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Abstract 

Forests are the potential source for managing carbon sequestration and balancing universal carbon equilibrium 

between sources and sinks. In view of the importance of biomass, this study makes an attempt to estimate 

temporal and spatial carbon stock of Godebie National Park, Ethiopia, using Moderate Resolution Imaging 

Spectro radiometer (MODIS), normalized difference vegetation index (NDVI), enhanced vegetation index 

(EVI) and the field inventory data through geospatial techniques. A model was developed for establishing the 

relationship between forest carbon, EVI, and NDVI in the selected study site. The correlation value between 

estimated carbon stock with EVI were found as 0.69, while with NDVI, the values were obtained as 0.87 

respectively. The regression model of measured biomass with NDVI and EVI was developed for the data 

obtained during the period 2020-2021. The R2 values obtained were 0.81 for the regression model between 

estimated carbon stock and EVI, and 0.77 for the regression model between NDVI and estimated carbon stock. 

The results indicate that the methodology adopted in this study can help in selecting best fit model for 

analyzing relationship between carbon stock and NDVI/EVI and for estimating biomass and carbon stock 

using allometric equation at various spatial scales. The produced output map and allometric equation revealed 

carbon stock distribution of 5.88 t/ha up to 900 t/ha, with an average value of 406.67. Generally, the 

approaches used on this study can be used by the forest planners, policy makers, and government officials for 

conservation and protection of the forest ecosystem. 
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1 Introduction 

Climate change has been proven by scientific data and unmistakably recognized as a global issue of concern 

by the global community. The combustion of fossil fuels, and hence the destruction of forests, has led heat-

trapping Green House Gases (GHGs) to increase greatly in our atmosphere since the industrial revolution, at a 

rate and magnitude far greater than natural variations would suggest. The Earth's surface average temperature 

will climb by 1.8 to 4°C by the end of the century if GHG concentrations in the atmosphere continue to rise. 

(IPCC, 2007a). Thus, the rapid increase in global surface temperature is especially because of the increase 

within the amount of CO2 within the atmosphere primarily because of anthropogenic activities (Broadmeadow 

and Robert, 2003). As a result of change in global climate there has been a widespread and growing concern 

that has led to extensive international discussions and negotiations. In seeking solutions for this, the 

overwhelming priority is to scale back emissions of GHGs and to increase rates of carbon sequestration. The 

concerns have led to efforts of reducing emissions of GHGs, especially CO2, and measuring carbon absorbed 

by and stored in forests, soils, and oceans. To hamper the increase of GHGs concentrations within the 

atmosphere, and thus possible climate change, is to increase the amount of carbon removed by and stored in 

forests (IPCC, 2007b; Jandl et al., 2006). 

As a natural solution, the role of trees and forests within the process of carbon cycle is sort of significant 

because it stores more carbon among the terrestrial ecosystems (Sundquist et al., 2008; van Deusen, 2010). 

This may make forest ecosystems to be the most significant terrestrial carbon sink on the planet. Protected 

areas (National parks), with their all and diverse ecosystems including forests are vital systems to to trap and 

store carbon from the atmosphere, as well as to assist people and ecosystems in adapting to the effects of 

global warming (MacKinnon et al., 2011).  

Ethiopia, being party to the United Nations Environmental Program and signatory to its treaties and 

protocols, is striving to contribute to the international effort of global climate change adaptation and mitigation. 

It’s adjusted its development strategy aiming at meeting net zero emissions by 2030 and developed climate 

resilient green economy (CRGE) strategy. Conserving and enriching existing forests, establishing new forests, 

enhancing of the prevailing protected areas and establishing new ones are a number of the measures 

undertaken by the government.  

However, huge deforestation is taken place within the national park of Ethiopia for the aim of investments 

and finding of fuel wood by the local communities. This Park (Godebie National Park) should require 

sustainable management plan for the carbon storage sustainably and conserve the biodiversity. It has no 

information about the carbon potential of Godebie Park for further perform research or financing by carbon 

trading consistent with REDD+ mechanism (Ewunetie, 2021). The role of forests to capture and store carbon 

from the atmosphere has been studied by several researchers (Girma et al., 2014; Simegn et al., 2014; Assaye, 

2016; Andargie et al., 2018). However, these studies were done through field inventory based allometric 

equation or non-destructive sampling method and difficult to use on a large-scale area. 

