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Abstract 

Manual analysis of large amount of wildlife image data collected through camera-trapping is time consuming, 

expensive, prone to errors and bias, and laborious. It also constrains geographical area, size and duration of 

wildlife studies, and delays decision making. Recent advancements in deep learning (DL) have provided 

promising solutions for automating such analyses, and addressed many such drawbacks. However, the 

existence of many object detectors with varied performance on different datasets may complicate the choice of 

appropriate object detector for a particular task. This study deployed experimental approach to achieve two 

goals; firstly, to compare predictive performance and processing speed of Faster R-CNN and single shot 

multibox detector (SSD) across four feature extractors namely ResNet50, ResNet101, ResNet152 and 

Inception ResNet on MS COCO, vis-à-vis their performance on camera-trap image dataset (CTID) with 

11,019 images. Secondly, to assess and compare performance of the same object detectors when trained on the 

same CTID. We found that object detectors demonstrate a smaller range in mean average precision (mAP) of 

2.72% in our CTID than in MS COCO dataset (8.4%) and that detectors’ performance on MS COCO and 

CTID does not match. We also found that all detectors attained similar predictive performance (accuracy) for 

each animal class on CTID, and that they all performed well in detecting hyena, giraffe, warthog, lion, and 

guineafowl, but poorly on baboon, buffalo and wildebeest. Lastly, detectors performed better on some small-

bodied species like guineafowl and hartebeest than on large-bodied species like zebra and elephant, 

respectively, despite the large-bodied species having more training data than small-bodied ones. Similarly, all 

object detectors performed poorly on zebra with the largest training data (1351 images) than on hyena (931), 

giraffe (920), warthog (979), lion (862), guineafowl (931), hartebeest (479) and elephant (744). Similarly, 

elephant was outperformed on hartebeest by all detectors. 
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1 Introduction 

Camera-trapping is increasingly being deployed in many research projects studying populations, behaviours, 

ecological roles of wildlife animals in ecosystems as well as protection of endangered wildlife animals 

(Bowley et al., 2018; Chen et al., 2015; LeBien et al., 2020; Norouzzadeh et al., 2018, 2021; Schneider et al., 

2018; Tabak et al., 2019; Torney et al., 2019; Valletta et al., 2017; Weinstein, 2017; Yousif et al., 2019). This 

is owing to its ability to generate large amount of image data, easy deployment and use, inexpensiveness, 

being unobtrusive (non-intrusive) to animals, detect many wildlife species and safer to researchers compared 

to other ground-based methods (Bowley et al., 2018; Chen et al., 2015; Weinstein, 2017; Yousif et al., 2019). 

Other advantages include its ability to produce high resolution images, can be deployed in large or hard-to-

access areas, and high reliability. However, due to its widespread use, camera-trapping generates large amount 

of image data which is traditionally analysed and interpreted by manually checking images for various 

attributes such as presence of animal species, behaviours (sex, age, feeding, resting, standing, moving, 

interacting etc.) and animal abundance etc. Manual analyses of large amount of camera-trap image data are 

time consuming, expensive, prone to errors and biases, and constrains wildlife study in terms of geographical 

area, size, number, and duration. Such analyses do also not extract all information contained in images and 

cause delays in decision making due to longer time needed for analyses (Maire et al., 2015; Norouzzadeh et al., 

2018, 2021; Schneider et al., 2020; Shepley et al., 2021; Tabak et al., 2019; Torney et al., 2019; Valletta et al., 

2017; Yousif et al., 2019). These drawbacks have spurred efforts for effective automated methods for analyses 

and interpretations of collected camera-trap images using machine learning, specifically deep learning methods 

such as image classifiers and object detectors (Norouzzadeh et al., 2018, 2021; Schneider et al., 2018; Tabak et 

al., 2019; Valletta et al., 2017). Such automated methods have proven to reduce human labour, time, and cost 

in organizing and conducting wildlife surveys and subsequent analyses, produce unbiased analyses and 

interpretations, reduce dependence on domain expertise for interpretation, and eliminate bottleneck in 

conducting wildlife surveys (Norouzzadeh et al., 2018, 2021; Schneider et al., 2020; Torney et al., 2019; 

Weinstein, 2017). According to (Valletta et al., 2017), increasingly large, detailed and high-dimensional data 

such as images and sound recordings demonstrate a nonlinear relationship over multiple variables which does 

not conform to many assumptions commonly made in classical statistical methods. Such high dimensional data 

require the use of other advanced analysis methods such as machine learning methods. 

However, the existence of many object detectors with different performance attributes makes choice for an 

object detector not a straight task. Different research works have published performance (predictive accuracy, 

processing speed, and other performance measures) of different object detectors on various datasets, including 

publicly available benchmark datasets such as MS COCO, PASCAL VOC, ImageNet datasets, MNIST 

(Bowley et al., 2018; Pathak et al., 2018) from which choice for object detectors for various object detection 

tasks can be made. However, (Bowley et al., 2018; Schneider et al., 2018, 2020) state that most of benchmark 
datasets contain small-sized images (such as 2 8 x 2 8  pixels for MNIST dataset), one object per image, 

objects that fill large area of image, clearly visible objects, balanced classes and large number of images 

(thousands or millions). On another hand, camera-trap images are characterized with limited labelled data, 

imbalanced classes (Schneider et al., 2020), multiple objects per image, high dimensions (such as 

2048 x 1536  pixels), varied properties of objects in relation to occlusion, illumination conditions, 

viewpoints, sizes, and locations (Aggarwal, 2018; Jiao et al., 2019; Pathak et al., 2018; Schneider et al., 2018). 

