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Abstract 

The intricate relationship between human-induced carbon dioxide (CO2) emissions and the atmospheric 

temperature presents a multifaceted challenge with profound implications for the environment, ecosystems, 

and human societies. This research presents a novel fractional variable-order model that the impact of CO2 

emissions from human activities using Liouville-Caputo (LC), Caputo-Fabrizio (CF), and Atangana-Baleanu 

(AB) fractional derivatives. Existence and uniqueness of fractions solutions are established and numerical 

simulations have been carried out based on different set of parameters to study the effects of CO2 emission 

caused by human activities leading to global warming. 

 

Keywords carbon dioxide; fractional variable-order model; Liouville-Caputo; Caputo-Fabrizio; 

Atangana-Baleanu. 

 

 

 

 

 

 

 

 

1 Introduction 

Carbon dioxide, among other greenhouse gases like methane, nitrous oxide, and water vapor, plays a vital role in 

regulating the Earth's temperature.The essential function of these gases is to regulate the Earth's temperature by 

trapping heat and preventing its escape into space, similar to how a greenhouse's glass enclosure retains heat 

within.Human activities have significantly altered the natural balance of greenhouse gases in the atmosphere, 

particularly since the beginning of the Industrial Revolution in the 18th century. The burning of fossil fuels 

such as coal, oil, and natural gas for energy production, transportation, and industrial processes releases large 

quantities of CO2 into the air. The increase in atmospheric CO2 concentrations due to these human activities has 

led to a phenomenon known as the enhanced greenhouse effect. Rising CO2 levels result in increased retention of 

heat within the atmosphere, causing gradual warming of Earth's surface and lower atmosphere.This process is 

commonly referred to as global warming.The increase in temperature has caused changes in weather patterns, 
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resulting in more frequent and intense extreme weather events like heat waves, droughts, heavy rainfall, and 

modifications in ecosystems and biodiversity. 

 The adverse effects of automotive emissions on air quality and climate are emphasized, highlighting the 

necessity of stringent regulations and cleaner technologies (Engr and Thomas, 2015). The impact of 

industrialization and pollution on natural resource biomass is addressed, and advocate the sustainable 

development strategies that balance economic growth with environmental conservation (Dubey et al., 2003; 

Dubey and Narayanan, 2010). Carbon emission-related issues are explored through modeling and simulation 

(Tsai, 2019). The link between population dynamics and the increment of global carbon dioxide level are 

discussed (Onozaki, 2009). The rise of sea level due to global warming are elaborated (Shukla et al., 2017) and 

the interconnected processes that influence atmospheric carbon levels and oceanic carbon storage are at 

(Nikol'skii, 2010). Several investigations are made to reduce the carbon dioxide level in the atmosphere by 

forest management programs and using technological options for controlling anthropogenic carbon emissions 

(Verma and Gautam, 2022; Verma and Misra, 2018). Factors influencing atmospheric carbon dioxide levels 

are discussed, contributing to our understanding of climate change dynamics and the impact of human 

activities on the environment (Misra and Verma, 2013) 

 Fractional calculus is a branch of mathematical analysis that extends traditional calculus to include 

non-integer or fractional orders of derivatives and integrals. It has become a valuable tool in modeling 

complex systems across fields like physics, engineering, biology, and economics etc., and also used to 

simulate real world problems (Guo et al., 2017; Kumar et al., 2016). Variable order fractional differential 

equations represent a sophisticated extension of traditional fractional calculus, allowing for dynamic modeling 

of complex systems with varying degrees of memory and long-range dependence. These fractional 

variable-order operators have many applications in signal transmission, communication theory, hydrogeology, 

chemical kinetics, reaction theory, control systems and cryptography (Atangana, 2015; Alkahtani et al., 2016; 

Atangana and Alqahtani, 2016; Coronel-Escamilla et al., 2017; Atangana, 2015). 

 

2 Preliminaries 

This section provides some basic definitions of variable order fractional derivatives which are used in 

subsequent sections. 

Definition 2.1: The Liouville–Caputo (LC) fractional derivative with variable-order ߰ሺtሻ is defined as  

௧ܦ
நሺ୲ሻ 

଴
௅஼ ݂ሺݐሻ= 

ଵ

 ଵିநሺ୲ሻ
׬ ሺݐ െ ሻିటሺ୲ሻݑ
௧
଴ ݂ሺݑሻ݀0 , ݑ <߰ሺtሻ ≤ 1       

Definition 2.2: The Caputo–Fabrizio (CF) derivative with variable-order ߰ሺtሻ in Liouville–Caputo sense is 

defined as follows 

௧ܦ
టሺ୲ሻ

଴
஼ி ݂ሺݐሻ ൌ

ሺଶିటሺ୲ሻሻெሺటሺ୲ሻሻ

ଶሺଵିటሺ୲ሻሻ
׬ exp ሾ

ିటሺ୲ሻ

ሺଵିటሺ୲ሻሻ

௧
଴ ሺݐ െ  ሺtሻ<1߰> 0 , ݑሻ݀ݑሻሿ݂Ԣሺݑ

where ܯሺ߰ሺtሻሻ ൌ
ଶ

ଶିటሺ୲ሻ
 is a normalization function.  

Definition 2.3: The Atangana–Baleanu (AB) fractional derivative with variable-order ߰ሺtሻ  in 

Liouville–Caputo sense is defined as follows 

௧ܦ
టሺ୲ሻ

଴
஺஻ ݂ሺݐሻ ൌ

஻ሺటሺ୲ሻሻ

ሺଵିటሺ୲ሻሻ
׬ టሺ୲ሻ ሾܧ

ିటሺ୲ሻ

ሺଵିటሺ୲ሻሻ

௧
଴ ሺݐ െ  ሺtሻ ≤ 1߰> 0 , ݑሻ݀ݑሻటሺ୲ሻሿ݂Ԣሺݑ

where ܤሺ߰ሺtሻሻ ൌ 1 െ ߰ሺtሻ ൅
టሺ୲ሻ

 టሺ୲ሻ
 is a normalization function. 

Remark: When ߰ሺtሻ  is a constant, then we retrieve the constant-order fractional derivative in 
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Liouville-Caputo, Caputo-Fabrizio and Atangana-Baleanu sense. 

 

3 Model Formulation in Classical and Fractional Sense 

3.1 Classical model of Artificial Rain Making 

A mathematical model (ShyamSundar et al., 2022) has been developed to examine the effect of carbon dioxide 

to the environment caused by human activites. This model considers four state variables: N(t) represents the 

density of human population at time t, A(t) signifies the growth rate of cumulative density of human activities 

related factors at time t, C(t) indicates the concentration of carbon dioxide in the atmosphere at time t and T(t) 

denotes the average atmospheric temperature at time t. 

݀ܰ
ݐ݀

ൌ ݎ  ൬1 െ
ܰ
ܭ
൰ܰ െ ሺܶݏ െ ଴ܶሻܰ  

ܣ݀
ݐ݀

ൌ ܰߣ   െ  ܣߛ

ௗ஼

ௗ௧
ൌ  ܳ ൅ ܣߠ െ   (1)                         ܥߜ

݀ܶ
ݐ݀

ൌ  ߮ሺܥെܥ଴ሻ െ ߱ሺܶ െ ଴ܶሻ 

where ܰሺ0ሻ ൒ 0, ሺ0ሻܣ ൒ 0, ሺ0ሻܥ ൒ 0, ܶሺ0ሻ ൌ ଴ܶ ൒ 0. The growth rate of human population is represented by 

r and carrying capacity is represented by K. The constant s is the death rate coefficient of population density 

due to average atmospheric temperature. The constant ߣ is the growth rate coefficient of cumulative density 

A(t) of human activities related factors and ߛ is its depletion rate coefficient due to natural factors such as the 

inefficiency of these factors. Let ܳ be the constant input of carbon dioxide from natural sources and ߠ is its 

growth rate coefficient due to human activities related factors. ߜ represents natural depletion rate coefficient 

of carbon dioxide.The growth rate coefficient of temperature T with its natural depletion rate coefficient ߱ is 

represented by ߮. ܥ଴ is the threshold concentration of carbondioxide and ଴ܶ is the initial concentration of 

atmospheric temperature. 