Remote sensing techniques help in the forest biomass and carbon estimation and it has an excellent 

advantage for acquiring ground data at multiple scales with a synoptic and temporal coverage at species level 

(Kerr and Ostrovsky, 2003; Pandey et al. 2019). Spatial biomass is often estimated through regression analysis 

between estimated biomass and spectral reflectance of varied bands of remotely sensed datasets. However, it 

remains a challenge to determine the correlation due to the complexity of canopy characteristics, landscape 

heterogeneity, and the uncertainty of remote sensing information (Lu et al., 2016; Li et al., 2023). 

This study makes an effort to estimate forest carbon in Godebie National Park Forest using field inventory 

data and geospatial techniques. The linear and nonlinear algorithms for carbon estimation using MODIS 

products were developed and performance assessment of the developed models using different statistical 
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measures was performed. Moreover, through this study, a summary on the present situation of forest carbon 

(above and below ground carbon), Normalized difference vegetation index (NDVI), enhanced vegetation index 

(EVI), and their correlation were presented and discussed. 

 

2 Materials and Methods 

2.1 Description of the study area 

Godebie national park is found in West Armachiho District of West Gondar Administrative Zone, in Amhara 

National Regional state, North West, Ethiopia. Godebie national park is bordered with six rural kebeles from 

West Armachiho and Metema districts. Godebie National Park is part of the Dirmaga watershed (Marelign and 

Mekonen, 2022). Geographically, it is located on 13012'20.51'' to 13023'18.10'' N and 36013'56.73'' to 

36028'04.63'' East (Fig. 1) with an altitudinal range of 718 m to 1229 m above sea level. 

 

 

Fig. 1 Map of the study area. 

 

 

According to the information obtained from west Armachiho office of Agriculture, Godebie National Park 

Forest is situated under ‘Kolla’ agro ecological zones. The area is hotter throughout the year having annual 

temperature range of 38-48°C and the area receives 600-1100mm annual rainfall stayed from June – August 

(NMA, 2007). The temperatures range from 15.1°C to 40°C with mean annual temperature of 27.1°C. Interms 

of topography, about half (54.5%) of the study area is plain and the remaining area were (45.5%) slopy area. 

The major soil types of the area are Eutric nitisols, Chromic vertisol, and Orthic luvisols. The Park is home of 

different mammals and bird’s species. Based on vegetation classification of Ethiopia (Friis and van, 2010). 

Godebie National Park Forest communities are broadly categorized as Combretum-Terminalia woodland and 
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wooded grassland with Terminalia brownii, Anogeissus leiocarrpa and Dalbergia melanoxylon as frequent 

species; Acacia-Commiphora woodland and bushland proper with dominant Acacia seyal, Acacia polycantha 

and Balanites aegyptiaca species; and riparian/riverine forest with Adansonia digitata, Diospyros 

mespiliformis and Tamarindus indica as dominant species.  

2.2 Field inventory–based carbon estimation 

The development of field inventory was carried out for the study sites in the months of January and February 

during the years 2020-2021. Prior knowledge of the biophysical parameter of vegetation gathered during field 

surveys is an important component for studying the region using remote sensing analysis. A total of 44 plots 

were laid in a forest area of Godebie National Park, North West Ethiopia, over two years, with a one-hectare 

permanent plot (100 m x 100 m) established in each of the 44 sites and sub-gridded into 5 sub-plots of size 100 

(10 m x 10 m) (Pandey et al., 2019) quadrats for forest inventories to quantify the physical parameters (Fig. 2). 

Systematic sampling was employed for vegetation data collection to ensure that sufficient representative 

samples of vegetation from all gradient levels (Kent, 2012). Following the procedure used in (Senbeta and 

Teketay, 2001; Fisaha et al., 2013). Five transect lines were laid in the forest following vegetation distribution 

that may include the Combretum-Terminalia woodland community, the Acacia-Commiphora woodland, and 

bushland community, and the Riparian ̸ riverine vegetation community following the methodology used by 

(Temesgen 2020). Based on the above principles 44 square sample quadrats with a size of 10 m x 10 m were 

laid down alternatively along the line transects at 500 m intervals along the linear transects using GPS and 

Compass.  

Carbon in the AGB was assessed through measurement of standing trees and shrubs using proper 

mensuration techniques. DBH and height of trees were measured according to their size class in the respective 

subplots. Therefore, species type, diameter at breast height (DBH) and height of trees (H) were the interest of 

measurement for trees. GPS was used to identify the location of plots. DBH was measured with 

caliper/diameter tape depending on the size of the tree. Tree height was measured using haga hypsometer, and 

slope was measured with suunto clinometer to adjust the size of the plots to proper size. Natural Database for 

Africa (NDA) virsion 2.0, August 2011 CD-Rom was also used for species identification. For species that was 

difficult to identify in the field, their local names were recorded, herbarium specimens were collected, pressed 

and dried properly using plant presses and identified in the office helped by botanists. 