In addition, it is stated by (Schneider et al., 2018) and (Schneider et al., 2020) that camera-trap images often 

contain cropped out images, animals which are partly obstructed, too close or too far from cameras, exhibiting 

different poses and affected by seasonal weather. Given these different sets of characteristics between 

benchmark datasets and camera-trap images, one question can be raised; Does the performance of object 
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detectors between benchmark datasets such as MS COCO, PASCAL VOC or ImageNet and camera-trap image 

dataset match? That is; will the object detector which performed better on a benchmark dataset (such as MS 

COCO) perform similarly better on a camera-trap image dataset than another detector which performed poorly 

on the same benchmark dataset? This question aims at investigating whether detectors’ predictive performance 

(accuracy) on publicly available datasets such as MS COCO matches with their performance on camera-trap 

image datasets. According to (Schneider et al., 2018), it is important to assess performance of DL models on 

CTIDs rather than on benchmark or publicly available general datasets because such datasets may not be 

relevant to object detection task’s niche. They also argue that deeper and practical understanding of predictive 

performance of DL models on image datasets specific to the task helps researchers to assess benefits (such as 

high processing speed and predictive accuracy) against associated cost for computational power, storage space, 

and training time of different DL models. Answering this question will equip researchers with knowledge on 

whether published performance of object detectors on benchmark datasets such as MS COCO matches with 

detectors’ performance on CTIDs. 

Studies such as (Chen et al., 2015; Norouzzadeh et al., 2018, 2021; Schneider et al., 2018, 2020; Tabak et 

al., 2019; Torney et al., 2019) have deployed deep learning methods to automate analyses of camera-trap 

image datasets with high accuracies (Norouzzadeh et al., 2018; Tabak et al., 2019; Yousif et al., 2019). 

However, several of them, such as (Norouzzadeh et al., 2018, 2021; Tabak et al., 2019) have used large 

datasets with hundred thousands or millions of training images which are often difficult and expensive to 

collect and annotate by many projects especially small ones (Schneider et al., 2020; Shin et al., 2016). Even 

when such large image dataset is collected and annotated, not all classes will contain even number of images, 

which often leads to class imbalance, that is one class having more training data than other classes in the 

dataset. This is one of the common problems affecting performance of many machine learning algorithms 

which are designed on the assumption of balanced classes in the dataset. This brings another question; Does 

any class imbalance in camera-trap image dataset disadvantage in terms of predictive performance the 

underrepresented classes? That is, do object detectors always perform better on classes with more training 

images than on classes with less training images in the dataset? For instance, will the object detectors perform 

poorly on an animal class with 500 images than on another animal class with more than 500 images in the 

same dataset?  

Evaluation metrics provide a mechanism for evaluating and comparing models’ performance on one class 

and among classes. However, studies such as (Norouzzadeh et al., 2018, 2021; Schneider et al., 2018; Yousif 

et al., 2019) which included multiple animal species in their datasets, produced a single performance score 

(accuracy, mAP, F1-score etc.) across all classes for each model without providing class-specific scores to 

demonstrate how detectors performed on each animal class in the dataset. This raises one more question; Can 

different object detectors perform with significant difference in predictive performance (accuracy) on the same 

animal class (species) in the same camera-trap image dataset? That is; can one object detector perform 

significantly better than another detector on the same animal class in the same dataset? Answering this 

question will equip researchers with knowledge on whether certain object detectors are better than others in 

detection of certain animal species in camera-trap images. One advantage of camera-trapping is its ability to 

capture both small-bodied as well as large-bodied animals. However, (Agarwal et al., 2019; Bagla et al., 2022; 

Bowley et al., 2018; Nguyen et al., 2020) found out that small-sized objects are more challenging to detect 

than large-sized objects. This raises another question; Can object detectors perform significantly better on 

large-bodied animals such as elephant, giraffe or zebra than they do on small-bodied animals such as 

guineafowl or warthog? 

This study attempted to achieve two objectives. Firstly, we compared performance in terms of predictive 
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accuracy and processing speed of two object detectors namely Faster R-CNN and SSD fitted across four 

feature extractors (backbones), namely ResNet50, ResNet101, ResNet152 and Inception ResNet when trained 

on MS COCO dataset vis-à-vis their performance when trained on a camera-trap dataset of 11,019 images. 

Secondly, we compared the predictive performance (accuracy), processing speed and storage space 

requirement of these detectors when trained on the same CTID using transfer learning, TensorFlow 2 and 

TensorFlow 2 Object Detection API. Transfer learning is an approach in which a DL algorithm is first trained 

on a larger and general-purpose (usually a publicly available) dataset such as MS COCO, ImageNet, MNIST 

etc. before being trained on smaller and more specific dataset for the intended classification or object detection 

task. Transfer learning ensures that knowledge (initialization parameters such as weights) acquired by the 

model from the larger dataset is repurposed in training it on smaller and specific dataset (Norouzzadeh et al., 

2018). It is a widely used approach in training deep learning algorithms because it requires less training data 

and time than training them from the scratch (LeBien et al., 2020; Maeda-Gutiérrez et al., 2020; Schneider et 

al., 2018). CTID used in this study contained eleven different animal species, and was extracted from Snapshot 

Serengeti (SS)(Swanson et al., 2015) dataset and Serengeti Biodiversity dataset (Saltane, 2020) collected from 