3.2 Fractional version of the classical model 

By substituting the classical derivative with the operator 
ௗഗሺ೟ሻ௙ሺ௧ሻ

ௗ௧
 , the fractional model of the system (1) is 

obtained. 

݀టሺ௧ሻܰ
ݐ݀

ൌ   టሺ௧ሻݎ ൬1 െ
ܰ
ܭ
൰ܰ െ టሺ௧ሻሺܶݏ െ ଴ܶሻܰ  

ௗഗሺ೟ሻே

ௗ௧
ൌ λటሺ௧ሻN-γటሺ௧ሻܣ 

ௗഗሺ೟ሻ஼

ௗ௧
ൌ   ܳ ൅ ܣ టሺ௧ሻߠ െ  (2)                 ܥటሺ௧ሻߜ

݀టሺ௧ሻܶ
ݐ݀

ൌ  ߮టሺ௧ሻሺܥെܥ଴ሻ െ ߱టሺ௧ሻሺܶ െ ଴ܶሻ 

with initial conditions ܰሺ0ሻ ൒ 0, ሺ0ሻܣ ൒ 0, ሺ0ሻܥ ൒ 0, ܶሺ0ሻ ൌ ଴ܶ ൒ 0 . The equilibria of the above 

fractional-order model can be obtained from 

ௗഗሺ೟ሻே

ௗ௧
ൌ 0 , 

ௗഗሺ೟ሻ஺

ௗ௧
ൌ 0 ,

ௗഗሺ೟ሻ஼

ௗ௧
ൌ 0  ܽ݊݀ 

ௗഗሺ೟ሻ்

ௗ௧
ൌ 0 

It was observed that the system (1) has two equilibria, one of them is ܧ଴ ൌ ሺ0,0, ,଴ܥ ଴ܶሻ and the other one is 

כܧ ൌ ሺܰכ, ,כܣ ,כܥ  .ሻכܶ

217



Computational Ecology and Software, 2024, 14(4): 215-233 

 IAEES                                                                                     www.iaees.org

The Jacobian matrix of the system (2) is as follows 

J=

ۏ
ێ
ێ
ێ
ݎۍ
టሺ௧ሻ ቀ1 െ

ଶே

௄
ቁ െ టሺ௧ሻሺܶݏ െ ଴ܶሻ 0 0 െݏటሺ௧ሻܰ

టሺ௧ሻߣ െߛటሺ௧ሻ 0 0
0 టሺ௧ሻߠ െߜటሺ௧ሻ 0
0 0 ߮టሺ௧ሻ െ߱టሺ௧ሻ ے

ۑ
ۑ
ۑ
ې

 

The eigen values are the solutions of the characteristic equation detሺܣ௜ െ ሻܫߣ ൌ 0, where the matrix ܣ௜ and 

the unit matrix I with the eigen values calculated at ܧ଴ and כܧ. For further details of the results can be found 

in (Sundar et al., 2022) 

Since the parameters are dimensionless, the fractional models within LC, CF and AB sense will be the 

same and it will not be necessary to investigate again. 

 

4 Existence and Uniqueness of Fractional Solutions 

4.1 Existence and uniqueness of fractional solutions by the Liouville-Caputo model 

In this section, we establish the existence and uniqueness of solutions of the Liouville-Caputo model. Let us 

construct the system (2) as 

D୲
టሺ௧ሻ

଴
LC ሾܰሺtሻሿ ൌ Fଵሺt, ܰሻ=ݎటሺ௧ሻ ቀ1 െ

ே

௄
ቁܰ െ టሺ௧ሻሺܶݏ െ ଴ܶሻܰ  

D୲
టሺ௧ሻ

଴
LC ሾܣሺtሻሿ ൌ Fଶሺt, ሻܣ ൌ λటሺ௧ሻN-γటሺ௧ሻܣ 

D୲
టሺ௧ሻ

଴
LC ሾܥሺtሻሿ ൌ Fଷሺt, ሻܥ ൌ   ܳ ൅ ܣ టሺ௧ሻߠ െ  (3)                                            ܥటሺ௧ሻߜ

D୲
టሺ௧ሻ

଴
LC ሾܶሺtሻሿ ൌ Fସሺt, ܶሻ ൌ ߮టሺ௧ሻሺܥെܥ଴ሻ െ ߱టሺ௧ሻሺܶ െ ଴ܶሻ    

By using Liouville-Caputo fractional integral operator to the above system, we get 

ܰሺݐሻ െ ܰሺ0ሻ ൌ
1

 ߰ ሺݐሻ
නሺݐ െ ݇ሻటሺ௧ሻିଵ
௧

଴

 ሻሻ݀݇ݐሺܰ,ܭଵሺܨ

ሻݐሺܣ െ ሺ0ሻܣ ൌ
1

 ߰ ሺݐሻ
නሺݐ െ ݇ሻటሺ௧ሻିଵ
௧

଴

,ܭଶሺܨ  ሻሻ݀݇ݐሺܣ

ሻݐሺܥ                                                    െ ሺ0ሻܥ ൌ
ଵ

 టሺ௧ሻ
׬ ሺݐ െ ݇ሻటሺ௧ሻିଵ
௧
଴ ,ܭଷሺܨ  ሻሻ݀݇     (4)ݐሺܥ

                                                   ܶሺݐሻ െ ܶሺ0ሻ ൌ
ଵ

 టሺ௧ሻ
׬ ሺݐ െ ݇ሻటሺ௧ሻିଵ
௧
଴ ,ܭସሺܨ ܶሺݐሻሻ݀݇    

We will show that the kernel ܨ௜ for ݅ ൌ 1,2,3,4 follows the Lipschitz condition and contraction. 

Theorem 4.1.1: 

The kernel ܨ௜ሺܭ,ܰሻ for  ݅ ൌ 1,2,3,4 satisfies Lipschitz condition and contraction if the following inequality 

0 ൑ ௜ݎ ൏ 1 holds. 

Proof: 

Consider two functions ܰ ܽ݊݀  ഥܰ 

ԡܨଵሺݐ, ܰሻ െ ,ݐଵሺܨ ഥܰሻԡ 

ൌ ብݎటሺ௧ሻ ൬1 െ
ܰ
ܭ
൰ܰ െ టሺ௧ሻሺܶݏ െ ଴ܶሻܰ െ టሺ௧ሻݎ ቆ1 െ

ഥܰ

ܭ
ቇ ഥܰ ൅ టሺ௧ሻሺܶݏ െ ଴ܶሻ ഥܰብ 

=ቛݎటሺ௧ሻሺܰ െ ഥܰሻ െ
௥ഗሺ೟ሻ

௄
ሺܰ ൅ ഥܰሻሺܰ െ ഥܰሻ െ టሺ௧ሻሺܶݏ െ ଴ܶሻሺܰ െ ഥܰሻቛ 

൑ టሺ௧ሻԡܰݎ െ ഥܰԡ െ
టሺ௧ሻݎ

ܭ
ԡܰ ൅ ഥܰԡԡܰ െ ഥܰԡ െ టሺ௧ሻሺܶݏ െ ଴ܶሻԡܰ െ ഥܰԡ 
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൑ ቈݎటሺ௧ሻ െ
టሺ௧ሻݎ

