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Abstract

The intricate relationship between human-induced carbon dioxide (CO;) emissions and the atmospheric
temperature presents a multifaceted challenge with profound implications for the environment, ecosystems,
and human societies. This research presents a novel fractional variable-order model that the impact of CO,
emissions from human activities using Liouville-Caputo (LC), Caputo-Fabrizio (CF), and Atangana-Baleanu
(AB) fractional derivatives. Existence and uniqueness of fractions solutions are established and numerical
simulations have been carried out based on different set of parameters to study the effects of CO, emission
caused by human activities leading to global warming.
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1 Introduction

Carbon dioxide, among other greenhouse gases like methane, nitrous oxide, and water vapor, plays a vital role in
regulating the Earth's temperature. The essential function of these gases is to regulate the Earth's temperature by
trapping heat and preventing its escape into space, similar to how a greenhouse's glass enclosure retains heat
within.Human activities have significantly altered the natural balance of greenhouse gases in the atmosphere,
particularly since the beginning of the Industrial Revolution in the 18th century. The burning of fossil fuels
such as coal, oil, and natural gas for energy production, transportation, and industrial processes releases large
guantities of CO, into the air. The increase in atmospheric CO, concentrations due to these human activities has
led to a phenomenon known as the enhanced greenhouse effect. Rising CO, levels result in increased retention of
heat within the atmosphere, causing gradual warming of Earth's surface and lower atmosphere.This process is
commonly referred to as global warming.The increase in temperature has caused changes in weather patterns,
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resulting in more frequent and intense extreme weather events like heat waves, droughts, heavy rainfall, and
modifications in ecosystems and biodiversity.

The adverse effects of automotive emissions on air quality and climate are emphasized, highlighting the
necessity of stringent regulations and cleaner technologies (Engr and Thomas, 2015). The impact of
industrialization and pollution on natural resource biomass is addressed, and advocate the sustainable
development strategies that balance economic growth with environmental conservation (Dubey et al., 2003;
Dubey and Narayanan, 2010). Carbon emission-related issues are explored through modeling and simulation
(Tsai, 2019). The link between population dynamics and the increment of global carbon dioxide level are
discussed (Onozaki, 2009). The rise of sea level due to global warming are elaborated (Shukla et al., 2017) and
the interconnected processes that influence atmospheric carbon levels and oceanic carbon storage are at
(Nikol'skii, 2010). Several investigations are made to reduce the carbon dioxide level in the atmosphere by
forest management programs and using technological options for controlling anthropogenic carbon emissions
(Verma and Gautam, 2022; Verma and Misra, 2018). Factors influencing atmospheric carbon dioxide levels
are discussed, contributing to our understanding of climate change dynamics and the impact of human
activities on the environment (Misra and Verma, 2013)

Fractional calculus is a branch of mathematical analysis that extends traditional calculus to include
non-integer or fractional orders of derivatives and integrals. It has become a valuable tool in modeling
complex systems across fields like physics, engineering, biology, and economics etc., and also used to
simulate real world problems (Guo et al., 2017; Kumar et al., 2016). Variable order fractional differential
equations represent a sophisticated extension of traditional fractional calculus, allowing for dynamic modeling
of complex systems with varying degrees of memory and long-range dependence. These fractional
variable-order operators have many applications in signal transmission, communication theory, hydrogeology,
chemical kinetics, reaction theory, control systems and cryptography (Atangana, 2015; Alkahtani et al., 2016;
Atangana and Algahtani, 2016; Coronel-Escamilla et al., 2017; Atangana, 2015).

2 Preliminaries

This section provides some basic definitions of variable order fractional derivatives which are used in
subsequent sections.

Definition 2.1: The Liouville-Caputo (LC) fractional derivative with variable-order ¥ (t) is defined as

KDY f(t)= s [t~ )V (w0 <p(t) <1

Definition 2.2: The Caputo—Fabrizio (CF) derivative with variable-order 1 (t) in Liouville—-Caputo sense is
defined as follows

CFnY®) _ CymMEO®) t AU _ 1 < <
ODt f(t) 2(1-y(b) fo €Xp [(1_11)(0) (t u)]f (u)du ’ 0 Il}(t) 1

where M(y(t)) = is a normalization function.

