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Abstract 

In this study, we proposed a Leslie-Gower prey-predator model, whose dynamics includes a constant effort 

harvesting rate in predators and an additive Allee impact on prey. A system of stochastic differential equations 

is also used to study its behaviour, with the assumption that each population's exposure to environmental 

unpredictability is represented by noise terms. This kind of randomness is considerably more reasonable and 

realistic in the proposed paradigm. Due to the paucity of studies on the dynamics of this kind of model, this 

investigation is being believed to be a way to advance the subject of literature. First, we establish the system's 

positivity and boundlessness. Next, we look into the dynamics of every one of the stable states, the form of the 

positive equilibrium point, and the continued existence of every species in the system.It is established that the 

equilibrium levels of prey and predator are impacted by the Allee effect parameter as well as the impact of 

harvesting. The positive steady state point's global stability criterion is derived. By selecting the Allee effect 

and harvesting effort as the bifurcation parameters, it has been established that a Hopf bifurcation exists close 

to the interior steady state.This study is novel since it incorporates various ecological factors into a single 

model, potentially opening up new perspectives on predator-prey relationships. To support the mathematical 

conclusions, rigorous numerical visualisations of the key parameters are provided below using specific 

hypothetical data. In conclusion, we may state that our model is a project that aims to preserve the ecological 

equilibrium of the natural world. 

 

Keywords Leslie-Gower scheme; Allee effect; harvesting; stochastic effect; stability; Hopf bifurcation. 

 

 

 

 

 

 

 

1 Introduction 

The dynamic interactions among distinct populations and related intricate characteristics have received a lot of 

interest from biologists and ecologists. Predator-prey dynamics study has received constant attention ever since 

Lotka and Volterra's pioneering study.These models can, as is well known, accurately reflect fluctuations in 
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population quantities. The pertinent theories in this area have made significant strides in recent years (Comins 

and Blatt, 1974; Xiao and Chen, 2001; Lu et al., 2003; Agiza et al., 2009; Chakraborty et al., 2012) by 

becoming more and more complete. Leslie-Gower (Leslie, 1948) proposed an additional component to the 

predator-prey scheme, referring to the logistic rule-based development of the connected population and the 

relationship between the number of prey and the predator's carrying capacity. When prey is scarce, predators 

can relocate to find different sources of food, but this will limit their ability to evolve because their preferred 

prey is not accessible. The authors of (Aziz-Alaoui and Okiye, 2003) proposed an enhanced Leslie-Gower 

model to address this issue by including a positive number that measures the predator's environmental defence. 

Since then, the Leslie-Gower model has been studied by a number of authors with various functional responses 

(Altendorf et al., 2001; Korobeinikov, 2001; Yang et al., 2008; Yu, 2012, 2014; Singh and Gakkhar, 2014; 

Feng and Kang, 2015; Xu et al., 2020; Liu and Huang, 2020). 

In the fields of fisheries, forestry, and regulating wildlife, the utilization of ecological resources and the 

harvesting of species are standard practices. Thus, the behavior of the prey-predator scheme are giving 

harvesting models (Wei et al., 2017; Pal and Mahapatra., 2014, 2018a-b; Asfaw et al., 2018; Liu et al., 2020). 

It is significant to remember that harvesting goes on well beyond the population's extinction. Three approaches 

to harvesting are possible: (a) a constant-yield  2H n   constant, (b) a constant-effort  2 2H n E n
 

or (c) a Michaelis–Menten type   2
2

2

.
ln

E n
H n

cE





 

The Allee phenomenon is another modern propensity to employ these kinds of models. The Allee effect is 

a term used to describe how population growth at low densities depends on positive density (Sen et al., 2012; 

Wei and Chen, 2014; Bodine and Yust, 2017; Hastings et al., 2017; Elaydi et al., 2018; Manna and Banerjee, 

2018; Sen et al., 2018; Du et al., 2019). It could be caused by a wide variety of biological processes, including 

lowered predator alertness, genetic trends, difficult mating, and inadequate nutrition at low population 

densities (Allee, 1931; Odum and Allee, 1954). According to Pal and Mandal's (Pal and Mandal, 2014) 

investigation using the improved Leslie-Gower predator-prey system, the increasing function of the prey 

population was regulated by a multiplicative strong Allee effect, usingthe Beddington-DeAngelis response 

functional (Pal et al., 2018; Majhi and Mandal, 2019). The modified Leslie-Gower predator-prey scheme that 

includes the additive Allee effect was explored by Cai et al. (2015) by applying the Holling type II functional 

response. They made some fascinating observations, one of which is the possibility of ecological extinction 

being raised by the Allee influence. 

