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Abstract 

This paper describes a mathematical model with Susceptible-Infected-Treatment under disease infection in 

prey population. The controls methods are one is separating control that is to separate the prey from infected 

prey by means of self quarantine and the another one as a treatment control that is to reduce the rate of death 

caused by the disease. A local study of the model is performed around the disease-free equilibrium and the 

endemic equilibrium to estimate the effect of parameters that control disease spread and species coexistence. 

Some numerical solutions are given to explain most of the analytical results.  
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1 Introduction 

Ecology and epidemiology are two major and distinct fields of study (Su and Wang, 2015; Vijaya et al., 2017; 

Bezabih et al., 2021). Populations of each level are under constant threat of diseases (Banerjee, 2017; Saikh 

and Gazi, 2018; Zhang et al., 2020). This type prey-predator model is susceptible infected-treatment model 

assumption of four nonlinear differential equations. One of the important components of the predator-prey 

relationships is the rate of predator’s feeding depends upon the prey (Upadhyay and Iyengar, 2013). 

Below we consider a mathematical model for covid-19 epidemic around a period of about 15 days. For this 

period it is valuable to assume that infection will spread all parts of the body will destroy one by one. At 

finally it will affect the lungs it may cause breathing problems to reduce the oxygen level and leads to death. 

Many diseases are spread by infected individuals in the population coming into close contact with susceptible 

individuals. These include influenza, measles, chicken pox and AIDS (Vijaya et al., 2017). Covid-19 also 

spread by the infected individuals through sneezing, cold and cough, touch each other and it is easily 

transmitted through all aged people (Alshammari and Talay, 2021; Musa et al., 2021; Yadav et al., 2021). 
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We introduce harvesting factor in the predator to balance the predator-prey population (Amalia and Arif, 

2018). Harvesting policies is one of the major and familiar problems from ecologically and economic point of 

view (Kar, 2006). Two control methods to avoid this disease as treatment given for the lower immunity level 

population and boost their immunity power for infected individuals through vaccination. Another method to 

reduce Covid-19 is by self quarantine because the incubation period is around 15 days. We take some home 

remedies like natural medicine, Ayurveda, Yoga and meditation. 

In this prey-predator epidemiological model in section 2, we modify the model with four species and 

explanation. In section 3, the recent researchers are proved that the population is always positive and bounded. 

In section 4, we find that the system has stability with equilibrium points. In section 5, the researchers have 

been examined the stability of equilibrium points. In section 6, the researchers obtain conditions for Hopf 

bifurcation. In final section presents the conclusion about the key findings of the problem. 

 

2 Method 
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with initial densities   

S(0)>0, N(0)> 0, T(0) > 0, P(0) > 0                          (2) 

 

Here, S(t), N(t) ,T(t) and P(t) denote the susceptible prey, infected prey, treatment and predator respectively 

and all the parameters are positive. 

The methods to select parameter values for is based on the dynamical presentation of a given model  

We described the following model parameters below: 

a is the growth rate of susceptible prey.  

k is the carrying capacities of susceptible prey.  

c is the interference coefficients of two prey species with Holling type II functional response .  

β, j are the force of infection of preys from predator.  

e is the natural death rate of infected prey.  

δ is the recovered rate of infected prey. 

f relates the death of infected prey under treatment.  

v denotes the growth rate of prey under treatment. 

φ, ψ, are the conversion coefficient of predator from susceptible and infected preys population.  

h is the harvest effort of predator. 

13
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This model has some assumptions which consist of the followings: 

1. The susceptible and infected prey interaction take place with Holling type II functional response. 

2. We identify the number of infected prey and given treatment for them. 

3. The treatment will be given for infected individuals as some home remedies like natural medicine, 

ayurveda, yoga and meditation. 

4. We consider the growth rate by the raise of immunity power and death rate for the species under 

treatment. 

5. For healthy prey will be given vaccine before they affected by the predator. 

 

3 Positiveness and Boundedness of Theorem 

In this section, we establish the conditions to get positive as well as bounded solutions of the system. 

