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Abstract 
Tiru-Selam forest is degraded due to human interventions. Several scholars have studied the carbon stock of 

various forests using combinations of ground inventory and remote sensing imagery without checking the 

correlation between these two carbon stock assessment methods. Thus, the study was conducted to determine the 

carbon stock of Tiru-Selam forest and the correlation of carbon stock estimated by ground inventory and remote 

sensing imagery. The ground inventory data was collected through a systematic random sampling technique 

from 400 m2 of 72 sample plots, while the remote sensing imagery data was collected from the National 

Aeronautics and Space Administration (https://ladsweb.modaps.eosdis.nasa.gov). The moderate resolution 

imaging spectra-radiometer data was acquired with respect to the ground sampling date. Descriptive statistics 

were used to calculate the maximum, minimum, mean, and standard deviation of carbon stock. A linear 

regression model was used to estimate the correlation between ground inventory and remote sensing imagery for 

estimation of carbon stock in Tiru-Selam forest. According to the ground inventory, and the remote sensing 

imagery, the overall mean above-ground and below-ground carbon stock of the study area was estimated to be 

224.6582 and 226.56 t/ha, respectively. The carbon stock estimated by ground inventory had a strong correlation 

with the normalized difference vegetation index (NDVI) (r=0.742, p<0.05) and the enhanced vegetation index 

(EVI) (r=0.69, p<0.05). The generated equations such as "Y" or estimated forest carbon stock = 302.2862 (EVI) 

+ 239.8785(NDVI) + 24.11446 and Y = 301.9871 (EVI) + 237.2546 (NDVI) + 21.4254 have been fitted with 

vegetation indexes at α<0.05. 
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1 Introduction 

Tropical forests are an important source for carbon storage and climate change mitigation. It consists of the 

largest percentage of the world’s forest biomass (FAO, 2011). Globally, it can hold around 80% of the total 

Computational Ecology and Software   
ISSN 2220­721X   
URL: http://www.iaees.org/publications/journals/ces/online­version.asp 
RSS: http://www.iaees.org/publications/journals/ces/rss.xml 
E­mail: ces@iaees.org 
Editor­in­Chief: WenJun Zhang 
Publisher: International Academy of Ecology and Environmental Sciences 



Computational Ecology and Software, 2022, 12(3): 141-153 

 IAEES                                                                                     www.iaees.org

above-ground carbon and 40% of the total below-ground carbon. About 15%–20% of global carbon emissions 

arise from deforestation and forest degradation in the tropics. It releases 60% of the carbon sequestered by 

forests (Gullison et al., 2007). 

Deforestation and forest degradation can result in carbon emissions into the atmosphere, thus affecting the 

global climate and environment as a whole (Hansen et al., 2013). Deforestation accounts for 70% of the total 

greenhouse gas emissions in Africa (FAO, 2005). Ethiopian forest lands have been degraded due to rapid 

population growth, expansion of agricultural lands, and absence of sound management of forests (Moges et al., 

2010), which led to a curve in the forest coverage of Ethiopia from 40 to 11.40% (FAO, 2015). Tiru-Selam 

Forest is one of the leftover dry Afromontane forests found in the northwestern parts of Ethiopia, and it is under 

the administration and management of the Amhara Regional government. Even though it is under management 

and pulling out of the forest is banned, the forest is still facing different troubles and problems, primarily from 

firewood collection, charcoal production, fencing, logging, firing, agricultural expansion, and cattle grazing by 

bordering communities of the forest. As a result, the most precious and imperative local or home-grown tree 

species are being exhausted and depleted in the area, with a corresponding emission of CO2 into the atmosphere 

(Personal Observation, 2010-2020). Thus, the carbon stock assessment of Tiru-selam forest was conducted using 

a combination of ground inventory and remote sensing imagery, which provides logical quantitative data on 

carbon stock, climate change mitigation capacity, and correlation between ground inventory and remote sensing 

imagery for the study forest. 

Nowadays, various approaches can be used for quantifying the carbon stock potential of forests in the global 

world. Among those approaches for estimation techniques of forest carbon stock, tree eco-models, a 

combination of ground measurements and biomass allometries and growth equations, and remote sensing-based 

approaches are the most common (Nowak and Crane, 2000). The most accurate method for estimating forest 

biomass is based on field measurements, but the collection of field measurements is time-consuming and 

labor-intensive, and it is impossible to census large geographic areas (Seidel et al., 2011). Geographic 

Information System (GIS)-based biomass estimation models cannot provide accurate biomass estimation 

because forest biomass often has weak relationships with environmental variables (Chen and Qi, 2013). But, the 

inter-combination of different approaches has good efficiency for quantifying carbon storage and carbon 

sequestration in forests (Rao et al., 2013). 