ܭ
ሺܰ ൅ ഥܰሻ െ టሺ௧ሻሺܶݏ െ ଴ܶሻ቉ ԡܰ െ ഥܰԡ 

൑ ଵԡܰݎ െ ഥܰԡ                                         (5) 

where ݎଵ ൌ ቂݎటሺ௧ሻ െ
௥ഗሺ೟ሻ

௄
ሺܰ ൅ ഥܰሻ െ టሺ௧ሻሺܶݏ െ ଴ܶሻቃ is a positive constant.As a result, the Lipschitz condition 

is met for ݎଵand if 0 ൑ ଵݎ ൏ 1,then ݎଵfollows contraction. Similarly, it can be exihibited and demonstrated in 

the other equations as follows  

ԡܨଶሺݐ, ሻܣ െ ,ݐଶሺܨ ҧሻԡܣ ൑ ܣଶԡݎ  െ  ҧԡܣ

ԡܨଷሺݐ, ሻܥ െ ,ݐଷሺܨ ҧሻԡܥ ൑ ܥଷԡݎ  െ  ҧԡܥ

ԡܨସሺݐ, ܶሻ െ ,ݐସሺܨ തܶሻԡ ൑ ସԡܶݎ  െ തܶԡ 

Therefore ܨ௜ satisfies Lipschitz condition. Also, if  0 ൑ ௜ݎ ൏ 1, then the kernels follows contractions. From 

system (3), the recurrent form can be written as follows 

ଵ௡ߔ ൌ ௡ܰሺݐሻ െ ௡ܰିଵሺݐሻ 

         ൌ
1

 ߰ ሺݐሻ
නሺݐ െ ݇ሻటሺ௧ሻିଵ
௧

଴

ሾܨଵሺܭ, ௡ܰିଵሻ െ ,ܭଵሺܨ ௡ܰିଶሻሿ݀݇ 

ଶ௡ߔ ൌ ሻݐ௡ሺܣ െ  ሻݐ௡ିଵሺܣ

 =  
ଵ

 టሺ௧ሻ
׬ ሺݐ െ ݇ሻటሺ௧ሻିଵ
௧
଴ ሾܨଶሺܭ, ௡ିଵሻܣ െ ,ܭଶሺܨ   ௡ିଶሻሿ݀݇ܣ

ଷ௡ߔ ൌ ሻݐ௡ሺܥ െ  ሻݐ௡ିଵሺܥ

         ൌ
1

 ߰ ሺݐሻ
නሺݐ െ ݇ሻటሺ௧ሻିଵ
௧

଴

ሾܨଷሺܭ, ௡ିଵሻܥ െ ,ܭଷሺܨ  ௡ିଶሻሿ݀݇ܥ

ସ௡ߔ ൌ ௡ܶሺݐሻ െ ௡ܶିଵሺݐሻ 

         ൌ
ଵ

 టሺ௧ሻ
׬ ሺݐ െ ݇ሻటሺ௧ሻିଵ
௧
଴ ሾܨସሺܭ, ௡ܶିଵሻ െ ,ܭସሺܨ ௡ܶିଶሻሿ݀݇     

Now taking norm for ԡߔଵ௡ሺݐሻԡ , we get  

ԡߔଵ௡ሺݐሻԡ ൌ ԡ ௡ܰሺݐሻ െ ௡ܰିଵሺݐሻԡ 

ൌ ቯ
1

 ߰ ሺݐሻ
නሺݐ െ ݇ሻటሺ௧ሻିଵ
௧

଴

ሾܨଵሺܭ, ௡ܰିଵሻ െ ,ܭଵሺܨ ௡ܰିଶሻሿ݀݇ቯ 

൑
1

 ߰ ሺݐሻ
නฮሺݐ െ ݇ሻటሺ௧ሻିଵሾܨଵሺܭ, ௡ܰିଵሻ െ ,ܭଵሺܨ ௡ܰିଶሻሿฮ

௧

଴

݀݇ 

Now using Lipschitz condition in the above equation, we obtain 

ԡߔଵ௡ሺݐሻԡ ൑
ଵݎ
 ߰ ሺݐሻ

නฮߔଵሺ௡ିଵሻሺ݇ሻฮ݀݇

௧

଴

 

similarly 

ԡߔଶ௡ሺݐሻԡ ൑
ଶݎ
 ߰ ሺݐሻ

නฮߔଶሺ௡ିଵሻሺ݇ሻฮ݀݇

௧

଴

 

219



Computational Ecology and Software, 2024, 14(4): 215-233 

 IAEES                                                                                     www.iaees.org

ԡߔଷ௡ሺݐሻԡ ൑
ଷݎ
 ߰ ሺݐሻ

නฮߔଷሺ௡ିଵሻሺ݇ሻฮ݀݇

௧

଴

 

ԡߔସ௡ሺݐሻԡ ൑
௥ర
 టሺ௧ሻ

׬ ฮߔସሺ௡ିଵሻሺ݇ሻฮ݀݇
௧
଴                                    (6) 

which implies that it can be written as 

௡ܰሺݐሻ ൌ ∑ ሻݐଵ௜ሺߔ
௡
௜ୀଵ ሻݐ௡ሺܣ ;  ൌ ∑ ଶ௜ߔ

௡
௜ୀଵ ሺݐሻ, 

ሻݐ௡ሺܥ ൌ ∑ ሻݐଷ௜ሺߔ
௡
௜ୀଵ , ௡ܶሺݐሻ ൌ ∑ ሻݐସ௜ሺߔ

௡
௜ୀଵ  

Theorem 4.1.2: 

The Liouville-Caputo model (3) has system of solutions if there exists t >1 such that 
௥೔௧

 టሺ௧ሻ
൑ 1 for i=1,2,3,4 

Proof: 

Consider, 

ԡߔଵ௡ሺݐሻԡ ൑
ଵݎ
 ߰ ሺݐሻ

නฮߔଵሺ௡ିଵሻሺ݇ሻฮ݀݇

௧

଴

 

Replacing n by n-1 in the above inequality 

ฮߔଵሺ௡ିଵሻሺݐሻฮ ൑
ଵݎ
 ߰ ሺݐሻ

නฮߔଵሺ௡ିଶሻሺ݇ሻฮ݀݇

௧

଴

 

 ൑  ቂ
௥భ
 టሺ௧ሻ

ቃ
ଶ
׬ ฮߔଵሺ௡ିଶሻሺ݇ሻฮ݀݇
௧
଴  

Again, replacing n by n-2 in the given inequality  

ฮߔଵሺ௡ିଶሻሺݐሻฮ ൑   ൤
ଵݎ
 ߰ ሺݐሻ

൨
ଷ

නฮߔଵሺ௡ିଷሻሺ݇ሻฮ݀݇

௧

଴

 

On substituting in this way and using the initial condition we obtain 

ԡߔଵ௡ሺݐሻԡ ൑ ԡ ௡ܰሺ0ሻԡ ൤
ݐଵݎ
 ߰ ሺݐሻ

൨
௡

 

Similarly, we get ν(t) 

ԡߔଶ௡ሺݐሻԡ ൑ ԡܣ௡ሺ0ሻԡ ൤
ݐଶݎ
 ߰ ሺݐሻ

൨
௡

 

ԡߔଷ௡ሺݐሻԡ ൑ ԡܥ௡ሺ0ሻԡ ൤
ݐଷݎ
 ߰ ሺݐሻ

൨
௡

 

ԡߔସ௡ሺݐሻԡ ൑ ԡ ௡ܶሺ0ሻԡ ൤
ݐସݎ
 ߰ ሺݐሻ

൨
௡

 

This result proved the existence and continuity of solutions. 

