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Abstract 

This study was conducted to estimate the above and below ground carbon storage in the Woodlands of 

Dirmaga Watershed, North Western Ethiopia. The field data were collected through systematic random 

sampling techniques of 40 sample plots. The above-ground biomass and below-ground biomass of the study 

area was collected from 20 m × 20 m area of the main plot. The biomass and carbon stock of the woodland 

was estimated using site-specific allometric models and Landsat 8 NDVI and analyzed by ArcGIS. The result 

showed that the mean carbon stock of above-ground carbon and below-ground carbon were accounted for 

about 291.47 t/ha and 24.81 t/ha, respectively. The relationship between AGC and NDVI was strong with 

correlation coefficient of 0.86 and R2 value of 0.745. Tree species of Anogeissus leiocarrpa, Adansonia 

digitata and Diospyros mespiliformis sequestered the largest portion of the carbon stockwhile, Ficus 

sycomorus L., Rhus glutinosa and Securinega virosa were the least contributor of carbon stock. The woodland 

has a great potential for carbon sequestration and biodiversity conservation and the concerned body should 

conserve and manage the resource properly. 
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1 Introduction 

Forest ecosystems are major components of the earth's energy cycles and provide significant environmental 

services. Forest biomass is an important metric for defining the structure and function of woodlands (West, 

2009; Lieth and Whittaker, 1975). Many ecosystem processes are influenced by forest biomass, and many 

processes are affected by forest biomass (Tian et al., 2014). Forests are the most abundant and greatest source 

of terrestrial carbon sinks, contributing significantly to the global carbon cycle. By implementing C 

sequestration in biomass and soils, they play a critical role in reducing the climate change scenario (IPCC, 
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2019). Because quantifying forest belowground biomass is difficult, most previous research have concentrated 

on forest aboveground biomass (AGB).  

Estimating AGB is a necessary step in determining carbon stocks and balances (Ketterings et al., 2001). 

Process-based ecosystem models, field measurements, and a combination of forest inventory plots and 

remotely sensed data have all been used to estimate forest AGB in previous research (Lu et al., 2016; Safari et 

al., 2017). For numerous reasons, the remote-sensing-based technique has been popular in recent decades: (1) 

Remote sensing data covers large areas, allowing for the assessment of vegetation spatial variation and 

determining the spatial distribution and pattern of biomass in large areas and complex forest landscapes; (2) 

forest biomass research at various scales can be conducted using multiple sensors and spatial resolutions and 

(3) multi-temporal remote sensing images provide long-term, dynamic, and continuous AGB observations (Lu, 

2006). 

The rapid advancement of remote sensing technology has resulted in a large amount of remotely sensed 

images data that can be used to estimate AGB. The information can be separated into three groups: (1) Landsat, 

Systeme Probatoire d'Observation de la Terre (SPOT), moderate-resolution imaging spectroradiometer 

(MODIS), QuickBird, ASTER, Advanced Very High-Resolution Radiometer (AVHRR), and China-Brazil 

earth resource satellite (CBERS) are examples of optical remote sensing data; (2) active remote sensing data 

such as Radar and Lidar are examples of active remote sensing data; and (3) the integration of multisource 

remote sensing (Lu et al., 2016; Galidaki et al., 2017; Mitchard et al., 2009; Sun et al., 2011) Specifically, 

Because the images are free to download, have medium spatial (30 m × 30 m) and temporal (16 days) 

resolutions, and cover a large area, Landsat has been widely used to estimate forest biomass in conjunction 

with sample plots (Zhu et al., 2016; Zhu and Liu, 2015). Landsat's geographical resolution is comparable to the 

size of sample plots in national forest inventories in many countries, which reduces spatial errors in matching 

pixels and sample plots (Sun et al., 2015).  

Forest stands with varying biomass typically have varied forest architecture and biophysical properties. 

These characteristics appear as varied hues, structures, and textures in remote sensing photographs. Using 

feature extraction methods, the image parameters that are closely related to forest biomass can be extracted 

from the remote sensing images, and forest biomass can be estimated. Vegetation information in remote 

sensing images is mainly reflected by the spectral characteristics. 

The objectives of this study were to estimate and map the aboveground biomass and carbon of woodlands 

in Dirmaga Watershed through in-situ vegetation inventory and correlating with net deference vegetation index 

values to map spatial above ground carbon. 