Previous researchers have studied the carbon stock capacity of different forests using various approaches as 

follows. Vicharnakorn et al. (2014) assessed the carbon stock using remote sensing and forest inventory data in 

Savannakhet. Anurogo et al. (2018) saw a comparative approach to estimating forest aboveground carbon stock 

using advanced remote sensing technologies. Brilli et al. (2019) studied a combination of ground and remote 

sensing data to assess carbon stock changes in the main urban park of Florence. But none of the abovementioned 

researchers had studied the correlation of ground inventory and remote sensing imagery for carbon stock 

assessment on their study area. As a result, this study bridges the gap between the lack of quantitative data on the 

study forest's carbon stock and the gap of the aforementioned researchers. 

 

2 Materials and Methods 

2.1 Description of the study area 

2.1.1 Location and area coverage  

The study area is located in Hulet Eju Enese District, East Gojjam Zone of Amhara Region, North-western 

Ethiopia. It is located about 376 km to the northwest of the capital city of Ethiopia, Addis Ababa. 

Geographically, it is found between 37°44'30"E- 3750'10"E and 11°1'55'N-11°6’10"N (Fig. 1). The elevation 

range of the study area ranges from 1738m-2355m above sea level (masl) (Fig. 1). The area covered by the 
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study forest is estimated to be 1330.25 hectare. 

 

Fig. 1 Map of Tiru-Selam Forest. 

 

 

2.1.2 Climate  

Regarding the gridded figures obtained from the National Meteorological Weather Data (1988–2019), the 

mean maximum and minimum temperatures of the study area were 29.8°C and 13.78°C, respectively. The 

mean annual rainfall was also 1,686 mm (Fig. 2). 

2.1.3 Vegetation types 

Tiru-Selam Forest is composed of different natural tree species. It comprises many plant species, which are 

dominated mainly by Carissa spinarum, Maytenus arbutifolia, Croton macrostachyus, Syzygium guineense, 

Allophylus abssinicus, Schefflera abyssinica, Rosa abyssinica, Dodonaea angustifolia, Albizia schimperiana, 

Ficus sur, Rhus retinorrhoea, Otostegia integrifolia, and Olea europaea subsp cuspidate (Field survey, 2020). 

2.2 Sampling technique 

A systematic random sampling technique was employed to collect the ground inventory data, and the data 

was collected at every 200 meter interval between each sample plot and 300 meter intervals between each 

transect line. Finally, a total of 72 sample quadrants were plotted along the seven transect lines (Fig. 1). 

2.3 Data collection for ground inventory 

The entire trees and shrubs having ≥ 5 cm diameter at breast height (DBH) or diameter at shrub height (DSH) 

were sampled from 20 m × 20 m of sample plots using diameter tape following the methodology employed by 

Pearson et al. (2005). The height of those trees and shrubs was measured by an instrument called a hypsometer. 

Woody plants with several stems were considered and counted as a single tree at breast height, and the largest 
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stem was taken. The botanical names and local names of all trees and shrubs were identified using Bekele's 

(1993) published Flora of Ethiopia and Eritrea. 

 

 

Fig. 2 Climate data of the study area (1988-2019). 

 

 

2.4 Data collection for remote sensing imagery 

The moderate resolution imaging spectra-radiometer (MODIS) vegetation indices were the products of 250 m 

× 250 m spatial resolution. The satellite data of "MYD13Q1.A2021025.h21v07.006.2021042002942" were 

obtained from the National Aeronautics and Space Administration (https://ladsweb.modaps.eosdis.nasa.gov) 

on January 16, 2020. Thus, this was similar to the dates of data collection at the field level. The MODIS 

satellite data acquisition had been considered the ground sampling date. The MYD13Q1 data is generated at 

16-day intervals and at multiple spatial and temporal resolutions, providing consistent spectral vegetation 

indices. 

 

Table 1 Descriptions of satellite datasets used in the study. 

Satellite data MODISMYD13Q1(NDVI, EVI) 

Path/horizontal line number 20 

Row/vertical line number 7 

Spatial Resolution 250 

Years January 2020,and March 2020 

 

2.5 Estimation of biomass and carbon stock capacity of Tiru-Selam Forest using ground inventory  

2.5.1 Estimation of above-ground biomass and above-ground carbon stock  

The above-ground biomass of trees and shrubs within Tiru-Selam forest was calculated using an allometric 

model developed by Chave et al. (2014) as shown below: 
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AGB = 0.0673 × (ߩ DBH2 H) 0.976                                              (1)  

 

where, AGB stands for aboveground tree biomass (kg), DBH stands for diameter of trees at breast height (cm), 

H stands for height of tree (m), ߩ stands for wood density= (0.6 ton/m3), which is the average value of wood 

density of trees in Africa (Henry et al., 2010). The above-ground carbon stock and above-ground biomass 

carbon dioxide equivalent of trees and shrubs within the study forest were calculated by following the 

methodology used by Pearson et al. (2005) and Pearson et al. (2007) as shown below. 