 

 
Fig. 2 Field sample location points for the study site (left) and Field sampling plot size (right). 
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Carbon stock has been assessed in above and below ground carbon pools, which is in accordance with the 

methodology adopted (Ewnetie et al., 2021). Hence, the major activities of carbon measurement during the 

field data collection were focused on above-ground biomass and below-ground biomass. 

Carbon stock assessments in Africa are highly variable and have high degree of uncertainty due to lack of 

consistency in techniques of inventory and lack of site and species specific allometric equations. There are few 

species specific allometric equations developed in Africa, and most of the carbon stock assessments used 

general allometric equations. but this causes the high degree of variability in site growth conditions and growth 

characteristics of species as well as it cannot estimate the correct biomass and carbon. Therefore, Species-

specific allometric equations are very important and, in this regard, there are allometric models (Andargie et al., 

2018) which are appropriate for improving aboveground biomass (AGB) and carbon (AGC) estimations in 

woodland ecosystems in Ethiopia and near to study area in Particular. Thus, this study used the following 

equation developed by Andargie et al. (2018) as follows: 

 

lnሺܤܩܣሻ ൌ െ2.965 ൅ 1.820 lnሺܪܤܦሻ ൅ 1.157ln ሺܪሻ………………………………(1) 

 

where H is total height; DBH is diameter at breast height; AGB is aboveground biomass; and ln is natural 

logarithm. The above-ground carbon (AGC) and above-ground biomass CO2 equivalent (AGB CO2 eq) 

sequestrated in the study area was calculated by the principles of (Pearson, 2005) as follows: 

 

ܥܩܣ ൌ ܤܩܣ כ 0.5ሻ…………………………………………..……………………..…(2) 

ݍ2ܱ݁ܥ ܤܩܣ ൌ  ܥܩܣ ൈ  3.67.…………………………………………………………(3) 

 

According to (Pearson, 2005; MacDicken, 1997), standard methods of estimating belowground biomass (BGB) 

and belowground carbon (BGC) can be obtained as 20% (AGB*0.2) and 10% (AGC*0.5) of above-ground 

tree biomass, respectively.  

The total carbon stock density of the study area was calculated using the equation of (Subedi et al., 2010) 

by summing up the carbon stock densities of the individual carbon pools of the study area: 

 

ܥܶ ൌ  ܥܩܣ ൅  (4)………..….…………………………………………………….  ܥܩܤ 

 

Where TC = carbon stock density for all carbon pools (t/ha), AGC = carbon in above-ground tree and shrub 

biomass (t/ha), BGC = carbon in below-ground tree and shrub biomass (t/ha),  

2.3 Satellite image based forest carbon estimation 

2.3.1 Satellite data sources and acquisition 

The present study has utilized Moderate Resolution Imaging Spectroradiometer (MODIS) data: MYD13Q1 for 

the analysis of vegetation. The satellite data of Godebie National Park is acquired from National Aeronautics 

and Space Administration (available at https://earthdata.nasa.gov/). The MODIS satellite data is acquired in 

respect to the ground sampling date. The MYD13Q1 data is generated on 16-day intervals and at multiple 

spatial and temporal resolutions providing consistent spectral vegetation indices (Table 1). 

This section deals with the NDVI, EVI, and their estimation using the MODIS datasets. The description of 

the satellite datasets along with the scale factor for NDVI and EVI has been provided 0.0001 (Myneni et al., 

2003). NDVI is considered as one of the most preferred spectral indices to differentiate vegetated regions from 

non-vegetated regions (Tucker, 1979). The NDVI is a term which indicates the photosynthetically active 

radiation for vegetation (Rani et al., 2018). That is strongly affected by climatic conditions, and surrounding 
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2.3.2 Forest carbon estimation 

To estimate the forest carbon, primarily, the NDVI and EVI values were extracted from the MODIS data. The 

exact geographic coordinates of the sampling plots were obtained with the help of GPS. Ground truth points 

were imported to generate vector data (point) in Arc GIS environment and the resulting vector data was 

overlaid on the NDVI and EVI products to extract the NDVI and EVI values. The extracted NDVI and EVI 

values were regressed with the field measured forest carbon values for statistical analysis. The linear equation 

thus obtained was used to generate the final estimated biomass map of the area. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Schematic Methodology adopted for this study. 