3.1 Positivity 

Theorem 1. Every solution of system (1) with initial conditions (2) always exists in the interval [0,∞) and 

S(t) >0,N(t) >0,T(t) >0,P(t) >0, for all t ≥ 0 

Proof. 

In the right hand side of equation (1) is completely continuous and relates to locally Lipschitzian on C, the 

conditions (2) exists and is unique on [0,ξ), where 0 < ξ ≤ +∞ (Sharma and Samanta, 2015). From equation (1) 

and (2), we have 

Sሺݐሻ =Sሺ0ሻ ݁݌ݔ ሾ׬ ሼܽ ቀ1 െ
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௧
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hence we proved. 

3.2 Boundedness 

Theorem 2. Susceptible prey is always bounded above for a >0, k >0. 

Proof.  

If S(0) = 0 then the result is obvious, if S(0) >0, Then S(t) >0 for all t on adding equation (1) we obtain 

ௗௌ  

ௗ௧
≤ ܽ ቀ1 െ

ௌ  

௞
ቁ      lim

௧՜∞
(sup S(t)) ≤ k  

Theorem 3. Infected prey, Treatment and Predator are bounded above. 

Proof. 

If N(0) = 0 the result is obvious. We obtain the equation (1) 

If ܰሺ0ሻ ൐ 0,  then 
ௗே  

ௗ௧
൏ 0 if d1N>1, 

ௗ்  

ௗ௧
൏ 0 if d2T>1, 

ௗ௉  

ௗ௧
൏ 0 if d3T>1 

where d1 = δ + e, d2 = υ + f, & d3 = h 
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௧՜∞
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ௗమ
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Theorem 4. The path of the equation (1) are bounded. 

Proof. 

Define the function Ω = S + N + T + P and take its time derivative along the solution of (1) 
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where ρ is a nonnegative constant for ρ > e or ρ > h given ε>0 there exists to such that t on t ≥ ݐ଴ 
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Lemma . Let φ be an absolutely-continuous function satisfying the differential inequality  

dԄሺtሻ
dt

൅ αଵԄሺtሻ ൑ αଶ, t ൒ 0  whereሺα1, α2ሻ א R൅
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α1
െ ൬

α2
α1
ԄሺTሻ൰ eെα1ሺtെTሻ. 

From the above lemma (Aziz-Alaoui and Daher Okiye. 2003), 
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Letting t → ∞ then letting ε →0   lim
௧՜∞

(sup Ω(t)) ≤ 
௠

ఘ
 

On the initial conditions, the system (1) are bounded. 

 

4 Nonlinear Systems and Stability Analysis 

4 .1 Equilibrium points 

The equilibrium points of the parametric model (1) is given by steady state equations 
ௗS

ௗ௧
ൌ

ௗN

ௗ௧
ൌ

ௗT

ௗ௧
ൌ

ௗP

ௗ௧
. The 

system has four equilibrium points and after some algebraic calculations we get the trivial, axial and 

non-trivial equilibrium points (Table 1). 

 

Table 1 Stability analysis of equilibrium points. 

Equilibrium point  Explanation Stable/Unstable 

E1{S = 0,N = 0,T = 0,P = 0}  Trivial saddle point 

E2{S = k,N = 0,T = 0,P = 0}  infected prey, treatment &predator-free stable 

E3{S =
௛

ϕ
,N = 0,T = 0,P =

ିୟሺି୩ϕା୦ሻ

୩βϕ
ሽ  

) 
infected prey& treatment free stable 

E4{S = S*,N =N*,T =T*, P=P*}   Coexistence stable 

 

4.2 Analysis stability and existence of equilibrium points 

The jacobian matrix of the system (1) at equilibrium point E=(S(t),N(t),T(t),P(t)) is given by 
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J ൌ ൦

݉ଵଵ ݉ଵଶ 0 െSβ
݉ଶଵ ݉ଶଶ 0 െNj
0 δ  ݉ଷଷ   0
Pϕ Pψ 0 ݉ସସ

൪ 

 

Now the eigen values are  

λ1 = −a ,  λ2 = ck − δ – e ,  λ3 = υ − f,  λ4 = kα − h 

Hence the equilibrium point (1) is locally stable if λ1 <0, λ2 <0, λ3 <0 & λ4 <0 with 

the condition δ + e > ck, f > v & h > kφ. 