 

Above-ground carbon stock (AGC) = above ground biomass × 50%     (2) 

 

The above-ground biomass CO2 equivalent  

 

AGBCO2 eq = AGC × 3.67                                     (3) 

 

which is the molecular mass ratio of carbon dioxide to carbon.                                     

2.5.2 Estimation of below- ground biomass and below- ground carbon stock 

Below-ground biomass of trees and shrubs within the study forest was designed and determined by using 

root-shoot proportions of trees and shrub biomass, in which below-ground biomass of trees is 20% of the 

above-ground biomass of trees as suggested by MacDicken (1997). Below-ground carbon stock of trees and 

shrubs (BGC) within the study forest was estimated by multiplying below-ground biomass by 50%, following 

the methodology employed by Pearson et al. (2007). The quantity of below-ground biomass CO2 equivalent 

(BGB CO2 eq) found in the study forest was calculated by multiplying BGC with the molecular mass ratio of 

carbon dioxide to carbon (44/12) as recommended by Pearson et al. (2007). 

2.5.3 Estimation of carbon stock in Tiru-Selam Forest using remote sensing imagery  

The values of the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) were 

extracted from the MODIS data to estimate the carbon stock of the study forest using remote sensing imagery. 

The exact geographic coordinates of the sampling plots were obtained with the help of a geographical 

positioning system (GPS). Ground truth points were imported to generate vector data points in the Arc GIS 

environment, and the resulting vector data points were overlaid on the NDVI and EVI products to extract the 

NDVI and EVI values. The extracted NDVI and EVI values were regressed with the value of carbon stock 

estimated by ground inventory. To obtain the pixel values associated with the carbon stock of the forest, the 

NDVI equation was used as follows: 

 

ܫܸܦܰ                   ൌ
ேூோିோ௘ௗ

ேூோାோ௘ௗ
                              (4) 

 

where, NDVI = Normalized Difference Vegetation Index, NIR = Near Infrared Band, Red = Red Band. The 

EVI index equation was utilized to compare the indexes distribution values for the research area as it suggested 

by Huete et al. (1999) as the following: 

 

ܫܸܧ                   ൌ 2.5 כ
ሺேூோିோ௘ௗሻ

ሺேூோା஼ଵ௫ோ௘ௗି஼ଶ௫஻௟௨௘ା௅
                                   (5) 
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EVI = Enhanced Vegetation Index, NIR = Near Infrared Band, Red = Red Band, Blue = Blue Band, C1 = values 

as coefficients for atmospheric resistance Value 6, C2 = values as coefficients for atmospheric resistance value 7, 

L = the value to adjust for the canopy background. The correlations of ground inventory and NDVI & EVI values 

were calculated by the linear regression equation: y = a + bx.   

The values of "a" and "b" have been calculated by using the following formula, employed by Pandey et al. 

(2019). y = Carbon value, x = NDVI value, b = coefficient and a = intercept and then, the correlation analysis is 

calculated using Pearson correlation test equation. Carbon stock map at pixel level was prepared using the best 

fit regression analysis using EVI and NDVI data. The forest carbon stock map was prepared by taking the 

average values of a, b and c coefficient values of equations and the smaller root mean square error (RMSE) of the 

best fitted regression analysis in the study site. The estimated carbon stock was validated using the carbon stock 

estimated by ground inventory to assess the accuracy of the model (approach). Regression coefficients and 

goodness of fit statistics (R2 and RMSE) have been prepared to check the accuracy of the model. 

2.6 Statistical analysis 

Descriptive statistics were used to calculate the maximum, minimum, mean, and standard deviation of carbon 

stock estimated by the method of ground inventory. Linear regression was used to estimate the correlation of 

carbon stock estimated by ground inventory and remote sensing imagery. 