 

The linear regression model between field measured forest carbon and NDVI generated an equation: y = 

1349.5x - 204.24, at p < 0.05, where y = estimated forest carbon, 1349.5 and 204.24 are regression coefficients, 

and x is NDVI value. Similarly, other regression model between field measured forest carbon and EVI 

generated an equation: y = 3864.2x – 339.21, at p < 0.05, where y = predicted forest carbon, 3864.2 and 

339.21 are regression coefficients, and x is EVI value. The regression models include field-based forest carbon 

measurements, NDVI and EVI values, to develop the equations. The derived equation is then utilized to 

estimate vegetation carbon. After that, estimated forest carbon and measured forest carbon are compared to 

each other. Vegetation carbon of each year (2020-2021) was generated from the MODIS datasets. Additionally, 
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in this study, the specific vegetation inventory was conducted for the mentioned period and the similar time 

period satellite datasets were employed to derive the forest biomass in order to maintain the consistency in the 

spatial as well as temporal datasets. This enables to have field and satellite-derived forest carbon for 

comparison and validation. This also provides a comparable idea of the spatial distribution of forest carbon 

over the study site. 

 

3 Results and Discussion 

This study makes an effort to estimate forest biomass in Godebie National Park using field inventory data and 

satellite data based geospatial techniques. Models were developed for establishing the relationship between 

vegetation indices (NDVI and EVI) and field inventory-based forest carbon.  

3.1 NDVI and EVI derived from the satellite dataset 

NDVI map generated using satellite data is shown in Fig. 3, while the final EVI map generated values ranges 

from 0.09 (low) to 0.35 (high) as shown in Fig. 3. The relationship between estimated forest carbon (AGC & 

BGC) with EVI is found to be 0.81 and 0.74 for the years 2020 and 2021 respectively, while for forest carbon 

(AGC & BGC) and NDVI, R2 values were found to be 0.776 and 0.679 for the year 2020 and 2021 

respectively. 

3.2 Field inventory-based biomass and carbon stock  

The average above ground biomass of the trees measured during the field survey is found to be 721.048 t/ha 

(Table 2), while spatial variation of biomass value over different locations varies from 10.429 to 1530.851 t/ha. 

Based on field data and allometric equation, the maximum and minimum above-ground carbon of the study 

area was found to be 719.5 and 4.902t/ha respectively. Similarly, the maximum and minimum below-ground 

carbon was also 180.50 and 0.98 t/ha (Table 2). The mean above-ground and below ground carbon stock in 

trees and shrub species of the study area was estimated to be 338.893±4.5 t/ha and 67.779±2.5 t/ha, 

respectively. Accordingly, a mean of 1904.07 t/ha CO2eq was sequestrated in the above-ground and below 

ground biomass of trees and shrubs of the study area. 

 

 

Table 2 Descriptive statistics of above and below ground biomass, carbon stock and carbon dioxide equivalent. 

 Above ground Below ground 

 AGB(t/ha) AGC(t/ha) CO2 eq(t/ha) BGB(t/ha) BGC(t/ha) CO2 eq(t/ha) 

N of plots 44 44 44 44 44 44 

Mean 721.048 338.893 1243.735 144.210 67.779 248.747 

Max 1530.851 719.5 2638.406 384.043 180.50 661.89 

Min 10.429 4.902 17.989 2.086 0.980 3.598 

Median 129.781 60.997 223.859 25.956 12.199 44.772 

 

 

Table 3 Average value of above and below ground carbon and carbon dioxide equivalent. 

 AGC BGC Total Carbon 

Mean Carbon (t/ha) 338.89±6.5 

 

67.78±2.3 406.67±4.2 

Mean CO2 eq (t/ha) 1243.74±12.99 248.747±4.75 1904.068±8.74 
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3.3 Regression models for estimated forest carbon using NDVI and EVI 

The field-estimated carbon (AGC & BGC) value ranges from 5.88 t/ha to 900.0 t/ha (Table 2) while the 

average carbon (AGC & BGC) is 406.67 t/ha (Table 3). EVI value ranging from 0.09 to 0.35 is obtained from 

satellite data; the correlation (r = 0.87) between estimated carbon and NDVI is generated with the R2 value of 

0.77. Similarly, the relationship between EVI and estimated carbon is statistically correlated (r = 0.69) with R2 

value of 0.81 as shown in Figure 5. Carbon stock map at pixel level was prepared using the best fit regression 

analysis using EVI and NDVI data. Forest carbon stock map was prepared by taking the average values of a, b, 

and c coefficient values of equations and smaller root mean square error (RMSE) of best fitted regression 

analysis in the study site. 