To show that ܰሺݐሻ , ܣሺݐሻ,  ሻ are the solutions of (3) ,we consider the following equationsݐሻ,andܶሺݐሺܥ

ܰሺݐሻ െ ܰሺ0ሻ ൌ ௡ܰሺݐሻ െ ܴଵ௡ሺݐሻ 

ሻݐሺܣ െ ሺ0ሻܣ ൌ ሻݐ௡ሺܣ െ ܴଶ௡ሺݐሻ 

ሻݐሺܥ െ ሺ0ሻܥ ൌ ሻݐ௡ሺܥ െ ܴଷ௡ሺݐሻ                                                  (7) 

ܶሺݐሻ െ ܶሺ0ሻ ൌ ௡ܶሺݐሻ െ ܴସ௡ሺݐሻ 

ԡܴଵ௡ሺݐሻԡ ൌ ቯ
1

 ߰ ሺݐሻ
නሾܨଵሺܭ, ௡ܰሻ െ ,ܭଵሺܨ ௡ܰିଵሻሿ

௧

଴

݀݇ቯ 
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൑
1

 ߰ ሺݐሻ
නԡሾܨଵሺܭ, ௡ܰሻ െ ,ܭଵሺܨ ௡ܰିଵሻሿԡ

௧

଴

݀݇  

൑
1

 ߰ ሺݐሻ
ଵԡݎ ௡ܰ െ ௡ܰିଵԡݐ 

Applying the above process recursively, 

ԡܴଵ௡ሺݐሻԡ ൌ ൤
ݐଵݎ
 ߰ ሺݐሻ

൨
௡ାଵ

 ܯ.

where M is the Lipschitz constant. 

when ݊ ՜ ∞, ԡܴଵ௡ሺݐሻԡ ՜ 0 

similarly we prove for  

ԡܴଶ௡ሺݐሻԡ ՜ 0,ԡܴଷ௡ሺݐሻԡ ՜ 0 ܽ݊݀ԡܴସ௡ሺݐሻԡ ՜ 0  as ݊ ՜ ∞ 

Theorem 4.1.3: 

If the condition  ቂ1 െ
௥೔௧

 టሺ௧ሻ
ቃ ൒ 0 , for ݅ ൌ 1,2,3,4  holds then Liouville-Caputo model have unique solution. 

Proof:  

To establish the uniqueness for a solution of the system (3), consider the different set of solutions for the 

system (3), say ഥܰ, , ҧܣ    ݀݊ܽ ҧܥ തܶ. Then as an outcome of the first equation of (3), we write 

ܰሺݐሻ െ ഥܰሺݐሻ ൌ
1

 ߰ ሺݐሻ
නሾܨଵሺܭ,ܰሻ െ ,ܭଵሺܨ ഥܰሻሿ

௧

଴

݀݇ 

Using the norm of above equation 

ԡܰሺݐሻ െ ഥܰሺݐሻԡ ൌ ቯ
1

 ߰ ሺݐሻ
නሾܨଵሺܭ,ܰሻ െ ,ܭଵሺܨ ഥܰሻሿሿ

௧

଴

݀݇ቯ 

Now by applying Lipschitz condition 

ԡܰሺݐሻ െ ഥܰሺݐሻԡ ൌ
1

 ߰ ሺݐሻ
ሻݐԡܰሺݐଵݎ െ ഥܰሺݐሻԡ 

Consequently  

ԡܰሺݐሻ െ ഥܰሺݐሻԡ െ
1

 ߰ ሺݐሻ
ሻݐԡܰሺݐଵݎ െ ഥܰሺݐሻԡ ൑  0 

ԡܰሺݐሻ െ ഥܰሺݐሻԡሾ1 െ
ଵ

 టሺ௧ሻ
ሿݐଵݎ ൑ 0                                          (8)                 

Since  ሾ1 െ
ଵ

 టሺ௧ሻ
ሿݐ௜ݎ ൐ 0 , equation (7) becomes the form 

ԡܰሺݐሻ െ ഥܰሺݐሻԡ ൌ 0 

i.e., ܰሺݐሻ ൌ ഥܰሺݐሻ 
similarly we prove 

ሻݐሺܣ ൌ ሻݐሺܥ , ሻݐҧሺܣ ൌ ሻݐሻand ܶሺݐҧሺܥ ൌ തܶሺݐሻ 

4.2 Existence and Uniqueness of Fractional solutions by the Caputo-Fabrizio model 

Let us construct the system (2) in the sense of Caputo-Fabrizio, we have 

D୲
టሺ௧ሻ

଴
CF ሾܰሺtሻሿ ൌ Fଵሺt, ܰሻ=ݎటሺ௧ሻ ቀ1 െ

ே

௄
ቁܰ െ టሺ௧ሻሺܶݏ െ ଴ܶሻܰ  

D୲
టሺ௧ሻ

଴
CF ሾܣሺtሻሿ ൌ Fଶሺt, ሻܣ ൌ λటሺ௧ሻN-γటሺ௧ሻܣ 
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D୲
టሺ௧ሻ

଴
CF ሾܥሺtሻሿ ൌ Fଷሺt, ሻܥ ൌ   ܳ ൅ ܣ టሺ௧ሻߠ െ  (9)                                 ܥటሺ௧ሻߜ

D୲
టሺ௧ሻ

଴
CF ሾܶሺtሻሿ ൌ Fସሺt, ܶሻ ൌ ߮టሺ௧ሻሺܥെܥ଴ሻ െ ߱టሺ௧ሻሺܶ െ ଴ܶሻ    

The Caputo-Fabrizio integral form of the above system is 

ܰሺݐሻ െ ܰሺ0ሻ ൌ
1 െ ߰ሺݐሻ

ሻ൯ݐ൫߰ሺܯ
,ݐଵሺܨ ܰሻ ൅

߰ሺݐሻ

ሻሻݐሺ߰ሺܯ
නܨଵሺ߬, ܰሻ݀߬

௧

଴

 

ሻݐሺܣ െ ሺ0ሻܣ ൌ
1 െ ߰ሺݐሻ

ሻ൯ݐ൫߰ሺܯ
,ݐଶሺܨ ሻܣ ൅

߰ሺݐሻ

ሻሻݐሺ߰ሺܯ
නܨଶሺ߬, ሻ݀߬ܣ

௧

଴

 

ሻݐሺܥ െ ሺ0ሻܥ ൌ
1 െ ߰ሺݐሻ

ሻ൯ݐ൫߰ሺܯ
,ݐଷሺܨ ሻܥ ൅

߰ሺݐሻ

ሻሻݐሺ߰ሺܯ
නܨଷሺ߬, ሻ݀߬ܥ

௧

଴

 

     ܶሺݐሻ െ ܶሺ0ሻ ൌ
ଵିటሺ௧ሻ

ெ൫టሺ௧ሻ൯
,ݐସሺܨ ܶሻ ൅

టሺ௧ሻ

ெሺటሺ௧ሻሻ
׬ ,ସሺ߬ܨ ܶሻ݀߬
௧
଴         (10)  

Here we have to prove the kernel ܨ௜ for ݅ ൌ 1,2,3,4 follows the Lipschitz condition and a contraction. 

Theorem 4.2.1: 

The kernel ܨ௜ሺ߬, ܰሻ, for ݅ ൌ 1,2,3,4 satisfies the Lipschitz condition and a contraction if the following 

inequality 0 ൑ ௜ߩ ൏ 1 holds. 