2010 to 2013 and2015 to 2019 respectively from Serengeti National Park, in Tanzania. All detectors deployed 

in this study were pretrained on MS COCO 2017 dataset which contains about 2.5 million labeled instances 

from 328,000 images, 80 different object classes and 91 stuff categories of common objects such as person, car, 

handbag, umbrella, chair, laptop, bus, train, traffic light, bench etc. It also contains animal classes such as bird, 

cat, dog, horse, sheep, cow, elephant, zebra, bear and giraffe. The dataset is commonly used to train and 

evaluate machine learning models for tasks such as object detection, instance segmentation and captioning(Lin 

et al., 2014). In realizing these objectives, our study attempted to answer the following questions; (1) Does the 

performance of object detectors between benchmark datasets and CTIDs match? (2) Does any class imbalance 

in the CTID disadvantage underrepresented classes in terms of predictive performance? (3) Can different 

object detectors perform with significant difference in predictive performance on the same animal class 

(species) in the same camera-trap image dataset? (4) Can object detectors perform significantly better on large-

bodied animal classes such as giraffe or elephant than they do on small-bodied classes in the dataset such as 

warthog or guineafowl? 

The main contribution of this paper is to provide more knowledge to DL researchers on whether 

performance of object detectors on benchmark datasets (such as MS COCO dataset), and CTIDs (such as SS) 

matches, and on detectors’ predictive performance on CTIDs with regard to class imbalance and animals’ body 

size. It also provides understanding and knowledge on whether object detectors perform with significant 

difference in detecting animals of the same class in a given CTID. This knowledge is useful in improving 

choices of object detectors for object detection tasks on CTIDs. It will also help DL researchers to better 

understand how class imbalances, animal species, and body size may influence performance of object detectors. 

Lastly, it also contributes an annotated camera-trap image dataset of 11,019 images which can be used by other 

researchers for the aim of improving wildlife monitoring and management using CNN based object detection 

methods (algorithms). 

 

2 Deep Learning 

Deep learning represents a class of machine learning (ML) algorithms which learn 

features/associations/patterns automatically and progressively from raw data through sets of multiple layers of 

data representations (Chollet, 2018, p. 8). DL is a subcategory of artificial neural networks (ANNs), a branch 

of ML based computational algorithms which mimic some properties (functioning) of the human brain 

(Patterson and Gibson, 2017, p. 41). ANNs are made up of thousands of computational units called neurons (or 
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nodes)(Wang, 2016), which are connected to one another through numerical values called weights. Common 

DL architectures include recurrent neural networks (RNNs), recursive neural network, deep belief networks 

(DBNs), generative adversarial networks (GANs), and convolutional neural networks (CNNs), also known as 

convnets (Carrio et al., 2017; Chollet, 2018, p. 119). Of all DL architectures, CNNs have become increasingly 

popular in natural language processing (NLP) and computer vision applications. In computer vision, they are 

widely being used in object detection tasks such as pedestrian detection, traffic sign detection, face recognition, 

autonomous car driving, security monitoring, transportation surveillance, drone scene analysis, robotic vision, 

image interpretation, image classification, precision agriculture, law enforcement, asset inspection, wildlife 

assessment, drug discovery, genomics and gender classification (Aggarwal, 2018; Jiao et al., 2019; Maire et al., 

2015; Schneider et al., 2020; Shanmugamani, 2018; Zhao et al., 2019). Object detection is a procedure of 

determining an instance of the class (object classification) to which an object belongs and estimating its 

location (object localization) by drawing bounding box around the object in the image (Pathak et al., 2018). 

CNNs are composed of sequence of layers of neurons organized into three-dimensional structure, 

commonly referred to as spatial dimensionality which represent  h e ig h t,w id th , d ep th (Chollet, 2018, p. 

123). CNNs are best suited for computer vision and NLP tasks because of their spatial dimensionality shape 
which matches with that of input image i.e., ( , , )width height colour channel (Chollet, 2018, p. 123; Khan et 

al., 2020; Sakib et al., 2018). This shape enables them to process image data efficiently (Chollet, 2018, pp. 

123-124; Khan et al., 2020; Patterson and Gibson, 2017, p. 128; Sakib et al., 2018), combine related tasks such 

as classification, localization and detection,and optimize their performance(Zhao et al., 2019). Other features 

include ability to learn translation invariant local features (Chollet, 2018, p. 123), locally connected patches of 

neurons, ability to exploit relationship between space and pixels of images based on assumption that nearby 

pixels of a given space are more related than distant ones which are randomly related (Khan et al., 2020) and 

ability to learn features in spatial hierarchies (Chollet, 2018, p. 123). Translation invariant local features allow 

any learned features (patterns) to be recognized when they appear in other parts of the image. Locally 

connected patches allow a neuron in the current convolutional layer to connect to a small patch (region) of the 

preceding layer, a feature which reduces number of connections and parameters to train while maintaining 

quality feature extraction (Patterson and Gibson, 2017, p. 130) as well as reducing computations and 

overfitting (Murphy, 2016). Learning features in spatial hierarchy allows CNNs to learn features in 

hierarchical manner in which the first convolutional layer learns from data small and local (general) patterns 

such as edges, second convolutional layer learns larger features out of those learned by the first convolutional 

layer (Chollet, 2018, p. 123) etc. 