 

2 Materials and Methods 

2.1 Description of study area 

Dirmaga Watershed is found in West Gondar Administrative Zone, West Armachiho District in Amhara 

Region. Most part of the watershed is laid on Godebie National Park. Geographically, it is located on 

13012’20.51’’ to 13025’18.4’’ N latitude and 36013’56.73’’ to 36030’0.3’’ East longitudes with an altitudinal 

range of 625 m to 1183 m above sea level. The area is hotter throughout the year having annual temperature 

range of 38-48oc and the area receives 600-1100mm annual rain fall stayed from June – August (Hurni, 1998). 

Based on the long-term weather variable records of Global weather data records (1979-2013) calibrated with 

ground truth data from the nearest Abraha Jira Station, the mean annual rainfall is 780 mm with a monomodal 

rainfall season ranges from June to August, which contributes about 82% of the annual rainfall of the study 

area (https://globalweather.tamu.edu). The temperatures range from 15.1°C to 40°C with mean annual 

temperature of 27.1°C. 
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Fig. 1 Location map of the study area. 

 

 

Based on vegetation classification of Ethiopia Ib Friis (2010), Godebie National Park Forest communities 

are broadly categorized as Combretum-Terminalia woodland and wooded grassland with Terminalia brownii, 

Anogeissus leiocarrpa and Dalbergia melanoxylon as frequent species; Acacia-Commiphora woodland and 

bushland proper with dominant Acacia seyal, and Acacia polycantha species; and riparian/riverine forest with 

Adansonia digitata, Diospyros mespiliformis and Tamarindus indica as dominant species. 

The elevation of Dirmaga watershed is ranged from 625 up to 1185 m above sea level. The major soil 

types of the watershed are Eutric nitisols, Chromic vertisol, and Orthic luvisols. The 55% area of Dirmaga 

watershed is demarcated by the district land administrative office as protected area (Part of Godebie National 

Park and the remaining area is pasture land and farming land. But, still now there is some illegal farming and 

animal husbandry on the area which has negative influence on the regeneration status of the existing vegetation. 

2.2 Collection methods for vegetation inventory 

2.2.1 Sampling design and sample size 

The field survey wasperformed in the monthof March 2021. Systematic sampling was employed for vegetation 

data collection to ensure that sufficient representative samples of vegetation from all gradient levels (Krebs, 

1999; Kent, 2012). Following the procedure used in (Senbeta and Teketay, 2001; Fisaha et al., 2013;  

Temesgen, 2020). five transect lines were laid in the watershed following along the gradient (elevation). Based 

on the above principles 40 Square sample quadrats with a size of 20 m × 20 m were laid down alternatively 

along the line transects at 500 m intervals along the linear transects using GPS and Compass.  

Carbon in the AGB (above ground biomass) was assessed through measurement of standing trees and 

shrubs using proper mensuration techniques. Diameter at breast height (DBH) and height (H) of trees were 
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measured according to their size class in the respective subplots. Therefore, species type, diameter at breast 

height (DBH) and height of trees (H) were the interest of measurement for trees. GPS was used to identify 

exact location of plots and elevation. DBH was measured with calliper/diameter tape depending on the size of 

the tree. Tree height was measured using haga hypsometer and graduated stick, and slope was measured with 

suunto clinometer to adjust the size of the plots to proper size. 

2.2.2 Estimation of biomass and carbon stocks  

Carbon stock has been assessed in five forest carbon pools, which is in accordance with the IPCC 2006 

guideline. Hence, the major activities of carbon measurement during the field data collection were focused on 

above-ground biomass and below-ground biomass. 

Carbon stock assessments in Africa are highly variable and have high degree of uncertainty due to lack of 

consistency in techniques of inventory and lack of site and species specific allometric equations. There are few 

species specific allometric equations developed in Africa, and most of the carbon stock assessments used 

general allometric equations. But this causes the high degree of variability in site growth conditions and 

growth characteristics of species as well as it cannot estimate the correct biomass and carbon.  

Therefore, Species-specific allometric equations are very important and, in this regard, there are allometric 

models (Andargie et al., 2018) which are appropriate for improving aboveground biomass (AGB) and carbon 

(AGC) estimations in woodland ecosystems in Ethiopia and near to study area in particular. Thus, this study 

used the following equation developed by Andargie et al. (2018) as follows: 

 

lnሺܤܩܣሻ ൌ െ2.965 ൅ 1.820 lnሺܪܤܦሻ ൅ 1.157ln ሺܪሻ………………(1) 

 

where H is total height; DBH is diameter at breast height; AGB is aboveground biomass; and ln is natural 

logarithm. The above-ground carbon (AGC) and above-ground biomass CO2 equivalent (AGB CO2eq) 

sequestrated in the study area was calculated by the principles of Pearson et al. (2005) and (2007) as follows: 

 

ܥܩܣ ൌ ܤܩܣ כ 0.5ሻ………………………………………(2) 

ݍ2ܱ݁ܥ ܤܩܣ ൌ  ܥܩܣ ൈ  3.67.……………………………(3) 

 

According to Mac Dicken (1997) and Pearson et al. (2005) standard methods of estimating belowground 

biomass (BGB) and belowground carbon (BGC) can be obtained as 20% (AGB*0.2) and 10% (AGC*0.5) of 

above-ground tree biomass, respectively.  