 

Theorem 6. Given the linearized system of equations (1) is infected prey & treatment-free equilibrium point. 

Then the equilibrium point {S =
௛

ϕ
,N = 0,T = 0,P =

ିaሺିkϕାhሻ

kβϕ
ሽ is locally asymptotically stable provided that λ1 <0, 

λ2 <0 with the condition ajkφ + kβδφ + ekβφ > chkβ + ahj, f > v and λ3  & λ4 have negative real parts. 

proof. 

The jacobian matrix is 

 

where ݉ଵଵ ൌ a െ 2
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୩
െ
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ଵାN
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݉ଵଶ ൌ S ቀെ
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ଵାN
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௖ே  
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ቁ, 
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ଵାN
,       

݉ଶଶ ൌ
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ଵାN
െ jP െ δെ e െ

௖ேௌ  

ሺଵାேሻమ
  

݉ଷଷ ൌ v െ f,   ݉ସସ ൌ ߰ܰ ൅ ߶ܵ െ h 

based on the condition of eigen values, the dynamical system (1) gets stable if all the eigen values are non 

positive in case of real roots or non positive real parts in case of complex roots of the characteristic equation

for the above jacobian matrix. Otherwise the system is unstable. 

 

Theorem 5. Given the linearized system of equations (1) is infected prey, treatment and predator-free 

equilibrium point. Then the equilibrium point {S = k, N = 0,T = 0,P = 0} is locally asymptotically stable 

provided that λ1 <0, λ2 <0, λ3 <0 & λ4 <0 with the condition  

E2 ൌ ൦

െa െkc 0 െkβ
0 kc െ δ െ e 0 0
0 δ  v െ f   0
0 0 0 kԄ െ h

൪ 

δ + e > ck,f > υ &h > kφ. 

proof. 

The jacobian matrix is 
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Now the eigenvalues are 

 λଵ ൌ
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hence the equilibrium point (1) is locally stable if λ1 <0, λ2 <0, with the condition  

ajkφ + kβδφ + ekβφ > chkβ + ahj, f > υ and λ3 & λ4 have negative real parts. 

 

Theorem 7. The interior equilibrium point {S = S*,N =N*,T =T*, P=P*} is locally asymptotically stable. 

proof. 

The Variation of the Jacobian matrix is 

4ܧ ൌ

ۏ
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Where ݉ଵଵ ൌ a െ 2
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݉ଶଶ ൌ
௖Sכ  
ଵାNכ

െ jPכ െ δെ e െ
௖NכSכ  

൫ଵାNכ൯
మ  

݉ଷଷ ൌ v െ f,   ݉ସସ ൌ ߰Nכ ൅ ߶Sכ െ h  

 

 

The characteristic equation is Λ(λ) = λ4 + B3λ
3 + B2λ

2 + B1λ
1 + B0  

Where B3 = 4I−(m11+m22 +m33 +m44) 

B2 = 6I2−(m11+m22+m33+m44)3I+m22m33+m22m44+m33m44+m11m22+m11m33+m11m44 − m12m22 + S*P*βϕ 

B1 = 4I3
 −(m11 + m22 + m33 + m44)3I2 +  (2m22m33 +  2m22m44 +  2m33m44 +  2m22m11 +  2m33m11 +  2m44m11  − 

2m12m21  +  2S*P*βϕ  +  m11N*P*jψ)I  −  m22m33m44  −  m22m33m11  −  m22m44m11  −  m33m44m11  +  m12m21m33  + 

m12m21m44 + m11N*P*jψ + m12N*P*jϕ + m21S*P*βψ − m22S*P*βϕ − m33S*P*βϕ 

B0  = I4−(m11+m22+m33+m44)I3+(m11 m22+m11m33+m11m44+m22m33+m33m44+  m22m44  +  N*P*jψ  −  m12m21)I2  − 

(m11m22m33  +  m11m22m44  +  m11m33m44  +  m22m33m44  +  m11N*P*jψ +m33N*P*jψ  −m33m12m21  −m44m12m21 