 

3 Materials and Methods 

3.1 Data acquisition 

This study used a learning set of 11,019 camera-trap images of eleven different wildlife animal species (classes) 

which included 10 mammals and 1 bird species. Of all images in thelearning set, 10,558 images were extracted 

from Season 1 of the SS dataset downloaded from http://lila.science/datasets/snapshot-serengeti. SS dataset is 

a collection of about 3.2 million camera-trap images captured from Serengeti National Park, Tanzania from 

2010 to 2013 (Schneider et al., 2018, 2020; Tabak et al., 2019) with 48 different wildlife species. However, 

only about 25% of SS dataset contains images with animals, with the most abundant species being wildebeest, 

zebra, thomson’s gazelle, buffalo, hartebeest, elephant, human, giraffe, impala, guineafowl, grant gazelle, and 

warthog (Swanson et al., 2015). The remaining 461 images were extracted from Serengeti Biodiversity 

Program’s dataset, also captured from Serengeti National Park from 2015 to 2019. Serengeti Biodiversity 
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Program dataset contains about 989,321 camera-trap images of 24 different species, with the most abundant 

species being wildebeest, zebra, topi, impala, thomson’s gazelle, cattle and buffalo (Saltane, 2020). Apart from 

increasing size of dataset for some classes, combining images from two different datasets increases image 

features (diversity) such as colour, background, animal poses etc. for DL algorithms to learn from which 

improves transferability of trained models to new locations. Table 1 presents description of study’s learning set. 

 

 

Table 1 Description of the learning set. 

# Species (classes) Training set Validation set Total 

1 Buffalo 642 160 802 

2 Elephant 744 186 930 

3 Giraffe 920 230 1150 

4 Guineafowl 931 233 1164 

5 Hyena 1081 270 1351 

6 Lion 862 215 1077 

7 Hartebeest 479 120 599 

8 Warthog 979 246 1225 

9 Wildebeest 575 144 719 

10 Zebra 1351 338 1689 

11 Baboon 251 62 313 

Total 8815 2204 11019 

 

 

The learning set was split with stratified random sampling techniques into 8,815 images (80%) and 2,204 

images (20%) for model training and validation respectively, using Python script called partition_dataset.py. 

Unlike studies such as (Norouzzadeh et al., 2018; Tabak et al., 2019; Yousif et al., 2019) which used large 

learning sets with hundreds of thousands or millions of images which are practically difficult to collect and 

hand-label (annotate) by many, specifically small studies, this study deployed a fairly small learning set which 

can easily be collected and hand-labelled. The learning set described in Table 1 manifests class imbalance (a 

common feature in many CTIDs) as three classes namely baboon, hartebeest and wildebeest contain much less 

images than other animal classes specifically zebra, hyena, warthog, guineafowl, giraffe and lion. 

3.2 Data processing and preprocessing 

The learning set was hand-labelled (annotated) for bounding box coordinates into XML files (Pascal VOC 

format) using labelImg software. The resulting annotations were converted into .csv files by using a Python 

script called xml_to_csv.py (available on https://github.com/datitran/raccoon_dataset). The .csv files (for 

training and validation sets) were further converted into respective tfrecord format files using a Python script 

called generate_tfrecord.py (also available on https://github.com/datitran/raccoon_dataset).  

3.3 Model selection 

This study assessed and compared performance and behaviours of Faster R-CNN and SSD object detectors 

implemented on four ResNet feature extractors (backbones) namely ResNet50, ResNet101, ResNet152 and 

Inception ResNetV2. 

3.4 Hardware platform and ML/DL frameworks 

3.4.1 Hardware platform 

Training an object detection algorithm is a resource intensive, and time-consuming activity. All object 

detectors were trained on Ubuntu server 18.04.3 LTS installed on MS virtual Azure server and mounted with a 

12 GB memory NVIDIA Corporation GK210GL [Tesla K80] GPU card. The MS virtual Azure server was 
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remotely connected to using HP ProBook laptop installed with CORE i5-6200U CPU @2.30GHz, 64-bit 

Ubuntu 20.04.2 desktop operating system, 16GB of RAM and 1TB of solid-state drive (SSD).  

3.4.2 Machine learning/deep learning frameworks and libraries 

This study used several ML/DL frameworks and libraries such as TensorFlow 2.4, TensorFlow 2 Object 

Detection API, Keras and TensorBoard and several other Python and object detection packages/libraries. 

TensorFlow 2.4.1 and Keras 2.4.0 were installed on Python virtual environment created on Python 3.5.6 in MS 

Azure virtual server. TensorBoard 2.4.0 was used to graphically visualize performance metrics (average 

precision (AP) and mean average precision (mAP)) and training time of trained models on HP ProBook laptop. 

Scikit-learn library provided necessary machine learning algorithms and functions for performing linear 

regression in assessing correlation of various variables (size of training data and predictive accuracy). 