 

3 Results and Discussion 

3.1 Carbon stock of Tiru-Selam Forest using the ground inventory method 

According to the data obtained through ground inventory, the overall mean minimum and mean maximum 

above ground and below ground carbon stock of the study forest was estimated to be 9.41 (sample plot 40) and 

351.41 t/ha (sample plot 28) respectively (Fig. 3). The variation of carbon stock among 72 sample plots could 

be due to the variation in height & DBH of trees and height & DSH of shrubs in the study forest. The overall 

mean above ground and below ground carbon stock of the study area was estimated to be 224.6582±63.00985 

t/ha, which sequestered 824.4956±231.2461 t/ha CO2 equivalent (Fig. 3). The overall mean above ground and 

below ground carbon stock of Tiru-Selam forest estimated by ground inventory (224.6582 t/ha) was lower than 

the overall mean above ground and below ground carbon stock of Banja forest (450.46 t/ha) (Abere et al. 

2017), Sekele-Mariam forest (435.27 t/ha) (Ewunetie et al., 2021) and Dirmaga Watershed (316.27 

t/ha)(Marelign and Melese, 2022). It also greater than the overall mean above-ground and below-ground 

carbon stock of Humbo forest (158.65 t/ha)(Chinasho et al., 2015) and Behertsige central closed park in Addis 

Ababa (30.5 t/ha)( Tefera and Soromessa, 2015). The carbon stock variation among the aforesaid areas could 

be due to the difference in climatic conditions and the corresponding height & DBH class of trees. 

3.2 Values of NDVI and EVI for sample plots in the study area 

The minimum and maximum NDVI values of sample plots in the study area were estimated to be 0.040182 

(sample plot 67) and 0.719587 (sample plot 63), respectively (Fig. 4). The minimum and maximum EVI values 

of sample plots in the study area were estimated to be 0.022069 (sample plot 67) and 0.487408 (sample plot 64), 

respectively (Fig. 4). The mean NDVI value in the sample plot of the study forest was also estimated to be 

0.47261±0.160268. 

The variation of EVI and NDVI within the sample plot of the study area could be due to the difference in 

land use land cover and vegetation status of sample plots. 
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Fig. 3 Over all mean AGC and BGC & CO2 equivalent in the sample plot of the study area. 

 

 

Fig. 4 NDVI and EVI values of sample plots in the study area. 

 

 

3.3 Carbon stock of Tiru-Selam Forest using remote sensing imagery 

3.3.1 The spatial distribution of NDVI and EVI in the study forest 

According to the remote sensing data, the minimum and the maximum normalized deference vegetation index of 

the study area were estimated to be -15.8582 and 0.822843, respectively (Fig. 5). The negative value of NDVI in 

the study forest refers to forest areas with water surfaces, manmade structures, rocks, and clouds, while the 
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maximum vegetation index, particularly above 0.6, indicates the dense vegetation part of the study forest. The 

moderate value of NDVI (0.2-0.3) also refers to forest areas with shrubs and grassland. Moreover, the values of 

NDVI indicate the amount of chlorophyll content present in vegetation, where a higher NDVI value indicates 

dense and healthy vegetation, and a lower value indicates sparse vegetation or bare soil. Thus, regions assigned 

higher NDVI values are because of relatively higher reflectance values in the NIR and lower in the red band to 

monitor vegetation health, changes, types, amounts, and conditions (Pandey et al., 2019). The NDVI indicates 

the photosynthetically active radiation for vegetation that is strongly affected by climatic conditions and 

surrounding factors such as soil and geomorphology, as well as physico-chemical characteristics of the plant and 

leaf texture (Rani et al., 2018). It combines the near-infrared reflectance and red channels into a single band 

image with values ranging from 1 to +1. 

According to the spatial distribution of the enhanced vegetation index, the minimum and maximum 

enhanced vegetation index was estimated to be -0.0243974 and 0.647374, respectively (Fig. 5). The EVI of a 

forest is similar to the NDVI, which can be used to assess vegetation greenness. Accordingly, the maximum and 

moderate values of EVI indicate dense vegetation and shrub land or grass land, respectively. The negative value 

of EVI indicates the water bodies and rock surfaces of the study forest. 

Fig. 5 Spatial distribution of NDVI and EVI. 

 

3.3.2 Spatial distribution of carbon stocks using remote sensing imagery  

According to the collected remote sensing data since January 2020 and March 2020, the minimum and 

maximum carbon stock potential of Tiru-Selam forest were estimated to be zero and 411.856 t/ha, respectively. 

According to the satellite data, the mean carbon stock of the study forest was estimated to be 226.56 t/ha. The 

zero t/ha carbon stock refers to the part of the study area that had no annual grass and vegetation cover. The 

vegetation cover of the study forest was different in the two seasons (January and March) (Fig. 6).  
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The temporal and spatial variation in the distribution of carbon stock in the study area could be due to the 

effect of rainfall. According to the field observation of the authors from 2018–2020, the study area had gotten 

rainfall starting from the beginning of March, and the annual grasses are being grown. According to the overall 

spatial distribution map of the study area (Fig. 7), the largest area coverage of the study forest (684.21 ha) had 

relatively medium carbon stock, which ranges from 150.01-300 t/ha, with an area coverage of 51.43% (Table 1). 