Proof:  

This theorem is proved as similar as theorem 4.1.1 

The recurrent form of (9) for the first equation is 

ଵ௡ߦ ൌ ௡ܰሺݐሻ െ ௡ܰିଵሺݐሻ 

          ൌ
1 െ ߰ሺݐሻ

ሻ൯ݐ൫߰ሺܯ
ሾܨଵሺݐ, ௡ܰିଵሻ െ ,ݐଵሺܨ ௡ܰିଶሻሿ 

൅
߰ሺݐሻ

ሻሻݐሺ߰ሺܯ
නሾܨଵሺ߬, ௡ܰିଵሻ െ ,ଵሺ߬ܨ ௡ܰିଶሻሿ݀߬

௧

଴

 

Similarly  ߦଶ௡ and ߦଷ௡ are also be derived 

Using the initial condition and taking norm, we get 

ԡߦଵ௡ԡ ൑
1 െ ߰ሺݐሻ

ሻ൯ݐ൫߰ሺܯ
ԡሾܨଵሺݐ, ௡ܰିଵሻ െ ,ݐଵሺܨ ௡ܰିଶሻሿԡ 

൅
߰ሺݐሻ

ሻሻݐሺ߰ሺܯ
නԡሾܨଵሺ߬, ௡ܰିଵሻ െ ,ଵሺ߬ܨ ௡ܰିଶሻሿԡ

௧

଴

݀߬ 

Since ߩଵsatisfies Lipschitz condition 

ԡߦଵ௡ሺݐሻԡ ൑
ଵିటሺ௧ሻ

ெ൫టሺ௧ሻ൯
ሻ൧ฮݐଵሺ௡ିଵሻሺߦଵฮൣߩ ൅ 

టሺ௧ሻ

ெሺటሺ௧ሻሻ
ଵߩ ׬ ฮߦଵሺ௡ିଵሻሺ߬ሻฮ

௧
଴ ݀߬                      (11) 

Similarly ԡ ߦଶ௡ሺݐሻԡ , ԡ ߦଷ௡ሺݐሻԡ  andԡ ߦସ௡ሺݐሻԡ can also be obtained. 

Therefore, 

௡ܰሺݐሻ ൌ ∑ , ሻݐଵ௜ሺߦ
௡
௜ୀଵ ሻݐ௡ሺܣ ൌ ∑ , ሻݐଶ௜ሺߦ

௡
௜ୀଵ ሻݐ௡ሺܥ ൌ ∑ ሻݐଷ௜ሺߦ

௡
௜ୀଵ and 

௡ܶሺݐሻ ൌ෍ߦସ௜ሺݐሻ
௡

௜ୀଵ

 

Theorem 4.2.2: 
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The Caputo Fabrizio fractional derivative model (9) has system of solutions if there exists  ݒ ൐ 1 such that      

൤
ଵିటሺ௧ሻ

ெ൫టሺ௧ሻ൯
௜ߩ ൅

టሺ௧ሻ

ெሺటሺ௧ሻሻ
൨ݒ ௜ߩ ൑ 1 , for i=1,2,3,4 

Proof: 

Operating (11) recursively and using the initial conditions we have 

ԡߦଵ௡ሺݐሻԡ ൑ ԡ ௡ܰሺ0ሻԡ ቈ
1 െ ߰ሺݐሻ

ሻ൯ݐ൫߰ሺܯ
ଵߩ ൅

߰ሺݐሻ

ሻሻݐሺ߰ሺܯ
቉ݒଵߩ

௡

 

Similarly we have for ԡ ߦଶ௡ሺݐሻԡ , ԡ ߦଷ௡ሺݐሻԡ , ԡ ߦସ௡ሺݐሻԡ and ԡ ߦହ௡ሺݐሻԡthis result proved the existence and 

continuity of solution. 

To show that ሺݐሻ, ܣሺݐሻ,   ሻ are the solutions of (9)ݐሻand ܶሺݐሺܥ

consider 

ܰሺݐሻ െ ܰሺ0ሻ ൌ ௡ܰሺݐሻ െ  ሻݐଵ௡ሺܦ

ሻݐሺܣ െ ሺ0ሻܣ ൌ ሻݐ௡ሺܣ െ  ሻݐଶ௡ሺܦ

ሻݐሺܥ   െ ሺ0ሻܥ ൌ ሻݐ௡ሺܥ െ  ሻ             (12)ݐଷ௡ሺܦ

ܶሺݐሻ െ ܶሺ0ሻ ൌ ௡ܶሺݐሻ െ  ሻݐସ௡ሺܦ

Now 

ԡܦଵ௡ሺݐሻԡ ൑
1 െ ߰ሺݐሻ

ሻ൯ݐ൫߰ሺܯ
ԡሾܨଵሺݐ, ௡ܰሻ െ ,ݐଵሺܨ ௡ܰିଵሻሿԡ 

 ൅
టሺ௧ሻ

ெሺటሺ௧ሻሻ
׬ ԡሾܨଵሺ߬, ௡ܰሻ െ ,ଵሺ߬ܨ ௡ܰିଵሻሿԡ
௧
଴ ݀߬ 

                                                 ൑  
1 െ ߰ሺݐሻ

ሻ൯ݐ൫߰ሺܯ
ଵԡߩ ௡ܰ െ ௡ܰିଵԡ ൅

߰ሺݐሻ

ሻሻݐሺ߰ሺܯ
ଵԡߩ ௡ܰ െ ௡ܰିଵԡݒ 

 

൑  ቈ
1 െ ߰ሺݐሻ

ሻ൯ݐ൫߰ሺܯ
ଵߩ ൅

߰ሺݐሻ

ሻሻݐሺ߰ሺܯ
቉ݒଵߩ ԡ ௡ܰ െ ௡ܰିଵԡ 

Applying the above process recursively 

ԡܦଵ௡ሺݐሻԡ ൑ ቈ
1 െ ߰ሺݐሻ

ሻ൯ݐ൫߰ሺܯ
ଵߩ ൅

߰ሺݐሻ

ሻሻݐሺ߰ሺܯ
቉ݒଵߩ

௡ାଵ

. ܵ 

where S is the Lipschitz constant 

when ݊ ՜ ∞ , ԡܦଵ௡ԡ ՜ 0 

Similarly we prove for ԡܦଶ௡ԡ ՜ 0,ԡܦଷ௡ԡ ՜ 0 andԡܦସ௡ԡ ՜ 0 as ݊ ՜ ∞ 

Theorem 4.2.3: 

If the condition ቈ1 െ ൤
ଵିటሺ௧ሻ

ெ൫టሺ௧ሻ൯
௜ߩ ൅

టሺ௧ሻ

ெሺటሺ௧ሻሻ
൨቉ݒ௜ߩ ൒ 0  , for i=1,2,3,4 holds then the Caputo-Fabrizio fractional 

derivative model have unique solutions. 

Proof: 

Suppose the system (8) has another solution  ഥܰ, ,ҧܣ  ҧ  ܽ݊݀  ܶ തതതܥ

ԡܰሺݐሻ െ ഥܰሺݐሻԡ ൌ ቯ
1

 ߰ ሺݐሻ
නሾܨଵሺܭ,ܰሻ െ ,ܭଵሺܨ ഥܰሻሿሿ

௧

଴

݀݇ቯ 

ܰሺݐሻ െ ഥܰሺݐሻ ൌ
1 െ ߰ሺݐሻ

ሻ൯ݐ൫߰ሺܯ
ሾܨଵሺݐ, ܰሻ െ ,ݐଵሺܨ ഥܰሻሿ ൅

߰ሺݐሻ

ሻሻݐሺ߰ሺܯ
නሾܨଵሺ߬, ܰሻ െ ,ଵሺ߬ܨ ഥܰሻሿ

௧

଴

݀߬ 
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Using norm and applying Lipschitz condition 