2.3 Vegetation index based forest carbon stock estimation 

2.3.1 Satellite data sources and acquisition 

The Landsat 8 NDVI (Net difference vegetation index) for the study watershed were downloaded from climate 

engine (https://app.climateengine.com/climateEngine). The Landsat 8 NDVI data is acquired in respect to the 

ground sampling date. The meta data of the vegetation index (NDVI) is presented in Table 1. 

 

 

Table 1 Descriptions of satellite datasets used in the study. 

Satellite Data Landsat 8 NDVI 

Path /horizontal tile number 170 

Row/ vertical tile number 51 

Spatial Resolution 30 m 

years March 27, 2021 
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NDVI is considered as one of the most preferred spectral indices to differentiate vegetated regions from 

non-vegetated regions (Tuker, 1979). The NDVI is a term which indicates the photosynthetically active 

radiation for vegetation (Rani et al., 2018), that is strongly affected by climatic conditions, and surrounding 

factors such as soil and geomorphology as well as physio-chemical characteristics of plant and leaf texture. It 

transforms the image of NIR and Red channels into a single band image with values ranging between -1 and 

+1. The values of NDVI indicate the amount of chlorophyll content present in vegetation, where higher NDVI 

value indicates dense and healthy vegetation and lower value indicates sparse vegetation/bare soil. To identify 

and assess the relationship between NDVI of the study sites, regression analysis is employed in the study. To 

obtain the pixel values associated with carbon of the forest, the NDVI equation was used: 

 

ܫܸܦܰ ൌ
ேூோିோ௘ௗ

ேூோାோ௘ௗ
……………………………………..(4) 

 

NDVI: Normalized Difference Vegetation Index, NIR: Near Infrared Band and Red: Red Band. 

2.3.2 NDVI based forest carbon estimation 

To estimate the forest carbon, the NDVI values were obtained from climate engine. The exact geographic 

coordinates of the sampling plots were obtained with the help of GPS. Ground truth points were imported to 

generate vector data (point) in Arc GIS environment and the resulting vector data was overlaid on the NDVI 

raster to extract the NDVI values. The extracted NDVI values were regressed with the field measured forest 

carbon values for statistical analysis. The linear equation therefore, obtained was used to generate the final 

estimated carbon map of the study area. 

 

 
Fig. 2 Stretched NDVI value of the study area for March 27, 2021. 
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Fig. 4 Height class distribution. 

 

 

3.2 Above and below-ground biomass and carbon storage 

The maximum above-ground biomass and above-ground carbon of Dirmaga Watershed was found to be 

1133.74 t/ha and 532.86 t/ha respectively (Table 2). Whereas the minimum above-ground biomass and above-

ground carbon is 23.936 t/ha and 11.25 t/ha respectively (Table 2). 

 

 

Table 2 Descriptive statistics of above and below ground carbon stock and carbon dioxide equivalent. 

 AGB(t/ha) BGB(t/ha) AGC(t/ha) BGC(t/ha) Total (AGC+BGC) CO2 equivalent (t/ha) 

Mean 620.14 124.03 291.47 24.81 316.27 1160.74 

Max 1133.74 226.748 532.86 106.57 639.43 2346.07 

Min 23.936 4.787 11.25 2.25 13.50 49.5 

SD 365.80 73.16 171.93 14.63 186.56 265.80 

 

 

The mean above-ground and below ground carbon stock in in the Woodland of Dirmaga Watershed was 

estimated to be 291.47 t/ha and 24.81 t/ha, respectively (Table 2). Accordingly, a mean of 1160.74 t/ha CO2eq 

was sequestrated in both above-ground and below ground biomass of trees and shrubs of the study area. NDVI 

map generated using Landsat data is shown in Fig. 2. The NDVI values ranges from 0.09 (low) to 0.35 (high) 

as shown in Fig. 2. The relationship between estimated forest AGC and NDVI was very strong (r =0.86). The 

R2 values were found to be 0.7459 and the root mean square value was 24.33 (Table 3). In general, it is 

possible to say that, the relationship between the vegetation indices and above ground carbon is strong. 