Inspired by the existing literature, it makes sense to model and analyse how a changing environment 

affects a predator-prey interaction, allowing both sides to have an additive Allee effect on the prey 

advancement function with a constant rate of effort harvesting in predators. This would undoubtedly be an 

interesting area of study. But no one has yet explored into this region. 

The article is organised as follows.Boundedness and positivity of the scheme's solutions are established in 

Section 2 of the paper, where the mathematical model is presented. Section 3 describes the presence of 

equilibrium and stability. Section 4 develops an investigation for global stability and Hopf bifurcation. Section 

5 formulates the model in a stochastic fashion and derives a stochastic stability condition. Computer 
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simulations of several system solutions are shown in Section 6 to support our analytical conclusions. The full 

scope of the paper is discussed in Section 7, as well as the biological importance of our analytical results. 

 

2 Mathematical Formulation of Proposed System   

In order to develop the Leslie-Gower schemes, coupled, nonlinear ordinary differential equations are used. 

These equations show how prey and predators interact in the following way: 

1 1
1 1 21 ,

dn n
n n n

dt
 


    
 

 

2 2
2

1

1
dn n

n
dt b n


 

  
 

          (1) 

with    1 20 0, 0 0.n n   

It is expected that prey will logistically advance and have a linear growth in the consumption ratio with food 

saturation, and 0   signifiesan invasionquantity. In addition, 2 2
2

1

1
dn n

n
dt b n


 

  
 

indicates the logistic 

growth of the predator, but the usual 1 , which evaluatesthe carrying capacity based on the ecosystem’s 

resources and is 1 1b n  , proportionate to the quantity of prey (b  is the ratio of prey to predators). In the 

given equation, the Lesie-Gower factor isindicatedas 2 1/n b n . It evaluates the decrease in thenumber of 

predatorscaused by the low population density (per capita 2 1/n n ) of the prey. In case there is a significant 

unavailability, 2n
 

is able to look out alternate species, however this will restrict its progresssince its favourite 

food  1n
 

cannot beabundantly available.This issue can be resolved by introducing a positive quantity into 

the denominator (Table 1). The model is thus known as the improved Leslie-Gower scheme. For the sake of 

this study, we only consider the improved Leslie-Gower scheme incorporating the additive Allee impact

1n A




on the prey development function and a constant effort harvesting rate 2E n
 

in predators, which is 

of the form 

1 1
1 1 2

1

1
dn n

n n n
dt n A

 


 
     

,          

2 2
2 2

1

1
dn n

n E n
dt b n

 


 
    

        (2) 
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   1 20 0, 0 0.n n   

 

 

Table 1 Biological meaning of the parameters. 

Parameter    Description 

 1n t   Amount of prey population 

 2n t   Amount of predator population  

    Intrinsic growth rate of prey 

    Intrinsic growth rate of predator 

    Carrying capacity 

    Predator’s capture/attack level 

b    The progress of predators in relation to the effectiveness of prey use 

    Alternative food that might be present in the environment for newborns 

    The harvest coefficient  

E    The harvest effort  

 

 

Here,   and A explore the Allee effect’sefficiency.If criteria 0 A    and 0 A   aremet, the 

Allee effect is strong; otherwise, it is weak. In terms of biology, a high Allee effect means that advantages are 

outweighed by losses due to low levels of overcrowding, whereas a weak Allee effect does not meet this 

condition (Gonza´lez-Olivares et al., 2006). The additive term 
1n A




was chosen since it is most 

straightforward and providesa combined strong and weak Allee effect. 

Let    1 20 and 0n t n t  indicates the quantity of the prey and predator populations, correspondingly. 

