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Abstract 

This study aims to examine the dynamical behavior of Caputo fractional order generalized Richards growth 

model with delay. In order to transition from continuous time model to a discrete version, piecewise constant 

arguments are added to the model and thus system of difference equation are obtained from the solutions of the 

model in the sub-intervals. We obtain an algebraic condition where the positive equilibrium point of the 

discrete model with respect to changing parameter r is locally asymptotically stable. Moreover, it has been 

theoretically proven that the Neimark-Sacker bifurcation occurs at the positive equilibrium point of the discrete 

system and the direction of this bifurcation has been determined. In addition, discretized generalized Richards 

growth model is also considered on the globally coupled network with N=10 nodes. Numerical simulations 

have revealed that thecoupling strength parameter c plays a key role in the dynamical behavior of the node 

with the highest degree in such a complex network. Numerical simulations are performed to demonstrate the 

stability, bifurcations and dynamic transition of the coupled network. 
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1 Introduction 

The Gompertz model is one of the most frequently used models fitted to growth data and other data in the 

literature along with the logistic model. The Gompertz model includes more parameters than other growth 

models which makes it more flexible than other models and gives more consistent results with observed data.  

In the literature, there are many successful applications of the Richards growth model in fields such as plant 

growth, bird growth, fish growth, tumor growth, bacterial growth, epidemiology and other fields (Cornejoet al., 

2023; Tjrve and Tjrve, 2017; Maunder et al., 2018; Golmankhaneh et al., 2024; Telekena et al., 2018; Hsieh, 

2009; Hsieh and Chen, 2009; Lopez et al., 2004; Hsieh, 2010, He et al., 2023). 
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The classical Richards growth model can be defined via following differential equation: 

dN t
dt

rN t 1
N t
K

                                                                                                                                           1  

The more general form of the model (1), named the generalized Richards growth model, is  

dN t
dt

rN t 1
N t
K

                                                                                                                                        2  

where r is the maximum intrinsic rate of increase of N, K is the upper asymptote of N and β is an 

additional parameter in the Richards equation introduced as a power law so that it can define asymmetric 

curves and p is known as the deceleration of growth parameter which captures different early stages of the 

model. 

In recent years, the increasing popularity of fractional order derivatives has brought a new perspective to 

the modeling of physical and biological processes. Dynamical systems with fractional order derivatives that 

can reflect the long memory and hereditary properties give more consistent results with real data than 

mathematical models with ordinary differential equations. Many biological and physical processes are 

successfully modeled in fields such as biology (Amilo et al., 2023), physics (Zhou et. al., 2020), chemistry 

(Veeresha, 2022) and complex network (Singh, 2022). In the study of Amilo et al. (2023), the authors 

considered dynamics of lung cancer and showed that the model with fractional order derivative contribute to a 

more accurate representation of the disease’s progression and potential therapeutic interventions. On the other 

hand, the fact that fractional order differential equations are defined by an integral causes difficulty in finding 

analytical solutions of these equations. In addition, we need difference equations for describing the dynamical 

behaviors such as chaos in one and two dimensions. One of the procedure to transition from the 

continuous-time fractional order dynamical system to the discrete-time version is the use of piecewise constant 

arguments (El Sayed and Salman, 2013; Matouk et al., 2015; Zhang et al., 2016; El Sayed et al., 2016; El 

Sayed et al., 2017; El Sadany and Matouk, 2015; Matouk and Elsadany; 2016; Elsayed et al., 2007; Selvam 

and Janagaraj, 2016; Agarwal et al., 2013; El Sayed et al., 2014; El Rahem and Salman, 2014). El Sayed and 

Salman (2013) analyzed the dynamical behavior fractional order Riccati differential equation with piecewise 

constant arguments. Fractional order Hastings-Powell food chain model is discretized by using piecewise 

constant arguments and existence of some dynamical behaviors such as bifurcation and chaos in discrete time 

model are proved (El Sayed and Salman, 2013). On the other hand, differential equation with piecewise 

constant arguments are also closely related to delay differential equations. El Sayed et al. (2016) discretize 

fractional order delay Mackey-Glass equation using piecewise constant arguments and obtain system of 

difference equations. They provide that the model exhibits more complex dynamics after the discretization. 