The field-estimated AGC (above ground carbon) value ranges from 11.25 t/ha to 532.86 t/ha (Table 2) 

while the mean AGC is 291.47 t/ha (Table 2). The correlation (r = 0.86) between estimated above ground 

carbon and NDVI is generated using linear regression with the R2 value of 0.7459. The mean AGC value 

estimated from net deference vegetation index is 271.6 t/ha. The result implies that even though, there are 

positive and strong relationship between field inventory based AGC and NDVI based AGC, the latter (NDVI 

based AGC) is underestimated. 
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Table 3 Relation between Above ground carbon and Landsat 8 NDVI. 

Model Coefficient R2 r RMSE sig 

AGC=453.46(NDVI)-58.124 453.46 0.7459 0.86 24.33 0.0001

AGC is above ground carbon, R2 = Coefficient of Determination, r = regression coefficient, RMSE = root mean square error. 

 

 

3.3 Trees species biomass and carbon stock contribution in the study area 

The biomass carbon stock contained in each tree species in the study area was varied from one tree species to 

the other.tree species of Anogeissus leiocarrpa was found to be the first ranked contributor of biomass and 

carbon in the study area. Moreover, Anogeissus leiocarrpa (common name Kirkira) have an above ground 

biomass of5953.20 t/ha and below ground biomass of 1190.64 t/ha. The result showed that tree species of 

Anogeissus leiocarrpa (common name Kirkira), Adansonia digitata (Diza), Diospyros mespiliformis (Serkin) 

Tamarindus indica L (Kumer) and Terminalia browni (Woyiba) had sequestered the largest portion of the total 

(AGC+BGC) with 3215.7 t/ha, 2657.4 t/ha,2165.3 t/ha, 2104.5 t/ha and 1747.2 t/ha respectively. Whereas, 

Ficus sycomorus L. (Bamba), Rhus glutinosa (Embus), Securinega virosa (Roxb.) Baill. (Ashama) and 

Erythrina abyssinica (Quara) were accounted as the least biomass carbon stock reserves of 0.06 t/ha, 0.22 t/ha, 

0.46 t/ha and 0.56 t/ha respectively (Table 2). 

 

 

Table 4 AGB, BGB, AGC and BGC stored in each tree species of the study area. 

Species  AGB(t/ha)  BGB(t/ha)  AGC(t/ha) BGC(t/ha)

Acacia polyacantha Willd.    309.30 61.86 145.37 29.07 

Acacia senegal 95.19 19.04 44.74 8.95 

Acacia seyal Del. 740.38 148.08 347.98 69.60 

Acacia sieberiana Dc. 112.82 22.56 53.03 10.61 

Adansonia digitata 4920.00 984.00 2214.00 442.80 

Albizia amara 37.16 7.43 17.47 3.49 

Albizia malacophylla (A. Rich.)  0.99 0.20 0.47 0.09 

Anogeissus leiocarrpa (A. Rich) 5953.20 1190.64 2678.94 535.79 

Balanites aegyptiaca (L.) Del. 293.89 58.78 138.13 27.63 

Boscia angustifolia A. Rich. 47.35 9.47 22.26 4.45 

Boswellia papyrifera 409.68 81.94 192.55 38.51 

Breonadia salicina 47.48 9.50 22.31 4.46 

Calotropis procera 3.59 0.72 1.69 0.34 

Cobretum adenogonium Steud.ex A.Rich 456.12 91.22 214.38 42.88 

Cobretum Molle 78.76 15.75 37.02 7.40 

Combretum collinum Fresen 992.60 198.52 466.52 93.30 

Dalbergia melanoxylon Guill. & Perr 701.29 140.26 329.61 65.92 

Dichrostachys cinerea 24.63 4.93 11.57 2.31 

Diospyros mespiliformis 4009.80 801.96 1804.41 360.88 

Dombeya Kirikii 2.37 0.47 1.11 0.22 

Erythrina abyssinica 0.99 0.20 0.47 0.09 

Ficus sur  255.07 51.01 119.88 23.98 

Ficus sycomorus L. 0.11 0.02 0.05 0.01 
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Ficus thonningii Blume. 1142.35 228.47 536.91 107.38 