 

 
Fig. 5 Linear regression between NDVI and estimated carbon (a) and relationship between enhanced vegetation index (EVI) and 
estimated carbon (b). 

 

 

Estimated carbon stock was validated using field measured carbon stock values in 2021 G.C to assess the 

accuracy of the model. Regression coefficients and root mean square error for EVI (R2 = 0.815 and RMSE 

=315.89) and for NDVI (R2 = 0.776 and RMSE =178.83) are presented in Table 4. The graphical 

representation of the relationship obtained is shown in Figure 6 for the period of January 2020, January 2021 

and February 2021. NDVI and forest carbon were taken as independent and dependent variables in the linear 

regression model, respectively. 

This finding also tried to contributes to assess the performance of MODIS vegetation indices (NDVI and 

EVI) for estimating carbon stock using best fit regression model. The spatial distribution of NDVI shows a 

significant good amount of area is under vegetation cover; NDVI value reflects the distribution of healthy and 

dense vegetation in the study area. Most of the areas are having higher EVI and NDVI values (Fig. 2), which 

indicates that EVI and NDVI are correlated. Similarly, the correlation between estimated carbon with EVI was 

obtained as 0.69, while the correlation with NDVI was found to be 0.87 respectively. 
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Table 4 Equations and goodness of fit statistics for the model developed from vegetation indices. 

 Model Coefficient R2 RMSE sig 

NDVI Y=1349.5(NDVI)-204.24 1349.5 0.7761 178.83 0.0001

EVI Y=3864.2(EVI)-339.21 3864.2 0.815 315.69 0.0002

Y represents forest carbon (above and below ground carbon). 

 

 

 
Fig. 6 Spatial carbon distribution map of Godebie National Park (2020-2021). 

 

 

Generally satellite particularly MODIS based vegetation indices were significant in estimating the above 

ground forest biomass and carbon stocks. Study conducted by Gashu and Marelign (2022) revealed that 

MODIS Derived NDVI and EVI showed good performance for the estimation of Above ground biomass and 

carbon stock of Tru-Selam forest in central Ethiopia. Similarly, Marelign and Mekonen (2022) investigated 

that NDVI drived from Landsat 8 revealed good performance with R2 and RMSE value of 0.7459 and 24.33 

respectively for estimating woodland above ground carbon in Dirmaga Watershed. 
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Fig. 7 Spatial distribution of average carbon during 2020-2021. 

 

 

The forest carbon results indicated that the average vegetation biomass in Godebie National Park is 406.67 

t/ha. Temporal spatial distribution of the forest carbon in Godebie National Park is shown in Fig. 6 and the 

average forest carbon is shown in Figure 7. This map revealed the presence of maximum forest carbon in the 

middle part and southern part of the study area. 

3.4 The total carbon stock and climate change mitigation potential of Godebie National Park 

The total mean carbon stock potential of Godebie National Park was calculated by summing up all the carbon 

Pools of the study area namely: The average AGC and BGC was 338.893 and 67.779 t/ha, respectively. Which 

gave a total carbon stock potential of 406.67 t/ha (Table 2). The carbon pools of above-ground biomass and 

belowground biomass, had a capacity of removing 2835.519 and 567.104 t/ha CO2 equivalent, respectively, 

with a total global climate change mitigation potential of 2276.83 t/ha CO2 equivalents (Table 3). 

 

4 Conclusion and Recommendation 

Remote sensing and geospatial technology are widely used for reliable estimation of vegetation carbon and 

biomass over a large-scale region. The estimation of aboveground carbon can be obtained by satellite data and 

regression modeling. The relationship of MODIS NDVI and EVI with the estimated forest carbon was 

statistically significant with R2 value of 0.77 and 0.81 respectively. Based on the field inventory and MODIS 

NDVI and EVI estimation, the average carbon of the study area is 406.67 t/ha with a carbon dioxide 

sequestration potential of 1904.07 t/ha CO2 equivalent. Therefore, the findings of this study showed that the 

remote sensing technology integrated with field inventory can be used for AGB and AGC estimation and thus 

valuable for forest monitoring and management of a large spatial region. Generally, the methods implemented 

in this study can be used by the forest planners, policy makers, and government officials for conservation and 

protection of the forest ecosystem and effective management of the Godebie National Park Forest. 
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