The complex network, that are a set of many connected nodes interacted in different ways, provides a 

useful method for analyzing complexity of a large number of real complex systems. There are many different 

types of networks such as globally coupled network, star network, Erdos-Renyi network in the literature where 

each node represents a nonlinear dynamical system (Wang et al., 2017; Huang et al., 2019; Li et al., 2004; 

Nepomuceno and Perc, 2015; Ahmed and Matouk, 2006; Zhang et al., 2006; Zhang, 2018). In these studies, 

complex dynamical behavior such as synchronization, control of dynamical networks, the epidemic of disease, 

transition chaos is studied. 

The fractional-order delay Richards growth model can be defined as follows: 

D N t rN t τ 1
N t τ

K
                                                                                                                      3  
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If the piecewise constant arguments are used in the place of the term t τ  as   we obtain 

D N t rN
t h
h

h 1
N h

K
                                                                                                     4  

with the initial condition N 0   =  N  where N t  is a value of a measure of size or density of an organism or 

population, β is additional shape parameter, p is deceleration of growth parameter,K is the carrying capacity, 

t denotes the integer part of t 0,∞  and h is discretization parameter.. 

The purpose of this study is to examinestability and bifurcation analysis of the fractional order generalized 

Richards growth model (4) after the discretization procedure. In addition, the discretized model also considers 

the globally coupled network. 

 

2 Local Stability Analysis 

Let t 0, h , then 1,0 . So we get 

D N t rN 1
N
K

, t 0, h , 

and the solution (4) is given by 

N t N I rN 1
N
K

N
t

Γ 1 α
rN 1

N
K

. 

Let t h, 2h , then 0,1 . So we get 

D N t rN 1
N
K

, t h, 2h , 

and the solution (4) is given by 

N t N h I rN 1
N
K

N h
t h
Γ 1 α

rN 1
N
K

. 

Repeating the process we can easily deduce that the solution of (4) is given by 

N t N nh
t nh
Γ 1 α

rN nh 1
N

K
, t nh, n 1 h . 

Let  t n 1 h , then we have 

N n 1 h N nh
h

Γ 1 α
rN nh 1

N

K
. 

If we introduce x = N  and y = N , then we have 

x x
h

Γ 1 α
ry 1

y
K

y x

                                                                                                               5  

Now, the equilibrium point of the system (5) is easily calculated as x , y K, K .The following theorem 

gives necessary and sufficient algebraic conditions where the equilibrium point is local asymptotically stable. 
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Theorem 1: The equilibrium point x , y K, K of system (5) is local asymptotically stable if and only if 

 0
h Γ α 1 K

β
.                                                                                                                                                6  

Proof 1: The Jacobian matrix calculated at positive equilibrium point x , y K, K  of system (5) is 

J 1
h rβK
Γ α 1

1 0
 

and the corresponding characteristic equation is 

λ p λ p 0                                                                                                                                                                  7  

where 

p 1                                                                                                                                                                                    8  

and 

p
h rβK
Γ α 1

.                                                                                                                                                                   9  

Now, we can use the following conditions, which are called Schur-Cohn criterions, to studied asymptotic 

stability analysis of the positive equilibrium point of the system (5). 

i 1 p p 0, 

ii 1 p p 0, 

iii 1 p 0. 

From i) and ii) we have  

1 p p
h rβK
Γ α 1

0, 

and 

1 p p 2
h rβK
Γ α 1

0 

respectively. Under the condition r
K

 , we hold 

1 p 1
h rβK
Γ α 1

0. 

This completes our proof. 

 

3 Neimark Sacker Bifurcation Analysis 

In this section, we deal with the existence and direction of Neimark-Sacker bifurcation about the positive fixed 

point for the discrete system (5). The theoretical background of this bifurcation and its applications can be 

found in studies (Guckenheimer and Holmes, 1983; Din 2017; Din 2017).  

Theorem 2: System (5) undergoes Neimark-Sacker bifurcation at the fixed point x , y K, K . Moreover, 

if k < 0 then an attracting invariant cycle will appear for 0 r r , if k > 0 then a repelling invariant cycle 

will appear for r r . 