Flueggea virosa Guill. & Perr. 11.59 2.32 5.45 1.09 

Gardenia ternifolia 14.43 2.89 6.78 1.36 

Giramda girar/Gemero 0.81 0.16 0.38 0.08 

Grewia bicolar 7.41 1.48 3.48 0.70 

Grewia mollis 44.94 8.99 21.12 4.22 

Kigelia africana 1146.31 229.26 538.77 107.75 

Lannea fruticosa (Hochst. ex A. Rich) Engl 514.44 102.89 241.79 48.36 

Lannea welwitschii 54.17 10.83 25.46 5.09 

Maytenus senegalensis Forssk 104.07 20.81 48.91 9.78 

Maytenus undata (Thunb.) 1.97 0.39 0.92 0.18 

Opilia campestris 2.44 0.49 1.15 0.23 

Pavonia burchelli 69.12 13.82 32.49 6.50 

Piliostigma thonningii 81.46 16.29 38.29 7.66 

Pterocarpus lucens Guill. & Perr 748.14 149.63 351.63 70.33 

Rhus glutinosa 0.39 0.08 0.18 0.04 

Salix Spp. 6.85 1.37 3.22 0.64 

Securidaca longepedunculata 

Securinega virosa (Roxb.) Baill. 

3.99 

0.81 

0.80 

0.16 

1.88 

0.38 

0.38 

0.08 

Sterculea setigera Del. 774.31 154.86 363.92 72.78 

Stereospermum kunthianum Cham 84.21 16.84 39.58 7.92 

Stereospermum kunthianum Cham 111.29 22.26 52.31 10.46 

Tamarindus indica L. 3897.05 779.41 1753.67 350.73 

Terminalia browni 3234.90 646.98 1455.71 291.14 

Terminalia laxiflora Engl. & Diels 203.22 40.64 95.51 19.10 

Ximenia Americana L. 2.35 0.47 1.11 0.22 

Ziziphus mauritiana 11.47 2.29 5.39 1.08 

Ziziphus spina-christi (L.) Desf. 241.71 48.34 113.60 22.72 

Zuziphus mauritania 25.96 5.19 12.20 2.44 

 

 

3.4 The total carbon stock and climate change mitigation potential of Dirmaga Watershed 

The AGC and BGC of the study area were estimated to be 291.47 and 24.81 t/ha, respectively. Then which 

gave a total carbon stock potential of 316.27 t/ha (Table 2). The carbon pools of above-ground biomass and 

belowground biomass, sequestered 1069.69, and 91.05 t/ha CO2 equivalent, respectively. This reveals that the 

study area has a total global climate change mitigation potential of 1160.74 t/ha CO2 equivalents. 
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Fig. 5 The above ground carbon (t/ha) distribution of Dirmaga Watershed. 

 

 

Based on NDVI estimation the spatial distribution of above ground carbon is presented in the form of map 

in Fig.5. From the map about 25.6% area of the watershed is non vegetated (No vegetation); where as 50.4% 

of the area has an above ground carbon stock value range of 11.25-137.6 t/ha; Similarly, about 19.45% and 

5.55% area of the watershed was covered by above ground carbon range of 137.61-331.35 t/ha and 331.35 -

532.86 t/ha respectively (Fig. 5). 

3.5 The effect of elevation and slope on the above ground carbon stock 

Some study argued that, the forest biomass and carbon are highly disturbed by environmental factors like 

altitude (Alves et al., 2010). However, in this study the correlation between elevation (Digital elevation Model) 

and above ground carbon were found to be negative and very week (r = 0.071; R2 = 0.0058) (Fig. 6). 
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Fig. 6 The response of above ground carbon for elevation change (DEM = digital elevation model). 

 

 

There is a difference in above ground carbon stock along elevation range, Even though the regression and 

correlation was insignificant. Mostly the mid land (750-900) was found to have relatively high amount of 

above ground carbon. More over the correlation between slope and above ground carbon were found to be 

negative and very week (r = 0.085; R2 =0.009) (Fig. 7). 

 

 

 
Fig.7 The effect of slope on the AGC (above ground carbon). 

 

 

4 Conclusion and Recommendation 

Landsat derived NDVIhas a strong correlation with above ground carbon and tried to estimate and map the 

biomass and carbon storages in the woodland. Similarly, the mean tree species of Anogeissus leiocarrpa, 

Adansonia digitata, Diospyros mespiliformis, Tamarindus indica L. and Terminalia browni sequestered the 

largest portion of the carbon stock. On the contrary, Ficus sycomorus L., Rhus glutinosa and Securinega virosa 

were the least contributor of carbon stock. Generally, the woodland in the Dirmaga watershed stored above 

ground carbon ranged from 11.25 -532.86 t/ha based on NDVI prediction. The elevation and slope within the 
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watershed cannot significantly affect the biomass and carbon stock. Having observed the above result the 

application of vegetation indices for woodlands forest biomass and carbon estimation is appreciable but, the 

result is not accurate and further studies should be implemented for improvement. 
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