3.5 Hyperparameter tuning and model training 

Object detectors were trained one by one by fine tuning various hyperparameters such as epochs, warmup 

steps, batch size, image size, weight value, warmup learning rate, learning rate, momentum value, stddev and 

data augmentation features. Tuning the hyperparameters and rerunning training experiments were repeated 

several times and the hyperparameter space of an experiment with the highest mAP was recorded. Each 

training experiment comprised of 15 epochs, with each epoch having 2,204 steps (33,060 steps in total). 
Owing to memory limitation, a batch size of 4 images per step and image dimension of 6 40 x 6 40  pixels 

were maintained throughout training phase.  
3.6 Model evaluation and evaluation metrics 

Object detection evaluation metrics such as AP, mAP, average recall (AR), mean average recall (mAR), 

intersection over union (IoU) and F1-score quantify performance of object detectors in drawing bounding 

boxes around detected objects in relation to ground-truth bounding boxes. This study used two PASCAL VOC 

standard-based evaluation metrics called AP, and mAP. In order to infer some behaviours of trained detectors, 

the study did observe training time (in minutes) and storage space (in gigabyte (GB)) consumed by each 

detector when trained on our CTID. The evaluation of each object detector was invoked and performed only 

once on the checkpoint produced at the end of each training epoch, at which performance values for all 

evaluation metrics under consideration were recorded. In every training experiment, detector’s performance 

measures for all metrics under consideration were recorded from the epoch with the highest mAP. The batch 

size at evaluation phase was maintained at 1 image per step.  

3.6.1 Average precision 

Average precision is an accuracy measure that expresses percentage of correct predictions of an object detector 

in detecting objects of a particular class in the dataset obtained by computing area under curve (AUC) of 

precision x recall curve (Padilla et al., 2020). It is obtained by averaging precision across all recall values 

from 0.0 and 1.0, at one or various intersection over union (IoU) values (Padilla et al., 2020).  IoU is the ratio 

between intersection (overlapping) and union of predicted bounding box ( pB ) and ground truth box ( gtB ). It 

is mathematically depicted as; 

( )

( )
p

p

gt

gt

area B
IoU

area B B

B





 

Precision is the fraction (percentage) of all correct (true) positive predictions over all positive predictions made 

by the model (Padilla et al., 2020). 

( )
Precision =

( ) ( )

True Positives TP

True Positives TP False Positives FP
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Recall is the fraction of all correct (true) positive predictions among all positive ground truths (Padilla et al., 

2020).  

( )
Recall

( ) ( )

True Positives TP

True Positives TP False Negatives FN



 

Unlike MS COCO evaluation standard which computes mAP by averaging APs at ten different intersection 
over union values ( [0 .5 : 0 .0 5 : 0 .9 5])IO U  , PASCAL VOC standard computes AP at only one IOU value 

i.e., 0 .5 0Io U  . Generating performance evaluation (AP) for each class allows for comparison of detectors’ 

performance on the same class and different classes and further investigation when needed. 

3.6.2 Mean average precision (mAP) 

Mean average precision is a commonly used overall score evaluation metric (measure) for object detection 

models. It is an evaluation measure obtained by averaging all average precisions of all classes in a dataset in 

order to produce an single numerical performance score across all classes for each detector (Padilla et al., 

2020). The averaging of AP is done over one or multiple IoU thresholds such as mAP@0.5for PASCAL VOC 

evaluation metrics standard ormAP@[0.5:0.05:0.95] for MS COCO evaluation metrics standard. It is 

mathematically defined as 
1

1
mAP=

C

i
i

AP
C 
 where C is the number of classes in the dataset and iAP  is the 

AP of the ith  class (Padilla et al., 2021). Since PASCAL VOC evaluation metrics standard was used, the 

mAP was computed at only IoU 0.5 , i.e., mAP@0.5. 

 

4 Results 

4.1 Object detectors’ predictive performance on MS COCO and CTID 

Table 2 presents processing speed and mAP of object detectors trained on MS COCO dataset and in our 

study’s CTID. The detectors’ performance on MS COCO dataset was extracted from 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md.    

Although the MS COCO evaluation measured (expressed) processing speed in milliseconds (ms) which is 

different from our study’s measure for processing speed (minutes), it is sufficient enough to produce a 

mapping on whether a detector is faster or slower than others in each case (MS COCO and CTID). Despite low 

mAP values, which are ascribed to the large number of object classes/categories (80) in MS COCO dataset, 

they are good enough to provide performance comparison among detectors. Results from Table 2 show that 

detectors have demonstrated smaller mAP range of 2.82% (between the highest mAP of 82.86% (Faster R-

CNN ResNet101) and lowest mAP of 80.04% (Faster R-CNN Inception ResNet)) in our CTID, compared to 

mAP range of 8.4% demonstrated in MS COCO (between Faster R-CNN Inception ResNet at 37.7% and 

Faster R-CNN ResNet50 at 29.3%). Table 2 further shows that Faster R-CNN Inception ResNet (37.7%) and 

Faster R-CNN ResNet101 (82.86%) have performed the best on MS COCO dataset and on our study’s CTID 

respectively, while Faster R-CNN ResNet50 (29.3%) and Faster R-CNN Inception ResNet (80.04%) have 

performed the least on MS COCO and on our CTID respectively. Results indicate that none of the top three 

object detectors on MS COCO evaluation is in the top three detectors in the CTID evaluation, with the best 

detector on MS COCO (Faster R-CNN Inception ResNet) being the least performing detector on CTID. 

Results also show that two best performing object detectors in the CTID (Faster R-CNN ResNet101 and Faster 

R-CNN ResNet152) are among three least performing detectors on MS COCO evaluation. Given the MS 

COCO evaluation, it is shown that Faster R-CNN (two-stage object detector) is generally less accurate than 

SSD (one-stage object detector) on all ResNet backbones (i.e., ResNet50, ResNet101 and ResNet152) except 

Inception ResNet. This means that SSD has generally performed better than Faster R-CNN on MS COCO 

37



Computational Ecology and Software, 2024, 14(1): 30-47 

 IAEES                                                                                      www.iaees.org

dataset. Given our study’s CTID, Faster R-CNN has attained higher predictive accuracy than SSD with 

ResNet101 and ResNet152 backbones, but lower on ResNet50.  