These populations behaviours are given using system (2) and are specified in the area of biological sense 

  2
1 2 1 2, : 0 ,0 .n n n n b           

It is essential to confirm that the scheme (2) is mathematically valid biologically realistic, and that its 

trajectories n  are uniformly bounded prior to doing a mathematical study to identify potential behaviours in 

the changing nature of prey and predators.   

Theorem 1. The trajectory n  of the scheme (2) is unique, along with the initial condition 

    1 20 , 0 .n n 
 

Furthermore,   is unchangeable. 
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Proof. The continuity of the vector field in scheme (2) ensures the fulfilment of both the existence and 

uniqueness conditions for the trajectory n . However, it needs to be ensured that the model (2)’s n

trajectories do not deviate from  . This is accomplished by analysing how the model’s (2) boundary 

trajectory changes.In fact, if  1 0n   , then 1 0
dn

dt
 for any 2 0n  . Similarly, if 1n  and 

1
2 0

dn
n

dt A

   


   


for all 2 0n  . On the other hand, 2 0n  , then 2 0
dn

dt
  for all 1 0n  . 

If  2n b    and 1n  , we have 2
2

dn
E n

dt
  each 2 0n  . As a result, the trajectories n  stay 

within . 

Theorem 2. The trajectories n of the scheme (2) are uniformly bounded. 

Proof.   Since 1 1 1
1 1 2 1

1

1 1 ,
dn n n

n n n n
dt n A

  
 

              
 

that is, 
 
  
1

1

1

0
,

0 1

t

t

n e
n

n e









 

 

with  10 0n   the initial condition of the solution  1n t , then  1n t  for all 0.t   

Similarly, 

2 2 2
2 2 2

1 1

1 1 ,
dn n n

n E n n
dt b n b n

  
 

   
           

 

and   2 ,n t L where .L b    

Thus, when taking into account the function   : ,t    

     1 2t n t n t    then  0 t L    and the trajectories n of the scheme (2) become uniformly 

bounded. 

 

3 Local and Global Stability at Equilibrium Points 

The following criteria must be satisfied for system (2) prior to computing and establishing the local and global 

stability of the potential equilibrium points. 

(a)  The trivial equilibrium  0 0, 0E  is always feasible. 
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(b) The axial equilibria are  1 , 0 ,E n  where 
     2

1

4
.

2

A A A
n

        
 E  are  

feasible if A  and  2
4A A   . 

(c) The coexistence equilibrium point  * * *
1 2,E n n  is feasible if 2

1 2 04 0,A A A   

1

2

0
A

A
  and 0

2

0
A

A
 . 

2nd equation of (2) implies 2

1

1 0
n

E
b n

 


 
    

 

2 2

1 1

1 1
n nE E

b n b n

 
   

 
       

 

     * *2
2 1

1

E En
n b n

b n

   


  
 

    


  (3) 

1st equation of (2) implies 
* *

* *1 1
2 2* *

1 1

1 0 1
n n

n n
n A n A

   
  

   
              

  (4) 

From (3) and (4), we have 

    *
* 1
1 *

1

1
E n

b n
n A

   
  
  

     
 

*
1n  is the positive root of the quadratic equation 

*2 *
2 1 1 1 0 0A n An A            (5) 

where 

 2A b E       

    1A b A E A           

   0A A E A         

For (5) has positive equilibrium points if and only if 2 1
1 2 0

2

4 0, 0
A

A A A
A

    and 0

2

0
A

A
 . 

The variational matrix of the scheme (2) at  0 0, 0E  as follows 

107



Computational Ecology and Software, 2024, 14(2): 102-118 

 IAEES                                                                                      www.iaees.org    

 

 

1
2 12

1

2
2 2

2
11

2

2

n A
n n

n A
J

b n n
E

bnbn

   


  


        
  
  

     (6) 

0

0

A
J A

E



 

           

, the latent values are 
A

A

    
 

and E  . Thus, the trivial equilibrium 

point  0 0, 0E  is locally asymptotically stable if A  (strong Allee effect) , E   and unstable if 

A  (weak Allee effect), E  . 