−m12N*P*jϕ)I +m11m22m33m44 + m11m33N*P*jψ − m33m44m12m21 − m12m33N*P*jϕ 

By Routh Hurwitzs criterion, all the eigenvalues of j4  have negative real parts if 

(i) B3 >0, 

 (ii) B3B2 > B1 , 

 (iii) B3B2B1 >B1
2+ B3

2
 B0. 
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Therefore the given system of the nonlinear differential equation (1) is locally asymptotically stable around the 

non negative equilibrium point {S = S*,N = N*,T = T*,P = P*}  if the conditions mentioned in the theorem 

holds. 

 

4.3 Global stability analysis 

We perform a global analysis of the system(1) around the non negative equilibrium point G(S*,N*,T*,P*) of 

the coexistence. The following theorem of Lyapunov function ∆ is considered (Hugo et al., 2012; Ackleh et al., 

2021). 
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carefully chosen such that ∆, (G) = 0 then G(S*,N*,T*,P*) and ∆=(S,N,T,P) >0  S,N,T,P|G. If the time 

derivative of Δ is 
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system is Lyapunov stable and 
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Proof. 
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Now by substituting the equations (1) we get, 
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The above equation becomes 
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்
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By rearranging we obtain, 

ௗ୼
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ൌ ሺS െ Sכሻଶ ቄܽ ቀ1 െ
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௞
ቁ െ
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்
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Thus it is possible to set ςଵ, ςଶ, ςଷ>0 such that ∆’ ≤ 0 is an endemic positive equilibrium point is globally stable. 

Therefore it is pointed that the parameters play a key role in controlling the stability aspects of the system 

(Hugo and Simanjilo, 2019).  

 

5 Hopf Bifurcation 

In this section we examined the Hopf bifurcation around the interior equilibrium point E4. The parameter a is 

basic and represent the growth rate of prey S is identified as a bifurcation parameter. Hopf bifurcation occurs 

that the jacobian matrix E4 has a pair of merely imaginary eigenvalues and the other eigenvalues have non 

positive real parts and Re[ 
ௗఒ

ௗ௔
 ሿ|௔ୀ௔బ ് 0 (Atena and Doust, 2021) . Presume that the characteristic equation at 

the interior equilibrium point E4 is as follows: 

 λ4 + B3λ
3 + B2λ

2 + B1λ
1 + B0 = 0 (3) 

For merely imaginary eigenvalues, the coefficients of characteristic polynomial (3) satisfy the following 
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condition:     

               B3B2B1 - B3
2
 B0.- B1

2
 = 0    

Suppose ±iω is a pair of merely imaginary eigenvalues corresponding to a0. We solve from the characteristic 

equation (3) tends to a (Hui Cao et al., 2021) 

          [4λ3 + 3B3λ
2 + 2B2λ

 + B1] 
ௗఒ

ௗ௔
+(λ3 ௗ஻య

ௗ௔
+ λ2 ௗ஻మ

ௗ௔
+ λ ௗ஻భ

ௗ௔
+ 

ௗ஻బ
ௗ௔
ሻ ൌ 0 

hence          
ௗఒ

ௗ௔
ൌ െሺ

ఒଷ 
೏ಳయ
೏ೌ

ା ఒଶ 
೏ಳమ
೏ೌ

ା ఒ 
೏ಳభ
೏ೌ

ା 
೏ಳబ
೏ೌ

ସఒଷ ା ଷ஻యఒଶ ା ଶ஻మఒ ା ஻భ
ሻ                                 (4)   

We substitute iω in to equation (4), we have  

                                  
ௗఒ

ௗ௔
|୧ன ൌ െሺ

ି୧னయ 
೏ಳయ
೏ೌ

ି 
ಡమ೏ಳమ
೏ೌ

ା  
౟ಡ೏ಳభ
೏ೌ

ା 
೏ಳబ
೏ೌ

ିସ୧னయି ଷ஻యனమ ା ଶ஻మ୧ன ା ஻భ
) 

Hence 

Re(
ௗఒ

ௗ௔
|୧ன) = -( 

ሾ஻భିଷ஻యனమሿቂ
೏ಳబ
೏ೌ

ିனమ೏ಳమ
೏ೌ

ቃାൣଶ஻మனିସனయ൧ቂனయ೏ಳయ
೏ೌ

ିன
೏ಳభ
೏ೌ

ቃ

ሾ஻భିଷ஻యனమሿమାሾଶ஻మனିସனయሿమ
ሻ 

 

Theorem 9. Consider the bifurcation parameter as ’a’ then System (1) sustains a Hopf bifurcation provided. 