 

 

Table 2 mAP and processing time of trained object detectors on MS COCO and CTID. 

Object detector MS COCO Camera-trap dataset 

Speed 

(ms)

mAP (%) mAP (%) Training Time 

(Minutes) 

Disk space 

(GB)

Faster R-CNN Inception ResNet 206 37.7 80.04 1330 6.9 

SSD ResNet101 (RetinaNet101) 57 35.6 81.76 972 5.9 

SSD ResNet152 (RetinaNet152) 80 35.4 81.04 1489 7.2 

SSD ResNet50 (RetinaNet50) 46 34.3 82.11 713 3.7 

Faster R-CNN ResNet152 64 32.4 82.33 1668 7.3 

Faster R-CNN ResNet101 55 31.8 82.86 1048 5.5 

Faster R-CNN ResNet50 53 29.3 80.95 604 3.3 

 

 

Four object detectors namely Faster R-CNN ResNet101, Faster R-CNN ResNet152, SSD ResNet50 

(RetinaNet50) and Faster R-CNN ResNet50 (Table 2) moved from lower ranks in MS COCO evaluation to 

higher ranks in CTID in terms of mAP, and therefore considered to have performed better on CTID than on 

MS COCO. Three other object detectors namely SSD ResNet101 (RetinaNet101), SSD ResNet152 

(RetinaNet152) and Faster R-CNN Inception ResNet moved from higher ranks in MS COCO evaluation to 

lower ranks on CTID in terms of mAP and therefore considered to have performed poorly on our CTI dataset 

than on MS COCO. These results indicate that Faster R-CNN has performed generally better than SSD on 

CTID. 

4.2 Detectors’ predictive ability on animals of the same class (species) 

Table 3 and Fig. 1 present average precision (AP) of each object detector for every animal class in our study’s 

CTID. Results from Table 3 show that the lowest AP of 57.74% was attained by Faster R-CNN Inception 

ResNet on baboon, while 98.28% is the highest AP attained by Faster R-CNN ResNet152 on hyena. The Table 

further shows that all object detectors attained similar AP for each animal class on our CTI dataset. For 

instance, the APs for all object detectors are between 60.68% - 67.34% and 92.93% - 94.95% for buffalo and 

warthog respectively. Additionally, all object detectors have performed very well (with APs of at least 87.63%) 

in detecting guineafowl, lion, warthog, giraffe and hyena, but performed poorly (with APs between 57.74% - 

67.52%) in detecting baboon, buffalo and wildebeest. Because APs of all object detectors for each animal class 

in our CTID are similar (i.e., in close range), their mAPs are similarly in close range as shown in Table 2. 

4.3 Effects of body size and training data size on models’ predictive accuracy 

Based on number of images of each animal class in the CTID, Table 2 and Fig. 1 show that an object detector 

can attain lower predictive accuracy (AP) for a class with larger training data size than another class with less 

training data in the same dataset. For instance, while zebra has the largest size of training data (1,351 images), 

it has been outperformed by all object detectors on hyena (1,081 images), giraffe (920 images), warthog (979 

images), lion (862 images), guineafowl (931 images), hartebeest (479 images) and elephant with 744 images. 

Results from Table 2 and Fig. 1 show that all detectors have performed poorly on elephant with 744 images 

than on hartebeest with 479 images. Fig. 3 shows the relationship between size of training data per animal 

class and mean of average precision (AP) of each class across all object detectors. We considered mean of 

average precision because all object detectors have attained similar APs for each animal class in the learning 
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class in the CTID as they attained comparatively similar average precision on each animal class and performed 

well on hyena, giraffe, warthog, lion and guineafowl, but poorly on baboon, buffalo and wildebeest. This 

demonstrates that predictive ability (computational difficult) of all object detectors in detecting animals of a 

particular animal class in a dataset is comparatively similar, and that no detector performs distinctively better 

on one animal class than others. This means that given marginal difference in predictive accuracy among 

object detectors, any detector can be chosen for detection task of any animal class in the CTID, keeping 

constant other factors such as processing speed, training time etc. 

Although (Norouzzadeh et al., 2018, 2021; Schneider et al., 2018; Tabak et al., 2019; Yousif et al., 2019) 

found that DL models perform better on classes with larger training data than on classes with less training data, 

our study has shown that some classes with less training data may outperform others with larger training data. 

Fig. 3 shows that, given detectors’ performance on our CTID, there is weak positive correlation between data 
size (amount of training images) per class and accuracy (mean of APs) with 0 .5 9 2 6 7 5R  , and that only 

35 .1%  of detectors’ accuracy has been contributed (explained) by size of training data. While detectors’ poor 

performance on baboon may be ascribed to class imbalance (having the smallest size of training data (251 

images) in the CTID), all detectors have also performed similarly poor on wildebeest and buffalo which have 

2.3 and 2.6 times more training data than baboon respectively. Interestingly, all detectors have performed 

better (than wildebeest and buffalo) on hartebeest which is the second smallest training data size (479 images) 

after baboon. If class imbalance (small training data size) was the main factor for detectors’ poor performance 

on baboon, then all detectors would have also performed similarly poor on hartebeest than on wildebeest and 

buffalo. Although small training data size has contributed to some degree to detectors’ poor performance, 

further observation of CTID revealed that a considerable number of images from Serengeti Biodiversity 

Program dataset contained very small-sized animals (especially for baboon), blurred (fainted) and darkened 

images. These images were also captured from high angle and long distance (making them difficult to visually 

see even with human eyes) compared to Snapshot Serengeti images which are largely characterized by large-

sized animals, clearly recognizable (visible) and laterally captured and from short distance. Of 461 images 

from Serengeti Biodiversity Program dataset used in this study, 372 were part of training data, of which 85 

were baboon images, 231 wildebeest images, 13 elephant images, 25 hartebeest images and 18 giraffe images. 