(i) The axial equilibria are  1 , 0 ,E n  the corresponding Jacobian matrix is  

 
1

12

1

2

0

n A
n

J n A

E

  


 






 
   

  
 

 

 

The axial equilibrium point is locally asymptotically stable if 
 

1
2

1

2
1

n A

n A







 


and .E   

(ii) The Jacobian matrix at an interior equilibrium point  * * *
1 2,E n n  

 

 

2

* *
1 1*

1
*

* *
2 2

2 **
11

1

,

n n
n A

J E
b n n

bnbn

 


 


  
     

  
 
  

  (7) 

we have that  

         
  

* * * * *
1 1 1 2 1*

* *
1 1

tr 0,
n bn n A n n A

J E
n A bn

     

 

        
 

 

       
  

* * * *
1 1 2 1*

* *
1 1

det 0,
bn n A b n n A

J E
n A bn

     

 

       
 

 

that is,  * * *
1 2,E n n  is locally stable. Let    2* *tr 4det .J E J E    If 0,  then *E is locally a 

stable focus. If 0,  *E is locally a stable node. 
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4 Global Stability 

The Lyapunov procedure is applied to explore the model’s (2) global stability of the coexistence equilibrium 

point. 

Thus, the Lyapunov function is defined as; 

  * * * *1 2
1 2 1 1 1 2 2 2* *

1 2

, ln ln
n n

L n n n n n n n n
n n

           (8) 

The time derivative of (8) is given by: 

* *
1 1 1 2 2 2

1 2

.
n n dn n n dndL

dt n dt n dt

 
          (9) 

Substituting (2) in (9) and simplifying, results to  

   * *1 2
1 1 2 2 2

1 1

n ndL
n n n n n E

dt n A bn

    
 

   
               

 

   
* *

* * *1 1 2 2
1 1 2 2 2 2* *

1 1 1 1

n n n n
n n n n n n

n A n A bn bn

     
   

   
                  

 

      
          

* *
2 21* * * *2

1 1 2 2 1 1 2 2* * *
1 1 1 1 1 1

bn b n
n n n n n n n n

n A n A bn bn bn bn

    
    

   
            

           

TN BN   

where   * *
1 1 2 2,N n n n n   and 

2 2ijB b


    . The components of the matrix B  are  

  11 *
1 1

b
n A n A

 


 
  

   
, 

  
*
2

12 21 *
1 1

1

2

b n
b b

bn bn


 

 
   

   
, 

 
  

*
1

22 *
1 1

bn
b

bn bn

 

 




 
. 

Hence B is positive definite if 

 
 

        

2
* *
1 2

* * *
1 1 1 1 1 1

4 bn b n

bn bn n A n A bn bn

    
   

   
     

           
, which in turns  

0
dL

dt


 
and hence *E globally asymptotically stable. 

Hopf-bifurcation is a localphenomena whereby changing a parameter causes a periodic solution to appear 

around the system's equilibrium point.We discuss the Hopf-bifurcation by using the factor A  as the 
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bifurcation parameter in system (2) because it appears to be essential. As a result, we have some HPA A . 

The Hopf bifurcation threshold is a positive root of  * 0,
HPA A

TrJ E


    and can satisfy

 * 0.
HPA A

DetJ E


    Therefore we conclude the result from the subsequent theorem.  

Theorem 3. Suppose the positive equilibrium *E  exists and there is a Hopf bifurcation around *E when 

HPA A where 
  

 
* * * *
1 1 1 2

* * *
1 1 2

1
HP

n bn n n
A

n bn n

     

   

   


 
. 