ԡܰሺݐሻ െ ഥܰሺݐሻԡ ൑ ቈ
1 െ ߰ሺݐሻ

ሻ൯ݐ൫߰ሺܯ
ଵߩ ൅

߰ሺݐሻ

ሻሻݐሺ߰ሺܯ
቉ݒଵߩ ԡܰሺݐሻ െ ഥܰሺݐሻԡ 

Consequently we have 

ԡܰሺݐሻ െ ഥܰሺݐሻԡ 

቎1 െ ቈ
1 െ ߰ሺݐሻ

ሻ൯ݐ൫߰ሺܯ
ଵߩ ൅

߰ሺݐሻ

ሻሻݐሺ߰ሺܯ
቉቏ݒଵߩ ൑ 0 

Since ቈ1 െ ൤
ଵିటሺ௧ሻ

ெ൫టሺ௧ሻ൯
ଵߩ ൅

టሺ௧ሻ

ெሺటሺ௧ሻሻ
൨቉ݒଵߩ ൐ 0, we have 

ԡܰሺݐሻ െ ഥܰሺݐሻԡ ൌ 0 

i.e.,ܰሺݐሻ ൌ ഥܰሺݐሻ 
Similarly we prove  

ሻݐሺܣ ൌ ሻݐሺܥ ,ሻݐҧሺܣ ൌ ሻݐሻand  ܶሺݐҧሺܥ ൌ തܶሺݐሻ 

4.3 Existence and uniqueness of solutions for the Atangana-Baleanu fractional model 

Let us construct (2) in AtanganaBaleanu fractional derivative in Caputo sense 

D୲
టሺ௧ሻ

଴
AB ሾܰሺtሻሿ ൌ Fଵሺt, ܰሻ=ݎటሺ௧ሻ ቀ1 െ

ே

௄
ቁܰ െ టሺ௧ሻሺܶݏ െ ଴ܶሻܰ  

D୲
టሺ௧ሻ

଴
AB ሾܣሺtሻሿ ൌ Fଶሺt, ሻܣ ൌ λటሺ௧ሻN-γటሺ௧ሻܣ 

D୲
టሺ௧ሻ

଴
AB ሾܥሺtሻሿ ൌ Fଷሺt, ሻܥ ൌ   ܳ ൅ ܣ టሺ௧ሻߠ െ  (13)                                  ܥటሺ௧ሻߜ

D୲
టሺ௧ሻ

଴
AB ሾܶሺtሻሿ ൌ Fସሺt, ܶሻ ൌ ߮టሺ௧ሻሺܥെܥ଴ሻ െ ߱టሺ௧ሻሺܶ െ ଴ܶሻ   

The Atangana-Baleanu integral form of the above system is 

ܰሺݐሻ െ ܰሺ0ሻ ൌ
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

,ݐଵሺܨ ܰሻ ൅
߰ሺݐሻ

߰ ሻሻݐሺ߰ሺܤܣ ሺݐሻ
නሺݐ െ ,ߛଵሺܨሻటሺ௧ሻିଵߛ ܰሻ݀ߛ

௧

଴

 

ሻݐሺܣ െ ሺ0ሻܣ ൌ
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

,ݐଶሺܨ ሻܣ ൅
߰ሺݐሻ

߰ ሻሻݐሺ߰ሺܤܣ ሺݐሻ
නሺݐ െ ,ߛଶሺܨሻటሺ௧ሻିଵߛ ߛሻ݀ܣ

௧

଴

 

ሻݐሺܥ െ ሺ0ሻܥ ൌ
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

,ݐଷሺܨ ሻܥ ൅
߰ሺݐሻ

߰ ሻሻݐሺ߰ሺܤܣ ሺݐሻ
නሺݐ െ ,ߛଷሺܨሻటሺ௧ሻିଵߛ ߛሻ݀ܥ

௧

଴

 

ܶሺݐሻ െ ܶሺ0ሻ ൌ
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

,ݐସሺܨ ܶሻ ൅
߰ሺݐሻ

߰ ሻሻݐሺ߰ሺܤܣ ሺݐሻ
නሺݐ െ ,ߛସሺܨሻటሺ௧ሻିଵߛ ܶሻ݀ߛ

௧

଴

 

Now to prove the kernel ܨ௜ for ݅ ൌ 1,2,3,4 follows the Lipschitz condition and contraction. 

Theorem 4.3.1: 

The kernel ܨ௜ሺߛ, ܰሻ, for ݅ ൌ 1,2,3,4 satisfies the Lipschitz condition and contraction if 0 ൑ ௜ߜ ൏ 1 holds. 

Proof:  

The proof is similar to the proof of 4.1.1  

For the first equation, the recurrent form of (13) is 

ଵ௡ߠ ൌ ௡ܰሺݐሻ െ ௡ܰିଵሺݐሻ  ൌ
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

ሾܨଵሺݐ, ௡ܰିଵሻ െ ,ݐଵሺܨ ௡ܰିଶሻሿ 

  ൅
߰ሺݐሻ

߰ ሻሻݐሺ߰ሺܤܣ ሺݐሻ
නሺݐ െ ,ߛଵሺܨሻటሺ௧ሻିଵሾߛ ௡ܰିଵሻ െ ,ߛଵሺܨ  ௡ܰିଶሻሿ݀ߛ

௧

଴
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Similarly  ߠଶ௡,ߠଷ௡ and ߠସ௡ are also be derived. 

Using the initial condition and taking norm, we get 

ԡߠଵ௡ԡ ൑
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

ԡሾܨଵሺݐ, ௡ܰିଵሻ െ ,ݐଵሺܨ ௡ܰିଶሻሿԡ 

   +
టሺ௧ሻ

஺஻ሺటሺ௧ሻሻ టሺ௧ሻ
׬ ሺݐ െ ,ߛଵሺܨሻటሺ௧ሻିଵԡሾߛ ௡ܰିଵሻ െ ,ߛଵሺܨ ௡ܰିଶሻሿԡ
௧
଴  ߛ݀

Since ߜଵ satisfies Lipschitz condition 

ԡߠଵ௡ԡ ൑
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

ଵሺ௡ିଵሻฮߠଵฮߜ ൅
߰ሺݐሻ

߰ ሻሻݐሺ߰ሺܤܣ ሺݐሻ
ଵߜ නሺݐ െ ሻฮߛଵሺ௡ିଵሻሺߠሻటሺ௧ሻିଵฮߛ

௧

଴

 ߛ݀

Similarly for ԡߠଶ௡ԡ, ԡߠଷ௡ԡ and ԡߠସ௡ԡ 

which implies that it can be written as 

௡ܰሺݐሻ ൌ ∑ , ሻݐଵ௜ሺߠ
௡
௜ୀଵ ሻݐ௡ሺܣ ൌ ∑ , ሻݐଶ௜ሺߠ

௡
௜ୀଵ ሻݐሺܥ ൌ ∑ ሻݐଷ௜ሺߠ

௡
௜ୀଵ  , ௡ܶሺݐሻ ൌ ∑ ሻݐସ௜ሺߠ

௡
௜ୀଵ              (14) 

     

Theorem 4.3.2: 

The Atangana-Baleanu derivative model (13) have system of solutions, if there exists 1<ߤ such that 

൤
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

௜ߜ ൅
߰ሺݐሻ

߰ ሻሻݐሺ߰ሺܤܣ ሺݐሻ
൨ߤ௜ߜ ൑ ݅  ݎ݋݂ 1 ൌ 1,2,3,4 

Proof: 

Consider, 

ԡߠଵ௡ԡ ൑ ԡ ௡ܰሺ0ሻԡ ൤
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

ଵߜ ൅
߰ሺݐሻ

߰ ሻሻݐሺ߰ሺܤܣ ሺݐሻ
൨ߤଵߜ

௡

 

Similarly, ԡߠଶ௡ԡ, ԡߠଷ௡ԡ  andԡߠସ௡ԡcan also be obtained 

These results proved the existence and continuity of solution. 