On the contrary the least area coverage of the study forest was occupied by relatively high carbon stock 

(300.01-411 t/ha), which covered 5.32% of the study area (Table 2). 

Fig. 6 Spatial distribution of carbon stock (t/ha).

Fig. 7 Over all spatial distribution of carbon stock (t/ha). 
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Table 2 Area coverage (ha & %) of carbon stock classes in the study forest. 

Carbon Stock Class Area(ha) Area (%) 

No Vegetation 341.2 25.65 

69-150(t/ha) 234.09 17.6 

150.01-3009(t/ha) 684.21 51.43 

300.01-411(t/ha) 70.75 5.32 

Mean carbon stock =226.56t/ha Total area=1330.25 Total area=100 

 

 

Fig. 8 Linear regression between carbon stock estimated by ground inventory and NDVI. 

 

 

3.4 Development of regression models  

The mean carbon stock of the Tiru-Selam forest estimated by ground inventory was estimated to be 

224.6582±63.00985 t/ha and the NDVI value of the study forest ranged from -15.8582 to 0.822843 (Fig. 5). The 

EVI of the study area also ranged from-0.0243974 to 0.647374 (Fig. 5). The amount of carbon stock estimated 

by ground inventory had a strong correlation with the NDVI of the study area (r = 0.742; p<0.05) (Fig. 8). The 

carbon stock estimated by ground inventory had a strong correlation with the EVI of the study area (r = 0.69; 

p<0.05) (Fig. 9). The linear regression model between carbon stock estimated by ground inventory and NDVI 

had generated an equation: y = 135.39x + 45.253 at p<0.05, where y = estimated forest carbon stock, 135.39 and 

45.253 are regression coefficients, and x is the NDVI value (Fig. 8). Similarly, another regression model 

y = 351.39x + 45.253
R² = 0.551 r=0.742 RMSE=42.74
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between the carbon stock estimated by ground inventory and EVI has generated an equation: y = 595.69x + 

69.144, at p<0.05, where y = predicted forest carbon stock, 595.69 and 69.144 are regression coefficients, and x 

is the EVI value (Fig. 9). 

 

 

Fig. 9 Linear regression between carbon stock estimated by ground inventory and EVI. 

 

 

3.5 Goodness of fit statistics for the model developed from vegetation indices  

The study considered the effectiveness of MODIS vegetation indices for estimating carbon stock using a best-fit 

regression model. The spatial distribution of NDVI shows a large area is covered by vegetation (Fig. 5), which 

reflects the distribution of healthy and dense vegetation in the study area. Most of the areas had higher EVI and 

NDVI values (Fig. 5), which indicates that EVI and NDVI are correlated. The value of R2 was estimated to be 

0.6185 (p=0.0001) for equation Y = 302.2862(EVI) + 239.8785(NDVI) + 24.11446 and the data fit the 

regression model (Table 3). The value of R2 was estimated to be 0.605 (p=0.0001) for equation Y = 

301.9871(EVI) + 237.2546(NDVI) + 21.4254) (Table 3). This revealed that the model is predictive under the 

conditions of its intended use. 

 

 

Table 3 Generated equations and goodness of fit statistics for the model developed from vegetation indices. 

 

 

y = 595.69x + 69.144
R² = 0.4776 r=0.691 RMSE=46.11
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Model Calibration Y=302.2862 (EVI)+239.8785 (NDVI)+24.11446 0.39 0.6185 0.0001 

Model Validation Y=301.9871 (EVI)+237.2546 (NDVI)+21.4254 0.42 0.605 0.0001 
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4 Conclusion 

Ground inventory and satellite imagery are widely used for the reliable estimation of forest carbon stock. 

According to the ground inventory and remote sensing imagery, the overall mean above-ground and 

below-ground carbon stock of the study area was estimated to be 224.6582 and 226.56t/ha, respectively. The 

carbon stock estimated by ground inventory was strongly correlated with NDVI (r = 0.742, p<0.05) and EVI (r = 

0.69, p<0.05). The developed equations, such as Y = 302.2862(EVI) + 239.8785(NDVI) + 24.11446 and Y = 

301.9871(EVI) + 237.2546(NDVI) + 21.4254, had good fitness with the MODIS data at α=0.05. 
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