Proof. The characteristic equation of matrix  *J E  is  

 * *

2 ( ) 0,
E E

T J D J    and the circumstancesunder which the Hopf bifurcation occurs are stated 

below. 

i.  * 0,
HPA A

TrJ E


     

ii.  * 0,
HPA A

DetJ E


     

iii.  * 0.
HPA A

d
TrJ E

dA 
     

The criteria in (i) and (ii) are met for 
  

 
* * * *
1 1 1 2

* * *
1 1 2

1
A=A =HP

n bn n n

n bn n

     

   

   

 
and  

*
1n A   . Following that, we mustconfirm the transversality criterion (iii). Obviously, 

 
 

*
* 1

2*
1

0.
HPA A

nd
TrJ E

dA n A




     
 

Consequently, condition (iii) is satisfied, which guarantees the occurrence of Hopf bifurcation about *E at 

HPA A . Similarly, we can find the Hopf-bifurcation condition for the parameter harvesting .HPE E  

 

5 Stochastic Analysis 

In this part, we accept stochastic perturbations of the parameters 1n and 2n  about their values at the positive 

equilibrium *E for the scenarioif it is locally asymptotically stable. We take into account the white noise 

stochastic disturbances that are proportional to the distances of 1 2,n n from * *
1 2,n n . Hence, the stochastically 

perturbed scheme (2) is given by 
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 * 11
1 1 1 2 1 1 1

1

1 t

n
dn n n n n n d

n A

   


 
       

 * 22
2 2 2 2 2 2

1

1 t

n
dn n E n n n d

b n
   


 

      
             (10) 

where , 1, 2j j  are real quantities,   , 1, 2j
t j t j   are independent regular Wiener mechanisms. To 

analyze the stochastic stability of *E , we take the linear system of (10) about *E as shown below: 

 ( ) ( ( )) ( ( )) ( )d t f t dt g t d t                           (11) 

where 1 2 3( ) col( ( ), ( ), ( ))t t t t    , ( ( )) ( )f t J t  ,
1 1

2 2

0
( )

0
g

 


 
 

  
 

, 

  1 2 3col( ( ), ( ), ( ))d t t t t    , *
1 x x   , *

2 y y   . 

Let   0 0,nt t t      . Therefore 0
2 ( )V C   is a continuous function w.r.t t and a twice 

continuously differentiable function w.r.t . The differential operator L with a function  V t is stated as 

2

2

( , ) ( , ) 1 ( , )
( , ) ( ) ( ) ( ) ,

2
T TV t V t V t

LV t f Tr g g
t

     
 

   
       

  (12) 

where 
1 2

col ,
V V V

  
   

     
; 

2 2

2

( , )
; , 1,2

j i

V t V
i j


  

 
 

  
and T  means transposition. 

with reference to Afanasev et al. [38], the subsequent theorem is true. 

Theorem 4. Suppose a function 0
2( , ) ( )V t C   occurs that meets the criteriaoutlined below 

1 2( , )
p p

K V t K    ; 3( , ) , 0, 0
p

iLV t K K p    
         

(13) 

Then the trivial solution of (14) is exponentially p-stable for 0t  .  

Also, if 2p  in (13), then the trivial solution of (11) is globally asymptotically stable. 

Theorem 5. Assuming that 
*

2 * 2 2
1 1 2* *

1 1

1
2 ,

n
n

n A bn

  
 
 

     
then the zero solution of (11) is 

asymptotically mean square stable. 

Proof: We assume the Lyapunov function  2 2
1 1 2 2

1
( ) , 0

2 iV w w w       (14) 

The inequality of (13) holds valid for 2p   and there is 
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 

2

* *
1 1 1 1 2 1*

1

* * 2
2 2

2 1 2 22 * 2*
11

1
( )

1
( ) ( )

2
T

LV w n u n
n A

b n n V
w Tr g g

bnbn

    


     
 

   
          

                    

          

(15) 

We can easily observe that
2

1

2
2

0

0

wV

w
 

    
 and thus

22
1 1 1

2 2
2 2 2

0
( ) ( )

0
T wV

g g
w

 
 

  
 

    
 

with 
2

2 2 2 2
1 1 1 2 2 22

1 1
( ) ( )

2 2
T V

Tr g g w w     


        
    (16) 

If in (15) we choose 
 

2*
* 2
1 1 22*

1

b n
n w w

bn








 

*
* 2 2 2 22

1 1 1 1 2 2 2* *
1 1

1 1 1
( )

2 2

n
LV w n w

n A bn

     
 

    
                  

 

We get the conclusion that the model (10)'s trivial solution is globally stable using Theorem 5. 