Now to show that ሺݐሻ, ܥሺݐሻ, and  ܶሺݐሻare solutions of (13) 

Consider 

ܰሺݐሻ െ ܰሺ0ሻ ൌ ௡ܰሺݐሻ െ  ሻݐଵ௡ሺܧ

ሻݐሺܣ െ ሺ0ሻܣ ൌ ሻݐ௡ሺܣ െ  ሻݐଶ௡ሺܧ

ሻݐሺܥ െ ሺ0ሻܥ ൌ ሻݐ௡ሺܥ െ  ሻ  (15)ݐଷ௡ሺܧ

ܶሺݐሻ െ ܶሺ0ሻ ൌ ௡ܶሺݐሻ െ  ሻݐସ௡ሺܧ

Now 

ԡܧଵ௡ሺݐሻԡ ൑
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

ԡሾܨଵሺݐ, ௡ܰሻ െ ,ݐଵሺܨ ௡ܰିଵሻሿԡ 

   +
టሺ௧ሻ

஺஻ሺటሺ௧ሻሻ టሺ௧ሻ
׬ ሺݐ െ ,ߛଵሺܨሻటሺ௧ሻିଵԡሾߛ ௡ܰሻ െ ,ߛଵሺܨ ௡ܰିଵሻሿԡ
௧
଴  ߛ݀

 ൑  
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

ଵԡߜ ௡ܰ െ ௡ܰିଵԡ ൅
߰ሺݐሻ

߰ ሻሻݐሺ߰ሺܤܣ ሺݐሻ
ଵԡߜ ௡ܰ െ ௡ܰିଵԡߤ 

൑  ൤
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

ଵߜ ൅
߰ሺݐሻ

߰ ሻሻݐሺ߰ሺܤܣ ሺݐሻ
൨ߤଵߜ ԡ ௡ܰ െ ௡ܰିଵԡ 

Applying the above process recursively 

ԡܧଵ௡ሺݐሻԡ ൑ ൤
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

ଵߜ ൅
߰ሺݐሻ

߰ ሻሻݐሺ߰ሺܤܣ ሺݐሻ
൨ߤଵߜ

௡ାଵ

.ܹ 

where W is the Lipschitz constant 

when ݊ ՜ ∞ , ԡܧଵ௡ԡ ՜ 0 
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Similarly we prove for ԡܧଶ௡ԡ ՜ 0, ԡܧଷ௡ԡ ՜ 0 and ԡܧସ௡ԡ ՜ 0 as ݊ ՜ ∞ 

Theorem 4.3.3: 

If the condition ቈ1 െ ቂ
ଵିటሺ௧ሻ

஺஻ሺటሺ௧ሻሻ
௜ߜ ൅

టሺ௧ሻ

஺஻ሺటሺ௧ሻሻ టሺ௧ሻ
ቃ቉ߤ௜ߜ ൒ 0   for i=1,2,3,4  holds then the Atangana-Baleanu 

fractional derivative model have unique solutions. 

Proof: 

Suppose the system (13) has another solution ഥܰ, ,ҧܣ  ҧ  ܽ݊݀  ܶ തതതܥ
then 

ܰሺݐሻ െ ഥܰሺݐሻ ൌ
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

ሾܨଵሺݐ, ܰሻ െ ,ݐଵሺܨ ഥܰሻሿ 

                                ൅
߰ሺݐሻ

߰ ሻሻݐሺ߰ሺܤܣ ሺݐሻ
නሺݐ െ ,ߛଵሺܨሻటሺ௧ሻିଵሾߛ ܰሻ െ ,ߛଵሺܨ ഥܰሻሿ݀ߛ

௧

଴

 

Using norm and apply Lipschitz condition 

ԡܰሺݐሻ െ ഥܰሺݐሻԡ ൑ ሺቂ
ଵିటሺ௧ሻ

஺஻ሺటሺ௧ሻሻ
ଵߜ ൅

టሺ௧ሻ

஺஻ሺటሺ௧ሻሻ టሺ௧ሻ
ቃߤଵߜ ԡܰሺݐሻ െ ഥܰሺݐሻԡ) 

Consequently we have  

൥1 െ ൤
1 െ ߰ሺݐሻ
ሻሻݐሺ߰ሺܤܣ

ଵߜ ൅
߰ሺݐሻ

߰ ሻሻݐሺ߰ሺܤܣ ሺݐሻ
൨൩ߤଵߜ ԡܰሺݐሻ െ ഥܰሺݐሻԡ ൑ 0 

Sinceቈ1 െ ቂ
ଵିటሺ௧ሻ

஺஻ሺటሺ௧ሻሻ
ଵߜ ൅

టሺ௧ሻ

஺஻ሺటሺ௧ሻሻ టሺ௧ሻ
ቃ቉ߤଵߜ ൐ 0, we have 

ԡܰሺݐሻ െ ഥܰሺݐሻԡ ൌ 0 

i.e ܰሺݐሻ ൌ ഥܰሺݐሻ 
Similarly we prove  

ሻݐሺܣ ൌ ሻݐሺܥ , ሻݐҧሺܣ ൌ ሻݐሻand ܶሺݐҧሺܥ ൌ തܶሺݐሻ 

 

5  Numerical Scheme 

In this section, the Numerical scheme (Solís-Pérez et al., 2018) is considered in the sense of Liouville-Caputo, 

Caputo-Fabrizio and Atangana –Baleanu fractional derivatives. 

Let us consider our fractional model as 

௧ܦ
ఈ

଴
כ ,ݐሻ =݂ሺݐሺݑ  ሻሻݐሺݑ

where * denotes LC,CF and AB terms and ݑሺݐሻ ൌ ሺܰሺݐሻ,  .ሻሻݐሻ,ܶሺݐሺܥ,ሻݐሺܣ

Now we use the numerical scheme (Solís-Pérez et al., 2018) represented for Liouville-Caputo (16), 

Caputo-Fabrizio (17) and Atangana-Baleanu (18) fractional derivatives in (2) 

ሻݐ௡ାଵሺݑ ൌ ሺ0ሻݑ ൅
ଵ

 టሺ௧ሻ
∑

ۉ

ۈ
ۈ
ۇ

௛ഗሺ೟ሻ௙ሺ௧೘ ,௨೘ሻ

టሺ௧ሻሺటሺ௧ሻାଵሻ

ሺሺ݊ െ ݉ ൅  2 ൅ ሻߙ2  െ
௛ഗሺ೟ሻ௙ሺ௧೘షభ ,௨೘షభሻ

టሺ௧ሻሺటሺ௧ሻାଵሻ

ቆ
ሺ݊ ൅ 1 െ  ݉ሻటሺ௧ሻାଵ െ

ሺ݊ െ ݉ሻటሺ௧ሻሻሺ݊ െ ݉ ൅ 1 ൅ ߰ሺݐሻ
ቇ

ی

ۋ
ۋ
ۊ

௡
௠ୀ଴                      (16) 

ሺݑ௡ାଵሻ ൌ ሺݑ௡ሻ ൅   ቈ
ሺ2 െ ߰ሺݐሻሻሺ1 െ ߰ሺݐሻሻ

2
൅
3݄
4
߰ሺݐሻሺ2 െ ߰ሺݐሻሻ቉ ݂ሺݐ௡, ௡ሻݑ െ 

  ቎

ሺଶିటሺ௧ሻሻሺଵିటሺ௧ሻሻ

ଶ
൅

௛

ସ
߰ሺݐሻ ሺ2 െ ߰ሺݐሻሻ

቏ ݂ሺݐ௡ିଵ,  ௡ିଵሻ                                                                                                    (17)ݑ
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ሻݐ௡ାଵሺݑ ൌ ሺ0ሻݑ ൅
 ߰ ሺݐሻሺ1 െ ߰ሺݐሻሻ

