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Abstract  

Houseflies (Musca domestica) (Diptera: Muscidae) are medically important insect species because they serve 

as vectors of pathogens. The study generally described the sexual dimorphism of M. domestica based on their 

wing size and wing shape. This study examined 25 males and 25 females of F1 offspring from wild-caught M. 

domestica parents. The wings were digitized and 17 landmarks were obtained, scaled, translated, and rotated in 

General Procrustes Analysis. The wing size (centroid size) of male M. domestica species was significantly 

larger compared to females (t = - 2.38, df = 48, p = 0.0200). Principal Component Analysis (PCA) and 

Relative Warp Analysis (RWA) revealed that 29.72% of shape variation from the original data was attributed 

to a narrow wing shape, and 14.60% toa broad wing shape. Discriminant Function Analysis (DFA) 

successfully distinguished female and male species based on wing shape, in which males have narrower wings 

compared to females, indicating the occurrence of sexual dimorphism in wings. 
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1 Introduction 

Houseflies, Musca domestica (Diptera: Muscidae), are “nuisance” species and one of the economically and 

medically important insect species of the order Diptera. Houseflies exist in people’s homes, poultry, cattle, 

supermarkets, dumpsites, inside malls, and other establishments where humans inhabit the area. Furthermore, 

M. domestica also serves as vectors of different pathogens and helminths (Iqbal et al., 2014; Khoso et al., 2015; 

Tardelli et al., 2004). 

Sexual dimorphism is evident in almost all animals, especially in insects (Laporte, et al., 2018). It has been 

renowned as a major factor in identifying phenotypic differences between species of the same taxon. 

Describing the sexual dimorphism in insects provides information about the behavior, evolution, selection, and 
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overall fitness of an organism (Cabuga et al., 2017). In houseflies, sexual dimorphism in wings is poorly 

understood due to similarities in wing morphological structures. Likewise, sexual dimorphism in M. domestica 

was based on the morphological characteristics such as the distance of compound eye, arrangement of bristles 

(Chaetotaxy), number of spiracles, and extraction of genitalia. Sex differentiation based on these traditional 

methods is prone to misinterpretation. On the contrary, molecular methods provide accurate information to 

describe sexual dimorphism. Nonetheless, detecting variation among species and between sexes at the 

molecular level is expensive and requires rigorous training. Thus, Geometric Morphometric (GM) analysis 

provides an alternative approach that is complementary to molecular methods at the lower cost.  

There were no published data about sexual dimorphism based on wings of laboratory-reared M. domestica 

using GM analysis, especially in Davao region, Philippines.Previous studies on these species in relation to GM 

analysis were based on morphometric variations related to geographical locations (Alves and Belo, 2002), 

fluctuating asymmetry (Floate and Fox, 2000; Ludoski et al., 2014), and morphometric and genetic 

characterization (Pastor et al., 2014). Furthermore, the abovementioned studies were mostly focused on 

wild-caught species. Thus, this study focused on describing the sexual dimorphism based on wing size and 

wing shape of laboratory-reared M. domestica using landmark-based geometric morphometrics. Furthermore, 

the present investigation also determined the wing centroid size and wing shape variation of M. domesetica. 

 

2 Methods 

2.1 Description of the study area 

The wild-caught parents of laboratory-reared houseflies were collected from Panabo City Public Market 

located at Barangay Santo Niño, Panabo City, Davao del Norte, Philippines (70 18’ 22.14” N and 1250 41’ 

01.41” E). The area was selected because houseflies were attracted to this type of environment where all of 

their possible food sources were available. Furthermore, the presence of these houseflies might contribute to 

food contamination if food handling is not practiced correctly (Khoso et al., 2015). 

The collections site has stalls for fish, fruits, vegetables, and livestock. Moreover, the site was allocated 

with garbage bins which can be plausible for breeding sites of wild-type houseflies. Houseflies at larval and 

mature stages were observed in poultry farms, garbage, slaughterhouses, and fish markets (Iqbal et al., 2014).  

Among the Muscidae family, M. domestica is the most abundant fly species found in fresh markets (Khoso et 

al., 2015). The adult houseflies were collected by placing the breeding confinement with chicken manure bait 

on the different areas of the sampling site where houseflies usually thrived. The number of houseflies 

collected was large enough to ensure a higher chance of mating and oviposition rate. Furthermore, an insect 

net was utilized to obtain a large number of specimens (Alves and Belo, 2002; Ludoski et al., 2014; Espra et 

al., 2015). 

2.2 Breeding confinement set-up 

There were two confinements for laboratory-reared M. domestica, the breeding confinement, and the pupation 

confinement. The breeding confinement has a dimension of 30 cm x 30 cm x 30 cm (Length x Width x Height), 

made up of wire mesh for walls, and the flooring consisted of plywood with an ovipositional substrate installed 

on top (Fig. 1). Furthermore, the flooring of the enclosure was filled with a food source for the flies,which was 

a mixture of powdered milk and sugar, to ensure the survival of the samples in the confinement. 