All these images contained about 45 occurrences (not images) of zebra. The presence of such large number of 

low-quality images in these two animal classes (baboon and wildebeest) must have significantly contributed to 

detectors’ poor performance than their small training data sizes may have contributed. This finding matches 

with (Schneider et al., 2018) in which Faster R-CNN ResNet101 performed better (93% in accuracy) on a 946-

image RCT dataset compared to 76.7% accuracy attained on GSSS dataset with 4096 images. Similarly, 

(Schneider et al., 2018) cite class imbalance and messier data in GSSS dataset as main reasons for detector’s 

poor performance. This means that in spite of this class imbalance (small training data), detectors may have 

performed better on baboon and wildebeest if their images were as of good quality as images of other classes 

which constituted most of SS images. However, all detectors’ poor performance on zebra despite it having 

largely high quality and largest training data still raises question. Our study results further indicate that with 

transfer learning, wildlife studies may require much less (several hundreds to a few thousands) high quality 

training image data to attain higher predictive accuracies than many wildlife studies have done before. This 

will reduce labour, cost, time, computational power and storage space required to collect, annotate large 

amount of images and eventually train object detectors on such datasets.  

Several research such as (Agarwal et al., 2019; Jiao et al., 2019)have shown that object detectors perform 

poorly on small objects than on medium and large sized objects, owing to the fact that small objects have less 

information associated with them for detection, can easily be confused with image backgrounds, large image 
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sizes, and higher precision requirements for localization. However, our research results demonstrate that large 

body size of wildlife animals (given similar or larger training data) may not automatically lead to better 

predictive accuracy than animal classes with smaller body sizes. As shown in Table 3 and Fig. 1, guineafowl, 

warthog, and hyena have outperformed zebra, while hartebeest has outperformed elephant by all detectors 

despite zebra and elephant having larger body sizes than other classes. This finding demonstrates that with 

high quality images in which animals are fairly visible, size of animals may not positively influence predictive 

accuracy of object detectors. It also demonstrates that DL object detectors may effectively be applied to study 

wildlife animals with less training data such as rare or elusive species and small-bodied animals (like rodents, 

birds, snakes, small mammals etc.) and produce high predictive accuracy similar to or higher than classes with 

larger training size and body sizes. However, it also calls for investigation on effects of factors such as skin 

colours, image background etc., on predictive accuracy of object detectors on animal detection in camera-trap 

images.  

Our study results show that although single performance scores across all classes in the dataset such as 

mAP, precision, F1-score etc. provide useful information on each model’s average performance across the 

dataset (i.e., all classes), they do not provide information on how each detector performed on individual classes 

in the dataset. This calls for studies to also consider the use of class-specific performance score such as AP in 

addition to performance score across all classes. It has been stated by (Schneider et al., 2018) that while object 

detector’s performance (mAP, F1-score, recall, precision etc.) across all species (classes) may be high, it may 

be significantly low on some classes. For instance, while Faster R-CNN Inception ResNet has attained mAP of 

80.04%, the score does not indicate in anyway the detector’s poor performance on baboon (57.57%), buffalo 

(60.68%) and wildebeest (62.84%) nor its excellent performance on warthog (92.93%), giraffe (94.4%) and 

hyena (98.15%). Generating class-specific performance metrics ensures that predictive accuracy of each 

detector on each class is known and compared with other classes by the same or different detectors. This will 

ensure that classes with low APs are investigated to ascertain causes (for such poor performance) such as 

image background, colour of animals, class imbalance, quality of images (occlusion, varying light intensity, 

animals’ distance from camera, cropped images) etc., and appropriate actions be taken for improvement. 
Strong positive correlation between training time and disk space with 0 .9 5 6 6 3 4R   means that disk 

space increases as training time increases, and that about 91.51% of disk space consumed is influenced by 

training time. Such strong correlation, despite small difference in predictive performance (mAP) between 

models as shown in Table 2 and Table 4, means that training time and disk space are important factors that 

may significantly influence the choice of object detector for a particular object detection task. For instance, 

while Faster R-CNN ResNet101 outperforms SSD ResNet50 (RetinaNet50) by only 0.75% in mAP, it is 1.47 

times slower and requires 1.49 times more disk space than SSD ResNet50 (RetinaNet50). Faster R-CNN 

ResNet152 which outperforms SSD ResNet50 (RetinaNet50) by only 0.22%, is 2.34 times slower and requires 

1.97 times more disk space than SSDResNet50 (RetinaNet50). Similarly, Faster R-CNN ResNet101 

outperforms Faster R-CNN ResNet50 by only 1.91%, but it is 1.74 times slower and requires 1.67 times more 

disk space than Faster R-CNN ResNet50. Faster R-CNN ResNet152 which outperforms Faster R-CNN 

ResNet50 by only 1.38%, is 2.76 times slower and requires 2.2 times more disk space than Faster R-CNN 