 ߰ ሺݐሻሺ1 െ ߰ሺݐሻሻ ൅ ߰ሺݐሻ
݂ሺݐ௡,  ௡ሻݑ

            ൅
ଵ

ሺటሺ௧ሻାଵሻ൫ሺଵିటሺ௧ሻሻ టሺ௧ሻ൯ାటሺ௧ሻ
∑

ۉ

ۈ
ۈ
ۈ
ۇ

݄టሺ௧ሻ݂ሺݐ௠ , ௠ሻݑ

ቆ
ሺ݊ ൅ 1 െ݉ሻటሺ௧ሻሺ݊ െ ݉ ൅ 2 ൅ ߰ሺݐሻሻ
െሺ݊ െ ݉ሻటሺ௧ሻሺ݊ െ ݉ ൅ 2 ൅ ሻݐሺߙ2

ቇ

െ݄టሺ௧ሻ݂ሺݐ௠ିଵ , ௠ିଵሻݑ

ቆ
ሺ݊ ൅ 1 െ  ݉ሻటሺ௧ሻାଵ

െሺ݊ െ ݉ሻటሺ௧ሻሺ݊ െ ݉ ൅ 1 ൅ ߰ሺݐሻሻ
ቇ
ی

ۋ
ۋ
ۋ
ۊ

௡
௠ୀ଴                              (18) 

 

 

6 Results and Discussion 

The primary objective of our proposed fractional model is to observe the impact of CO2emission caused by 

human activities on atmospheric temperature through various variables as well as fractional orders. 
Case 1(Variable-order case): The growth of human population N(t) is affected adversely by the atmospheric 

temperature contributing global warming is represented by the variable order function ߰ሺݐሻ ൌP+Q e(-N.t), 

where P represents the initial value while Q indicates the difference between initial and steady state value and 

Nsymbolizes the decay constant with respect to time t. A(t) takes the variable order form as  ߰ሺݐሻ=K/(1+e-rt ), 

where K represents the carrying capacity and r is the growth rate parameter. This type of function is more 

appropriate for situations where pollution increases with increasing automobile usage until it reaches a limit 

imposed by environmental factors or regulations. C(t) takes the variable order as ߰ሺݐሻ=S0e
-rt, where S0signifies 

the initial concentration of CO2 and r exemplifies the growth rate of CO2 concentration. T(t) takes the variable 

order as ߰ሺݐሻ=T0e
rt, where T0 depicts the initial temperature of the atmosphere and r conveys the growth rate 

constant. 

Figs 1, 2, 3 and 4 represents the above discussed variable-order fractional forms of N(t), A(t), C(t) and T(t) 

in LC,CF and AB senses by taking possible parameter values from the literature. We utilized MATLAB 

R2023a programming language to perform numerical simulation of our fractional model. 

 

Fig. 1 Comparison graph of N(t) via LC, CF and AB. 
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Fig. 1 presents a graphic representation of the distribution of human population according to a variable order 

ψ(t)=1+0.01exp(-0.1 x t x 0.50). It is observed that in the cases of CF and AB, the density of the population 

rapidly decreases and stabilizes over time. However, in the case of LC, the population density decreases until it 

reaches a saturation point, which is considered unusual due to the singularity of the LC derivative. 

 

Fig. 2 Comparison graph of A(t) via LC, CF and AB 

 

Fig. 2 depicts the variation in cumulative density of human activities by  ߰ሺݐሻ=2/(1+e-0.01t).Here 2(tons of 

CO2 per unit area) represents the carrying capacity and 0.01 signifies the growth rate parameter. It is evident 

that in all instances of LC, CF and AB, the total density of human impacts on the environment increases rapidly 

before eventually stabilizing in the atmosphere. 

 
Fig. 3 Comparison graph of C(t) via LC, CF and AB. 
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Fig. 3 displays the progression of concentration of CO2 by the variable order function ߰ሺݐሻ=0.0004e-0.02t 

where 0.0004 (parts per million) represents the initial concentration of CO2 and 0.02 indicates the rate of 

CO2concentration growth in the atmosphere. It is observed that the CO2 concentration gradually increases and 

stabilizes more slowly in the cases of CF and AB compared to LC. 

 

 

Fig. 4 Comparison graph of T(t) via LC,CF and AB. 

 

Fig. 4 provides variation in the atmospheric temperature by the variable order function ߰ሺݐሻ=15e0.01t, 

where 15 (degree Celsius) initial temperature of the atmosphere and 0.01 represents the growth rate. It is noted 

that in all instances LC, CF and AB ,the atmospheric temperature rises gradually increases over time. 

 

 

     (a)         (b) 
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     (c)          (d) 

Fig. 5 Numerical simulations for various order of ψ at 0.75, 0.85, 0.95 and 1 in Liouville-Caputo sense. 

 

 

 

   (a)        (b) 

 

   (c)                  (d) 

 

Fig. 6 Numerical simulations for various order of ψ at 0.75, 0.85, 0.95 and 1 in Caputo-Fabrizio sense. 
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  (a)                       (b) 

 

    (c)                     (d)  

 

Fig. 7 Numerical simulations for various order of ψ at 0.75, 0.85, 0.95 and 1 in Atangana-Baleanu sense. 

 

 

Case 2 (Fractional-order case): Figs 5,6 and 7 depicts the numerical simulation of N(t), A(t), C(t) and T(t) for 

various fractional values 0.75, 0.85, 0.95 and 1 of Liouville-Caputo,Caputo-Fabrizio and Atangana-Baleanu 

models respectively. 

In the context of Liouville-Caputo interpretation, Fig. 5 illustrates a sudden decline in the human population 

density, reaching a saturation point. Conversely, in the case of CF Fig. 6, the quantity N(t) promptly diminishes 

and remains constant for all considered values of ψ. When considering Figs 5 and 7, it is evident that the overall 

density of human impacts on the environment, denoted as A(t), increases linearly as ψ grows, particularly seen in 

LC and AB scenarios. Conversely, as shown in Fig. 6, the simulation of CF remains consistent across all ψ 

values, showcasing a steady pattern in human impacts on the environment. Figs 5 and 7 demonstrate that as ψ 

increases, the concentration of CO2 also increases and remains stable in the atmosphere for LC and AB. 

However, in the case of CF, the CO2 concentration increment remains consistent across all ψ values. From 

Figs 5 and 7 it is observed that, when ߰ increases for LC,AB there is a gradual rise in atmospheric 

temperature. Conversely, in Fig. 6 (CF), the temperature T(t) spikes instantly and remains stable across all ߰ 

values. 

As from the literature (Misra and Verma, 2013; Tsai, 2019; Onozaki, 2009), it seems that for variable order 

case the results of CF and AB have almost the same variation when compared to LC. For fractional–order 
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case ,it is observed that AB have better memory effect than LC and CF. Since LC reaches a saturation point in 

the study of human population density, it's not feasible. Additionally, for all CF cases, it's observed that no 

variation occurs for any values of ψ, which violates our core consideration. 

 

7 Conclusions 

The research investigates the impact of human-induced carbon dioxide emissions on global warming using a 

novel fractional variable-order model. It examines the relationship between CO2 emissions and atmospheric 

temperature through numerical simulations employing different fractional derivatives. The study emphasizes 

the changes in greenhouse gas balance since the Industrial Revolution and their effects on Earth's climate. The 

results demonstrate differences in population density, human activities, CO2 concentration, and temperature 

across different parameters and fractional derivatives. The study highlights the significance of fractional 

calculus in understanding climate dynamics and suggests implications for mitigation strategies. 
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