res(ss,:)=[vyy1 vxx1 vyxyx1 vyy2 vxx2 vyxyx2]; 

 

Repeat the simulation many times. Finally, calculate statististic significance values:  

 

       pxy1=P(V’yx<1) 

       pxy2=P(V’y>V’x) 

      pyx1=P(V’’yx<1) 

       pyx2=P(V’’y>V’’x) 

 

Given the statistic significance level for causality inference, σ. If Vyx>1, Vy<Vx, pxy1<σ, pxy2<σ, 1-pyx1<σ, and 

1-pyx2<σ, the nominal variable for column 1 is the independent variable, and the nominal variable for column 2 

is the dependent variable. If Vyx<1, Vy>Vx, 1-pxy1<σ, 1-pxy2<σ, pyx1<σ, and pyx2<σ, the nominal variable for 

column 2 is the independent variable, and the nominal variable for column 1 is the dependent variable.  

The full Matlab codes, causalInferNomi, of the statistical simulation mthod for causality inference based 

on observed data of nominal variables are as follows (see supplementary material also): 

 

clear 

xyd=input('Input the Excel file name of raw data (e.g., xyd.xls: xyd=(dij)m×2, i=1,2,...,m; j=1,2. In the file, column 1 is for 

nominal variable 1 and column 2 is for nominal variable 2): ','s'); 

sel=input('Choose a correlation measure (1: Association coefficient; 2: Contingency coefficient; 3: Contingency coefficient I; 4: 

Contingency coefficient II; 5: Contingency coefficient III): ');  

alpha=input('Input the statistical significance level p for correlation inference (e.g., 0.001): ');  

sig=input('Input the statistical significance level p for causality inference (e.g., 0.01, 0.05, 0.1, etc.): ');  

sim=input('Input the number of simulations (e.g., 10000): ');  

xyd=xlsread(xyd); 

m=size(xyd,1); 

x=xyd(:,1); 

y=xyd(:,2); 
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[r,nij,nx,ny,str]=nominalcorr(sel,x,y); 

if (isnan(r) | (r==Inf))  

sprintf(['The ',str,' measure is not valid. Try to use another correlation measure.\n']) 

pause(); 

end 

xx=zeros(m,1); 

yy=zeros(m,1); 

ss=0; ww=0; 

for s=1:sim 

idx=randperm(m); 

idy=randperm(m); 

for i=1:m 

xx(i)=x(idx(i)); 

yy(i)=y(idy(i)); 

end 

[rs,nijs,nxs,nys,str]=nominalcorr(sel,xx,yy); 

if (isnan(rs) | (rs==Inf)) continue; end 

ss=ss+1; 

if (rs>r) ww=ww+1; end 

end 

id=0; 

if ((ww/ss)<alpha)  

sprintf(['There is a significant ',str,' (r=',num2str(r),') between two nominal variables (p=',num2str(ww/ss),')\n']) 

id=1; 

else sprintf(['There is not significant ',str,' (r=',num2str(r),') between two nominal variables (p=',num2str(ww/ss),')\n']) 

sprintf(['So, causality may not exist between two nominal variables based on ',str,'\n'])     

end 

vy=mean(sum(nij)); 

vx=mean(sum(nij')); 

vyx=var(sum(nij))/var(sum(nij')); 

p=max(size(nx)); 

q=max(size(ny)); 

ni=sum(nij'); 

nj=sum(nij); 

sumni=sum(ni); 

pni(1)=ni(1)/sumni; 

for i=2:p 

pni(i)=pni(i-1)+ni(i)/sumni; 

end 

sumnj=sum(nj); 

pnj(1)=nj(1)/sumnj; 

for i=2:q 

pnj(i)=pnj(i-1)+nj(i)/sumnj; 

end 

for i=1:p 

149



Computational Ecology and Software, 2021, 11(4): 142-153 

 IAEES                                                                                     www.iaees.org  

pnij(i,1)=nij(i,1)/ni(i); 

for j=2:q 

pnij(i,j)=pnij(i,j-1)+nij(i,j)/ni(i); 

end; end 

for i=1:q 

pnji(i,1)=nij(1,i)/nj(i); 

for j=2:p 

pnji(i,j)=pnji(i,j-1)+nij(j,i)/nj(i); 

end; end 

ss=0; 

for s=1:sim 

for i=1:m 

tem=rand(); 

if (tem<pni(1)) xx1(i)=nx(1); continue; end 

for j=2:p 

if ((tem>=pni(j-1)) & (tem<pni(j))) xx1(i)=nx(j); break; 

end; end 

tem=rand(); 

if (tem<pnj(1)) xx2(i)=ny(1); continue; end 

for j=2:q 

if ((tem>=pnj(j-1)) & (tem<pnj(j))) xx2(i)=ny(j); break; 