The ovipositional substrate (Fig. 2) was comprised of cardboard paper (16 cm x 4 cm) and had cotton wool 

that was soaked in milk (Nakamura et al., 2015). The pupation confinement was designed for the larvae to 

pupate after they were hatched from the oviposition case. The pupation confinement had dimensions 20 cm x 

20 cm x 20 cm. Its flooring was filled with rearing medium which was composed of a mixture of 100 g wheat 

bran, 10 g dried yeast, and 240 mL of water that served as the food source for maggots to ensure successful 
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to avoid errors during the process. Each point selected in the digitization process corresponded to the 

anatomical landmarks of the specimen. The anatomical landmarks of M. domestica (Fig. 3) were identified 

based on the intersections of wing veins with wing margin, the junction of the cross vein with the major vein, 

and some vein branch points (Mondal et al., 2015; Espra et al., 2015; Pastor et al., 2014). The descriptions of 

landmark points (Table 1) were based on the wing vein labels following the accepted usage among 

dipterologists. 

 

 

Table 1 Landmark description of M. domestica wing veins. 

 

 

2.7 Wing size analysis 

Wing size or centroid size is the general measure of M. domestica wing size, which is the square root of the 

sum of the squared distances of all landmarks from the center of each configuration (Alves and Belo, 2002; 

Sontigun et al., 2017). The centroid size of male and female M. domestica wings were obtained from the 

Procrustes superimposition in gpagen function under ‘geomorph’ package in R (Adams et al., 2018). Moreover, 

the wing centroid size according to sex was described using the mean, standard deviation, and maximum and 

minimum values. In addition, the centroid size of the male and female specimens was compared using the 

t-test. Scatterplot and boxplot were utilized to visualize the descriptive statistics of wing size according to the 

sex of M. domestica. The data were analyzed using R statistical programming software (R Core Team, 2022). 

2.8 Analysis of wing shape variation 

The landmark points from the digitization process were converted into two-dimensional coordinates and these 

configurations were scaled, translated, and rotated in Procrustes superimposition through General Procrustes 

Analysis (GPA) (Mitteroeckerand Gunz, 2009). The GPA is an important technique because it removes the 

variation in digitizing the location, orientation, and scale of each specimen. Furthermore, the GPA 

superimposed these specimens in a common coordinate system (plots) or tangent space (Adams et al., 2004). 

The scores (points) on the axes of the coordinate system were treated as multivariate data that represented the 

Landmark points Wing vein character

1 Humeral cross vein

2 Subcostal vein

3 Distal end of first longitudinal vein

4 Distal end of second longitudinal vein

5 Distal end of third longitudinal vein

6 Distal end of fourth longitudinal vein

7 Intersection between posterior cross vein and fourth longitudinal vein 

8 Intersection between posterior cross vein and fifth longitudinal vein 

9 Intersection between third basal vein and sixth longitudinal vein 

10 Intersection between distal end of second and third basal cell 

11 Proximal origin of fifth longitudinal vein

12 Intersection between the distal end of basal cell and 
proximal origin of fourth longitudinal vein 

13 Intersection between anterior cross vein and fourth longitudinal vein 

14 Intersection between anterior cross vein and third longitudinal vein 

15 Intersection between the proximal origin of second and third longitudinal vein 

16 Proximal origin of first longitudinal vein

17 Intersection between humeral cross vein and proximal origin of subcostal vein 
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shape variables and were used in multivariate analyses (Adams et al., 2004). 

The plots of landmark positions after Procrustes superimposition were useful to assess the wing shape 

variation of the data. However, these are not suitable for a complete examination of the variation in the data 

because Procrustes superimposition cannot show covariation among landmarks and therefore, hide a 

fundamental aspect of the variation in the morphometric data (Klingernberg, 2013). Hence, the superimposed 

coordinates obtained from Procrustes superimposition were analyzed using multivariate analyses. The wing 

shape variation of M. domestica individuals was determined using Principal Component Analysis (PCA). The 

PCA is one of the ordination methods that simplify descriptions of shape variation among individuals 

(Pepinelli et al., 2013). 

Furthermore, the visualization of shape variation between sex of M. domestica specimens was performed 

utilizing ‘ggplot2’ package (Wickham, 2009) in R, in which the first two PC scores were plotted (PC 1 on the 

X-axis, PC 2 on the Y-axis). Following the method of Alves and colleagues (2016), the first two PC scores 

were selected and analyzed through Relative Warp Analysis (RWA) in MorphoJ software version 1.06d 

(Klingenberg, 2011). The analysis was done to visualize the wing shape change from the average wing shape 

configuration. Furthermore, the effect of wing size in each PC was estimated through multivariate regression 

using MorphoJ, in which the dependent variable was the PC score, and the independent variable was the 

centroid size (Sontigun et al., 2017). 