Proof 2: From the solution of equation 1 p 0 with respect to parameter r, the critical Neimark-sacker 

bifurcation point is obtained as 

r r
h Γ α 1 K

β
.    10  

On the other hand, characteristic equation of the linearized system at the positive fixed point gives the 

eigenvalues as follows. 
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λ ,
1
2

i
Γ α 1 K 4h rβΓ α 1 K

2Γ α 1 K
.                                                                                            11   

For r r , these eigenvalues leads to 

λ ,
1
2

i√3
2

|a ib| 1. 

The transversality condition  

d λ , r
dr

|
h βK
2Γ α 1

0                                                                                                                                     12  

is always satisfied for all parameter values. In addition, nonresonance conditions is always satisfied for  

p 0,1.  

Let u x x and v y y  , then the system (5) is transformed into 

u
v

1 1
1 0

u
v  

f u, v
f u, v                                                                                                                                   13  

where 

f u, v m u m uv m v m u m u v m uv m v O |u| |v|  

f u, v m u m uv m v m u m u v m uv m v O |u| |v|  

and 

m m m m m m m m m m m m 0 

m
α 1 2p β
2Γ α 1 K

 

m
2 3 2 p p 3β 3pβ β Γ α 1

6αK
. 

By using transformation 
u
v T X

Y
, then the map (13) rewritten as the following form 

X
Y

a b
b a

X
Y

 
F X, Y
F X, Y                                                                                                                                14  

where 

T
√3
2

1
2

0 1
 

F X, Y
Y 2 6p 3p 3β 3pβ β Γ α 1

3√3αK

Y α 1 2p β

√3Γ α 1 K
O |u| |v|  

F X, Y 0. 

The constant k, which will determine the direction of the Neimark-Sacker bifurcation, can be calculated using 

the following equation. 

k Re
1 2λ λ
1 λ

ξ ξ
1
2
|ξ | |ξ | Re λξ

2α 1 2p β 2 3 2 p p 3β 3pβ β Γ α 1
16α Γ α 1 K

                                                   15  

where 

ξ
1
8

F XX F YY 2F XY i F XX F YY 2F XY
α 1 2p β

4√3Γ α 1 K
, 

ξ
1
4

F XX F YY i F XX F YY
α 1 2p β

2√3Γ α 1 K
, 
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ξ
1
8

F XX F YY 2F XY i F XX F YY 2F XY
α 1 2p β

4√3Γ α 1 K
, 

ξ
1
16

F XXX F XYY F XXY F YYY i F XXX F XYY F XXY F YYY  

     
i 2 3p 3p 2 β 3β β Γ α 1

8√3αK
. 

 

 

Fig. 1 Phase portraits of the discrete model (5) with respect to parameter r for r 1.5 (a), r 2.1 (b), r 2.29504 (c), 

r 2.35 (d) r 2.5 (e), r 2.6 (f) where α=0.99, β=0.7, K=8, h=0.5, p=1.1, x(1)=y(1)=5. 

 

Fig. 2 Bifurcation diagram of the discrete system (5) in accordance with parameter r, where α 0.99, β 0.7, K 8, h

0.5, p 1.1, x 1 y 1 5. 
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Fig. 3 Bifurcation diagram of the discrete system (5) in accordance with parameter p, where α 0.99, β 0.7, K 8, h

0.5, r 1.2, x 1 y 1 5. 

 

 

 
Fig. 4 Bifurcation diagram of the discrete system (5) in accordance with parameter β, where α 0.99, p 1.1, K 8, h

0.5, r 1.2, x 1 y 1 5.   
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4 Dynamical Analysis of The Model on Globally Coupled Network 

Let’s consider the equation (5) as the following form: 

x k 1 x k r y k 1
y k
K

h
Γ α 1

f x k , y k

y k 1 x k g x k , y k

                                                        16  

Consider a globally coupled dynamical network of N linearly and diffusively coupled nodes, where each node 

is a two-dimensional discretized fractional-order delay Richards growth model (5). So, the state equations this 

network is defined by 

x k 1 f x k , y k c a f x k , y k

N

y k 1 g x k , y k c a g x k , y k

N                                                                                        17  

where i and j are the sequence number of the nodes and c describes the coupling strength of the network. 