 

6 Numerical Simulations 

Real-world data's significance cannot be disputed. However, gathering information from the field requires a lot 

of effort and time. This may also be significantly impacted by the current economic situation. Therefore, we 

are using certainhypothetical information here to validate the results of our analysis. The ecological growth of 

this kind of model is always significantly influenced by numerical validation. In order to simulate this study, 

we therefore adopted a qualitativeapproach instead of a quantitative perspective. These simulations were 

carried out using the MATLAB programme.  

Example 1. For the scheme (2), we assume that the basic variables have amounts of

1.76144, 309.6, 0.101, 0.258, 0.9048, 81.1, 2.4, 0.988 ,b             

0.725,E  and various values of Allee effect A . Fig. 1 shows that the system lacks its stability at an interior 

equilibriumpoint if 0.2, 0.23,A  and 0.25 . Fig. 2 shows Hopf bifurcation for threshold value of Allee 

parameter 0.2.A   
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(a) 

 

(b) 

 

(c) 

Fig. 1 (a), (b), and (c) are time trajectories and phase portraits of scheme (2) with variousamounts of Allee effect 

0.2, 0.23,A  and 0.25.  
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Fig. 2 The diagram for Hopf-bifurcation of system (2) for threshold value of 0.2.A   

 

Example 2. We take the values of the basic parametersfor the system (2) as 

1.96144, 309.6, 0.702, 2.72, 0.258, 1.9545, 45.5, 4.65, 0.978.A b              
and various values of Harvesting effort 1.87,E  and 1.89 . Fig. 3 shows that the system lacks its stability 

at an interior equilibrium point if 1.89E  . Fig. 4 shows Hopf bifurcation for threshold value of harvesting 

effort 1.89.E   

 

      (a) 

 

      (b) 

Fig. 3 (a) and (b) are time trajectories phase portraits of scheme (2) for variousamounts of harvesting effect 1.89, 1.87.E   
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Fig. 4 The diagram for Hopf-bifurcation of system (2) for threshold value of 1.89.E   

 

 

Example 3. Consider the parameter values as being comparable to Example (1), and as indicated in Fig. 5, we 

selected various white noise strengths. When the noise level is not too high, the deterministic model's 

characteristics are preserved by the stochastic model. The population may begin to fluctuate significantly when 

the noise levels are excessivelyhigh. We use the stochastic model (10) in this case to show how the population 

is dynamic. 

 

 

(a)                        (b) 
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             (c)                         (d) 

Fig. 5 Numerical simulation of scheme (10) with Allee effect for (a) 1 2 0 ,   (b) 1 20.1, 0 .4,   (c)

1 20.4, 0 .6,   and (d) 1 20.7, 0 .9.   The other parameters are same as in Fig. 1.  

 

 

The stability changes whenthe parameter values for A  and E are slightly altered, as seen in Figs 2 and 4. 

Consequently, when 1.89E  a change in harvesting policy is also essential. Fig. 3 illustrates how the 

population reactions to varying amounts of harvesting vary. 

 

7 Conclusions  

This study examines the effects of an additive Allee effect on the prey growth function with a constant effort 

harvesting rate in predators using animproved Lesi-Gower predator-prey system. The system (2)'s positivity 

and boundedness are discussed first. The local stability of the requirements for scheme (2)'s potential 

equilibrium are developed and discussed. Also covered is the examination of global stability and harvesting 

standards. We produced different bifurcation diagrams with variable values of the system's characteristics to 

study the Allee effect and the harvesting effect on the system. Due to the important roles that Allee and 

harvesting effects play in a system's dynamic behaviour, it is crucial to study both species' long-term 

survival.We have developed the stochastic form of the scheme (2) in order to account for the impact of the 

changing environment. Asymptotic mean square stability requirements were then defined for the resulting 

model (10) and derived. According to the conclusions mentioned above (theorem 5), for ecological balance to 

be maintained in nature, both the deterministic and stochastic stability conditions must be met. It might be 

intriguing and useful for future work to examine how Allee effects affect the behaviours of predator-prey 

relationships in both populations and in a model of optimal control for harvesting. 
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