2.9 Sexual dimorphism in wings 

The analysis of sexual wing shape dimorphism was performed under MorphoJ software (Sontigun et al., 2017). 

Procrustes Analysis of Variance (Procrustes ANOVA) was performed to determine the significant difference 

between wing shape and sex. Furthermore, multivariate regression with the permutation test of 10,000 rounds 

was implemented to estimate the effect of wing size on the wing shape of M. domestica based on sex. 

Moreover, the residuals from the regression of Procrustes coordinates on centroid size were used to assess the 

sexual shape dimorphism in wings without the effect of wing size. Continually, these residuals were subjected 

to leave-one-out cross-validation in Discriminant Function Analysis (DFA) (Sontigun et al., 2017; Cabuga et 

al., 2017; Klingenberg, 2011). DFA examined the separation between two groups of observations, which were 

in this study, female and male M. domestica. Lastly, the shape difference between sexes was visualized by 

comparing the mean shape of each sex generated from a wireframe graph in MorphoJ software (Klingenberg, 

2011). Furthermore, the Procrustes and Mahalanobis distance between two shape configurations was 

calculated as a measure of shape difference (Mitteroeckerand Gunz, 2009; Sontigun et al., 2017).  

 

3 Results 

3.1 Wing centroid size 

The study reveals that the wing centroid size of M. domestica individuals (n=50) is 5.49 mm ± 0.40 mm (mean 

± SD), with exact maximum and minimum values of 6.20 mm and 4.50 mm, respectively. Moreover, female 

houseflies (n=25) exhibited an average wing size of 5.36 ± 0.37 mm, with exact maximum and minimum 

values of 6.10 mm and 4.57 mm, respectively. Conversely, males (n=25) demonstrated an average wing size of 

5.62 ± 0.39 mm, with exact maximum and minimum values of 6.20 mm and 4.50 mm, respectively (Fig. 4). 

Moreover, t-test analysis indicates a significant difference between the wing sizes of female and male 

houseflies (t = - 2.38, df = 48, p = 0.02). Therefore, in this paper, the wing size of male M. domestica was 

significantly higher compared to female M. domestica. 
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Fig. 4 Centroid size comparison of male and female M. domestica. 

 

 

3.2 Wing shape variation 

Principal Component Analysis (PCA) determined the wing shape variation of M. domestica individuals 

quantitatively. Fig. 5 shows the scatterplot in which the PCA scores from superimposed coordinates were 

plotted. The X and Y axes represented the shape variation (PC scores) of superimposed coordinates. Each data 

point represented the location of M. domestica individuals in the shape space. A total of 30 PC scores (shape 

variables) were generated from the analysis and only the first two PC scores with the highest variations were 

selected. The first PC axis represents 29.72 % of shape variation while the second PC represents 14.60 % of 

shape variation, which accounted for 44.32% of overall shape variation from the original data (Fig. 5a). In 

addition, the spread of female M. domestica individuals in shape space is more dispersed compared to males; 

suggesting that shape variation in female houseflies is more evident compared to males (Fig. 5b). Moreover, 

the distribution of male houseflies in PC 1 was highly clustered on the positive axis while in the female 

population, scores were clustered more on the negative axis. In PC 2, the distribution of both sexes was 

clustered in the positive and negative axis. Therefore, there were phenotypic distances between female and 

male M. domestica individuals. However, overlapping in the confidence ellipses of male and female shape 

variables specified that there were some shared traits within the individuals of M. domestica (Fig. 5b). 

Moreover, the wireframe graph of PC 1 shows that the proximal (landmarks 1, 2, 3, 16, and 17), and 

posterior (landmarks 7 and 8) part were displaced toward the center of the wing. Furthermore, the distal 

(landmarks 4, 5, and 6) part of the wing margin showed displacement towards the tip of the wing. Overall, the 

displacements of the landmarks in PC 1 gave a shorted wing blade (vs mean shape); hence, the wing shape of 

the first PC score could be attributed to a narrow wing shape (Fig. 6a). Furthermore, the graphical 

reconstruction of the wing shape reveals that the proximal (landmarks 1,2,16, and 17) and posterior (landmarks 

7 and 8) part of the wing margin expanded the wing blade. Likewise, the distal part of the wing (landmarks 4, 

5, and 6) moves towards the base of the wing; hence, PC 2 exemplified an enlarged wing (Fig. 6b). In general, 

the two PC scores of shape variables suggest that the housefly population have two distinct wing shape 

patterns, the narrow shape (represented by PC 1), and the broad shape (represented by PC 2).  
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Fig. 5 Wing shape variation within M. domestica samples. (a) wing shape variation per individual, (b) wing shape variation 

according to sex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Graphical reconstruction of the wing showing (a) PC1 (narrow wing shape); (b) PC2 (broad wing shape). 