The coupling matrix A RN N can be expressed by 

A

1 N 1 1 1
1 1 N 1 1
1 1 1 N 1

…
1 1 1 1 N

                                                                                                           18  

The system (17) can be written in matrix form as follows: 

X I cA f X k , Y k

Y I cA g X k , Y k
                                                                                                                                    19  

where X x k , x k ,… . xN k , Y y k , y k ,… . yN k   and I RNXN identity matrix. 

 
Fig. 5 Globally coupled network with N 10 nodes. 
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Fig. 6 Neimark-Sacker bifurcation in the global coupled network in accordance with parameter c, where α=0.99, β=0.7, K=8, 

h=0.5, p=1.1, r 2.2 and N 10. 

 

5 Results and Discussion 

In this study, fractional order delay Richards growth model (3), which is a more general version of the logistics 

model, is considered. By replacing delay parameter in model (3) with piecewise constant arguments leads to 

system of difference equation (5). The algebraic condition (6) in Theorem 1 gives the local asymptotic stable 

region of the positive equilibrium point x , y K, K  of the discretized model (5) with respect to growth 

rate parameter r . For the numerical simulations, we take the parameter values as α 0.99, β 0.7, K 8,

h 0.5, p 1.1  and x 1 y 1 5. The stability region according to the change of the parameter r is 

obtained as r 2.29504. It can be easily seen in the Figure 1a and 1b that, the fixed point (8,8) of the system 

(5) is local asymptotically stable.  

To demonstrate the existence of the Neimark-Sacker bifurcation at the positive equilibrium point and 

determine its direction, we analysis the eigenvalue assignment, transversality and non-resonance conditions 

and compute value of k. All of these conditions show that system (5) undergoes Neimark-Sacker bifurcation 

about the positive fixed point. For the above numerical values of the parameters, the critical Neimark-Sacker 

bifurcation is obtained as r 2.29504 from the solution of the equation 1 p 0. In addition from the 

equation (12) and the condition p 0,1, transversality and non-resonance conditions are always satisfied for 

all of the positive parameter values. Fig. 1c and Fig. 2, show the Neimak-Sacker bifurcation in discretized 

model (5) at the positive equilibrium point. From the equation (15), the value of k that determines the 

direction of the Neimark-Sacker bifurcation is calculated as k 0.00723392 which show the existence of 

supercritical Neimark-Sacker bifurcation.  

In order to see the effect of the deceleration of growth parameter parameterp and additional shape 

parameterβ on the dynamic structure of the system, we can again plot bifurcation diagram with respect to 

parameter p  and β  respectively. Fig. 3 and Fig. 4 show the similar dynamical behavior, which is 

Neimark-sacker bifurcation, with respect to changing the parameter p and β where bifurcation point is 

p 1.41183 and β 1.33877 .  

We also deal with globally coupled network with N 10 nodes where each node in a complex network 

represents the discrete dynamical system (5). Such a network can be seen in Figure 5. Now, the state equations 
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this complex network are the system (19) with N 10 dimension where the coupling matrix A is  

A

9 1 1 1 1 1 1 1 1 1
1 9 1 1 1 1 1 1 1 1
1 1 9 1 1 1 1 1 1 1
1 1 1 9 1 1 1 1 1 1
1 1 1 1 9 1 1 1 1 1
1 1 1 1 1 9 1 1 1 1
1 1 1 1 1 1 9 1 1 1
1 1 1 1 1 1 1 9 1 1
1 1 1 1 1 1 1 1 9 1
1 1 1 1 1 1 1 1 1 9

 

Now let's consider the nodes with the highest degree in the globally coupled network with N 10 nodes. In 

the global coupled network with N 10, all nodes have equal degrees and their degrees are 9. Fig. 6 shows 

that if the coupling parameter  reaches the some critical value where it is interval c 0.007, 0.017  , then 

Neimark-Sacker bifurcation occurs about the positive fixed point. 
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