(ሾܤଵ െ ଷωଶሿܤ3 ቂ
ௗ஻బ
ௗ௔

െ ωଶ ௗ஻మ
ௗ௔
ቃ ൅ ሾ2ܤଶω െ 4ωଷሿ ቂωଷ ௗ஻య

ௗ௔
െ ω

ௗ஻భ
ௗ௔
ቃሻ  ് 0 

 

6 Numerical Results 

The system of the nonlinear differential equation (1) for the numerical solution. In this section we existing 

computer reflection of solutions under stability analysis. 

1. First we take the parameter of the system as (β,k,ψ,j,υ,δ,c,f,φ,e,h,a) = 

(1.05,1.25,0.23,0.545,0.005,1.236,1.450,0.212,2.024,2.05,2.11,1.07) at the population (S,N,T,P) = 

(10.25,10.46,10.06,10.13) The given system is asymptotically stable (Fig. 1). 

 

Fig. 1 Rossler type of prey-predator is asymptotically stable. 
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2. If we take the parameter of the system as mentioned above in point (1). Then the initial condition 

satisfies (S,N,T,P) = (10.2,0,0,0) is susceptible prey population (Fig. 2). 

 

Fig. 2 The stability analysis of susceptible prey. 

 

3. If we take the parameter of the system as mentioned above in point (1). Then the initial condition satisfies 

(S,N,T,P)=((1.2,0,0,1),(1.2,0,0,1.2)) the contact rate of susceptible prey and predator interaction (Fig. 3). 

 

 

 

 

 

 

 

 

 

Fig. 3 The stability analysis of susceptible prey and predator interaction. 
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4. If we take the parameter of the system as mentioned above in point (1). Then the initial condition satisfies 

(S,N,T,P)=((1.2,0.1,1,1),(1.3,0.6,0.7,0.2),(1.2,0.6,1.7,0.1),(1.2,1.46,1.7,1.2)) the contact rate of preys, treatment 

and predator interaction (Fig. 4). 

 

 

 

    

 

         

 

 

 

Fig. 4 The stability analysis of susceptible-infected prey, treatment and predator interaction 

 

7 Discussions and Conclusions 

In this paper, we developed an epidemiological of S-I-T model. We conclude that our system of 

susceptible-infected prey, treatment and predator model the disease will spread in healthy prey. We take some 

control measure to reduce the spread of disease, the treatment will give for infected prey through vaccination 

and another is self quarantine. There must be some time lag called the raise of immunity power where steps to 

be taken by the control measure during this process. We assumed that the prey grows logistically. The system 

with time sustains a Hopf bifurcation around E* at a=a* taking time delay ’a’ as bifurcation parameter. 

This model analyzed the stability and the following conclusions were drawn (Table 1): 

(i) If we analyze the second equilibrium point no interaction take place only the susceptible prey attains 

oscillatory dynamics of this model because of the absence of predator and infected prey (Fig. 2). 

(ii) If the interaction occurs only in susceptible prey with predator, then the prey population size tends to 

normal growth but predator increases (Fig. 3). 

(iii) In the interior equilibrium values, we conclude that the treatment given for infected prey then it will be 

decreasing and also affects the predator reduced completely. The susceptible prey decreases first and then 

increases towards its normal growth because of treatment given for infected prey recovered (Fig. 4). 

   The equations may reveal chaotic oscillation and attractor that may comes due to Rossler system. So all 

our significant diagnostic findings are numerically verified using Mapple. Hence we recommend that the self 

quarantine and natural or herbal medicines, yoga or meditation is the best way to avoid the spread of disease in 

prey population. 
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