 

 

Further, Procrustes Analysis of Variance (Procrustes ANOVA) revealed a significant difference between 

the wing shape variables and sex of laboratory-reared M. domestica (F = 3.76, df =30, p = 0.0001). Hence, the 

wing shape of M. domestica is significantly distinct between male and female populations. Furthermore, the 

performed multivariate regression estimated the effect of wing size on the wing shape between sex. The 

regression of Procrustes coordinates (wing shape) on the centroid size (wing size) pooled within sex showed 

that wing allometry explained 3.60% of total shape variation. However, the association between wing size and 

wing shape showed no significant relationship (p=0.681). Therefore, the wing shape difference between sex 

was independent of the wing size of M. domestica individuals. 

3.3 Sexual dimorphism in wing shape 

Discriminant Function Analysis (DFA) correctly allocated 100% of the specimens to both female and male 

houseflies. The reliability of the analysis was assessed by leave-one-out cross-validation and correctly assigned 
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4 Discussion 

The study aimed to determine the sexual dimorphism of M. domestica wings using the techniques of 

Geometric Morphometrics. In wing centroid size, results show that male houseflies have high centroid size 

compared to females. According to Ludoski and colleagues (2014), the centroid size in laboratory-reared M. 

domestica was significantly different according to sex (existence of wing sexual size dimorphism); however, 

their study did not determine which sex had larger wing size. Furthermore, data from Pastor et al. (2014) 

showed a significant difference between the wing size of three different strains of M. domestica, where two out 

of three strains had larger wings in females, while one strain showed males had larger wings compared to 

females. However, female houseflies may increase their wing size for adaptation in the selection of the best 

breeding sites with less expenditure of energy (Alves and Belo, 2002). In addition, Alves and Belo (2002) 

revealed that wing size significantly increases with high latitude in female M. domestica. Also, wing size is 

affected by environmental factors such as temperature, relative humidity, and food availability (Changbunjong 

et al., 2016). 

Wing shape data suggests that sexual dimorphism in M. domestica is apparent on the distal-posterior and 

proximal base regions of wing, and shape difference is highly evident in the center and distal-posterior portion 

of the wings. Therefore, these morphological traits can be used to distinguish male and female M. domestica. 

Likewise, these wing morphological characters may be important for insect dispersion, migration, and sexual 

selection (Espra et al., 2015). The distal-posterior region of the wings suggested to be important in 

aerodynamic performance and courtship song among dipteran species (Francuski et al., 2009). Similar results 

were reported in two species of blow flies (Cochliomyia hominivorax, and C. macellaria), in which sexual 

dimorphism showed that male wings were narrower compared to females (Sontigun et al., 2017).  Similarly, 

wing shape difference was noted between male and female blowflies, Lucilia sericata (Diptera: Calliphoridae) 

on the distal part of the wing margin and wing base (Espra et al., 2015). Likewise, wing shape dimorphism was 

significantly different between sexes of three species of Stomoxys (Changbunjong et al., 2016).The wing shape 

difference between sexes was correlated with elevation, precipitation, and temperature, and therefore wing 

shape results from the plastic response from local environmental conditions (Alves et al., 2016). The 

morphological differences between sex of species can make an advantage in terms of reproductive aspects, 

which either result in being attractive to the other sex or overthrowing the same sex in a competition (Cabuga 

et al., 2017). Also, sexual dimorphism can affect various functions during an organism’s lifetime such as 

feeding, mating, and parental care (Laporte et al., 2018). In fishes, a narrower shape is typically found in 

habitats requiring greater swimming activities (Laporte et al., 2018). Therefore, the narrow wing shape of male 

M. domestica species might be required for flight performance especially during maneuvering for selecting a 

potential mate in a limited confinement. 

Similarly, wing size and wing shape have different genetic properties the former has low heritability while 

the latter is less sensitive to environmental changes and highly heritable (Francuski et al., 2009). The observed 

wing shape differences between sexes could be due to random mating, population density, food preference, 

heat pressure, flight system, and flight kinematics (Cabuga et al., 2017). Similarly, the existing wing shape 

sexual dimorphism could be attributed to sexual selection among individual species (Cabuga et al., 2017). 

 

5 Conclusion 

The study found that wing size variation existed in the laboratory-reared M. domestica which indicated the 

presence of wing sexual size dimorphism. Furthermore, the wing size of M. domestica revealed that the male 

wing size was significantly larger compared to females. Furthermore, wing shape change showed that male M. 

domestica have narrower wings compared to females, which is vital for their reproduction. 
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