ResNet50. Training time of the object detectors is affected by factors such as size of training dataset, available 

computational power (CPU, GPU or TPU), hyperparameters settings, image dimension (number of pixels), 

internal structure (number of layers) of the feature extractor (backbone), structure of detector used etc. For 

instance, one-stage object detectors (e.g., SSD) are faster than two-stage object detectors (e.g., Faster R-CNN) 

(Jiao et al., 2019; Schneider et al., 2018; Shanmugamani, 2018). These results evidently mean that for 

applications in which processing speed is a top priority than predictive accuracy (and given small differences 
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in their mAP), Faster R-CNN ResNet50 or SSD ResNet50 (RetinaNet50) may be appropriate choices. This is 

because they attain marginally less predictive performance (mAPs) while incurring less cost (training time and 

disk space) than Faster R-CNN ResNet101 and Faster R-CNN ResNet152. Such compute (resource) intensive 

detectors (Faster R-CNN ResNet101 and Faster R-CNN ResNet152) should be deployed for object detection 

tasks where predictive accuracy is a top priority, and in computing systems with adequate computational 

power (GPUs and TPUs) and storage space. Our results also show that mAP of object detectors such as Faster 

R-CNN or SSD integrated on the same ResNet backbone such as ResNet50 increases with training time, that is 

the higher the mAP, the longer the training time. These results are supported by (Jiao et al., 2019; Schneider et 

al., 2018) that higher detectors’ predictive accuracy comes at greater cost of training time. 

 

6 Conclusion and Future Works 

In this study, we first compared the predictive performance in terms of mAP and processing speed of Faster R-

CNN ResNet50, SSD ResNet50, Faster R-CNN ResNet101, SSD ResNet101, Faster R-CNN ResNet152, SSD 

ResNet152 and Faster R-CNN Inception ResNet on MS COCO dataset vis-à-vis their performance on a 11,019 

camera-trap image dataset. Secondly, we compared mAP, processing speed and storage space consumption of 

the same object detectors when trained on a dataset with 11,019 CTIs using transfer learning, TensorFlow 2, 

Keras and TensorFlow 2 Object Detection API. Our study attempted to find answers on whether performance 

of object detectors on benchmark datasets matches with their performance on camera-trap image dataset; is 

positively influenced by large training data size and body size; and whether object detectors can perform 

differently on the same animal class (species) in the dataset.  

First, there has been smaller difference in mAP (2.82%) among detectors in CTID than it is on MS COCO 

evaluation (8.4%). We also found that mAP and processing speed of individual object detectors on MS COCO 

do not match on camera-trap image dataset as four detectors which performed better on MS COCO performed 

poorly on CTID and three detectors which performed poorly on MS COCO performed better on CTID. Due to 

small difference in their predictive performance (mAP), other factors such as amount of training time, storage 

space etc. may take into account when choosing suitable detector for a particular object detection task. Second, 

larger size of training data for a particular animal class may not necessarily result to performance advantage 

over classes with smaller training data. Our study has demonstrated that zebra which had the largest training 

data size was outperformed by hyena, giraffe, warthog, lion, guineafowl which have less training data, just as 

elephant was outperformed by hartebeest despite having more training data. Third, larger body size may not 

necessarily result to performance advantage over animal classes with smaller body sizes. Our study has 

demonstrated that zebra which has larger body size (and the largest training data) has been outperformed by all 

detectors on guineafowl, warthog and hyena which have smaller body size (and less training data), just as 

elephant which has larger body (and larger training data) has been outperformed by hartebeest with smaller 

body and less training data. Fourth, all object detectors demonstrate similar predictive ability (computational 

difficult) for a particular class in a dataset as they attained similar APs for each animal class, performed well 

on the same set of animal classes (hyena, giraffe, warthog, lion and guineafowl), and performed poorly on the 

same set of animal classes (baboon, buffalo and wildebeest). 

We recommend four research areas for future work. First, further research on causes of object detectors’ 

poor performance on classes with larger training data size such as zebra over classes with less training data like 

hyena, giraffe, warthog, lion, guineafowl, hartebeest and elephant, as well as buffalo over hartebeest given that 

the images are of the same quality. Second, to investigate causes of detectors’ poor performance on animal 

classes with larger body size (and larger data sizes) over classes with smaller body size (and smaller training 

data sizes) given that images are of the same quality. For instance, why zebra has been outperformed by hyena, 
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warthog and guineafowl just as elephant has been outperformed by hartebeest. The third research area we 

recommend is to investigate the effects (influence) of untrained image backgrounds (locations) on detectors’ 

predictive performance; that is how images from new locations not seen during training will affect predictive 

performance of object detectors. Fourth, we recommend further investigation on the threshold of training data 

for a class below which its predictive performance by a detector degrades. Many studies spend huge amount of 

time and resources in collecting and annotating large amount of training data, training models over many hours 

on resource intensive computing systems to attain high predictive accuracy. Establishing threshold for 

minimum amount of training data in certain computing environment while guaranteeing reasonable predictive 

accuracy will be of great importance to many studies with small datasets, inadequate computational power, 

fund and other resources.  

In addition to areas for further research, we also emphasize the use of class-specific performance metrics 

such as AP in addition to overall-class performance metrics such as mAP in order to determine object detectors’ 

performance on each class in the dataset. This will allow researchers to make adjustments (improvements) 

such as repartitioning or increasing training data, changing hyperparameters etc. in order to attain desired 

performance for poor performing classes. 
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