end; end 

end 

for i=1:m 

for j=1:p 

if (xx1(i)==nx(j)) ids=j; break; end 

end 

tem=rand(); 

if (tem<pnij(ids,1)) yy1(i)=ny(1);  

else 

for j=2:q 

if ((tem>=pnij(ids,j-1)) & (tem<pnij(ids,j))) yy1(i)=ny(j); break; 

end; end; end    

for j=1:q 

if (xx2(i)==ny(j)) ids=j; break; end 

end 

tem=rand(); 

if (tem<pnji(ids,1)) yy2(i)=nx(1); 

else 

for j=2:p 

if ((tem>=pnji(ids,j-1)) & (tem<pnji(ids,j))) yy2(i)=nx(j); break; 

end; end; end    

end  

[rs1,nijs1,nxs1,nys1,str]=nominalcorr(sel,xx1,yy1); 

[rs2,nijs2,nxs2,nys2,str]=nominalcorr(sel,xx2,yy2); 
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if (isnan(rs1) | (rs1==Inf) | isnan(rs2) | (rs2==Inf)) continue; end 

ss=ss+1; 

vyy1=mean(sum(nijs1)); vyy2=mean(sum(nijs2)); 

vxx1=mean(sum(nijs1')); vxx2=mean(sum(nijs2')); 

vyxyx1=var(sum(nijs1))/var(sum(nijs1')); vyxyx2=var(sum(nijs2))/var(sum(nijs2')); 

res(ss,:)=[vyy1 vxx1 vyxyx1 vyy2 vxx2 vyxyx2]; 

end 

pxy1=sum(res(:,3)<1)/sim;  

pxy2=sum(res(:,1)>res(:,2))/sim;  

pyx1=sum(res(:,6)<1)/sim;  

pyx2=sum(res(:,4)>res(:,5))/sim;  

if ((id==1) & (vyx>1) & (vy<vx) & (pxy1<sig) & (pxy2<sig) & (1-pyx1<sig) & (1-pyx2<sig) ) 

sprintf(['The nominal variable for column 1 is the independent variable, and the nominal variable for column 2 is the dependent 

variable (pxy1=',num2str(pxy1),', pxy2=',num2str(pxy2),', 1-pyx1=',num2str(1-pyx1),', 1-pyx2=',num2str(1-pyx2),')\n']) 

elseif ((id==1) & (vyx<1) & (vy>vx) & (1-pxy1<sig) & (1-pxy2<sig) & (pyx1<sig) & (pyx2<sig)) 

sprintf(['The nominal variable for column 2 is the independent variable, and the nominal variable for column 1 is the dependent 

variable (1-pxy1=',num2str(1-pxy1),', 1-pxy2=',num2str(1-pxy2),', pyx1=',num2str(pyx1),', pyx2=',num2str(pyx2),')\n']) 

else sprintf(['However, causality may not exist between two nominal variables.\n'])     

end 

 

function [r,nij,nx,ny,str]=nominalcorr(sel,x,y)  

m=max(size(x)); 

nx=unique(x); p=max(size(nx)); 

ny=unique(y); q=max(size(ny)); 

for k=1:p  

for j=1:q  

nij(k,j)=0; 

for i=1:m 

if ((x(i)==nx(k)) & (y(i)==ny(j))) nij(k,j)=nij(k,j)+1; end 

end; end; end 

for k=1:p  

ni(k)=sum(nij(k,:)); 

end 

n=sum(ni); 

for k=1:q  

nj(k)=sum(nij(:,k)); 

end 

wsquare=0;  

for k=1:p  

for j=1:q  

wsquare=wsquare+nij(k,j)^2/(ni(k)*nj(j)); 

end; end  

wsquare=n*(wsquare-1); 

switch (sel)  

 case 1 
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     r=var(nij(:))/(var(nij(:))+mean(nij(:))); str='association coefficient';    

 case 2 

     r=sqrt(wsquare/(wsquare+n)); str='contingency coefficient'; 

 case 3  

     r=sqrt(wsquare/(n*sqrt((p-1)*(q-1)))); str='contingency coefficient I'; 

 case 4 

     r=sqrt(wsquare/(n*max(p-1,q-1))); str='contingency coefficient II'; 

 case 5 

     r=sqrt(wsquare/(n*min(p-1,q-1))); str='contingency coefficient III'; 

end 

 

   A set of theoretical data were used to validate the method above and success of the method was overally 

confirmed. 

 

4 Discussion 

To increase the reliability of causality inference, the size of nominal data should be large enough (i.e., 

m>>max(p, q)). For a large data, the present method can be used on randomly segmented data blocks (i.e., 

bootstrap method) in order to draw more reliable conclusion from multiple results. It should be noted that the 

method is not applicable to the nominal variables with full deterministic correspondence (e.g., double strand 

DNA).  
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