2
2-9(t)
Definition 2.3: The Atangana—Baleanu (AB) fractional derivative with variable-order (t) in
Liouville-Caputo sense is defined as follows

ABpYOF() = 28O g o 2O (6~ w)YO)F wydu L 0 <p(t) <1

1-yp®) 1-y®)
where B(y(t)) =1 —y(t) + % is a normalization function.

Remark: When (t) is a constant, then we retrieve the constant-order fractional derivative in
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Liouville-Caputo, Caputo-Fabrizio and Atangana-Baleanu sense.

3 Model Formulation in Classical and Fractional Sense

3.1 Classical model of Artificial Rain Making

A mathematical model (ShyamSundar et al., 2022) has been developed to examine the effect of carbon dioxide
to the environment caused by human activites. This model considers four state variables: N(t) represents the
density of human population at time t, A(t) signifies the growth rate of cumulative density of human activities
related factors at time t, C(t) indicates the concentration of carbon dioxide in the atmosphere at time t and T(t)
denotes the average atmospheric temperature at time t.

dN: r(l—ﬁ)N—s(T—TO)N

dt K

A _ N —ya

dt 4

E=Q+04-0C 1)
dT

at = @¢(C—Cy) — (T —Tp)

where N(0) = 0,4(0) = 0,C(0) = 0,T(0) = T, = 0. The growth rate of human population is represented by
r and carrying capacity is represented by K. The constant s is the death rate coefficient of population density
due to average atmospheric temperature. The constant A is the growth rate coefficient of cumulative density
A(t) of human activities related factors and y is its depletion rate coefficient due to natural factors such as the
inefficiency of these factors. Let Q be the constant input of carbon dioxide from natural sources and 8 is its
growth rate coefficient due to human activities related factors. & represents natural depletion rate coefficient
of carbon dioxide.The growth rate coefficient of temperature T with its natural depletion rate coefficient w is
represented by ¢. C, is the threshold concentration of carbondioxide and T, is the initial concentration of
atmospheric temperature.

3.2 Fractional version of the classical model

0!
By substituting the classical derivative with the operator dd—:(t) , the fractional model of the system (1) is
obtained.
dvON N
= PO 1__)N_ WO(T — TN

dt 4 ( K P o)
@PON _ yw(ON-y¥© 4

dt

10
a — C— Q+6%® 4—s¥O¢ @
avoT

Fr = (pw(t)(c_co) — ¥® (T —Tp)

with initial conditions N(0) = 0,A(0) >0,C(0) =0,T(0) =T, =0 . The equilibria of the above
fractional-order model can be obtained from

avO N dv® 4 av®c avOT
=0 =0, =0 and =
dt dt dt dt

It was observed that the system (1) has two equilibria, one of them is E, = (0,0, Cy, Ty) and the other one is
E* = (N*, A% C*T").
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The Jacobian matrix of the system (2) is as follows

PO (1-2) - OT -1) 0 0 —s¥ON
= 2©® —p¥® 0 0
0 gYm  _sv® 0

0 0 P¥®  —¥®

The eigen values are the solutions of the characteristic equation det(4; — AI) = 0, where the matrix A; and
the unit matrix | with the eigen values calculated at E,and E*. For further details of the results can be found
in (Sundar et al., 2022)

Since the parameters are dimensionless, the fractional models within LC, CF and AB sense will be the
same and it will not be necessary to investigate again.

4 Existence and Uniqueness of Fractional Solutions

4.1 Existence and uniqueness of fractional solutions by the Liouville-Caputo model

In this section, we establish the existence and uniqueness of solutions of the Liouville-Caputo model. Let us
construct the system (2) as

LEDY D[N (D)] = F, (t, N)=r¥® (1 - %) N — s¥®O(T = TN

LY O[A(D)] = F,(t, 4) = WWON-y#©O4

LEDYOlc(1)] = F3(t,C) = Q +6%¥® A — 6¥(O¢ ®3)
DY OT(©] = Fa(6T) = ¥O(C—Co) — 0¥ O(T — Ty)

By using Liouville-Caputo fractional integral operator to the above system, we get

N(t) —N(0) = f (t — K)¥YO-LE (K,N(t))dk
0

L
(o)
1

A(t) — A(0) = m

f (t — k)YO-LE, (K, A(t))dk
0

C(®) = €0) = 55 o (6 = PO Fy(k, C(1))dk 4)

1
"G
We will show that the kernel F; for i = 1,2,3,4 follows the Lipschitz condition and contraction.

Theorem 4.1.1:

The kernel F;(K,N) for i = 1,2,3,4 satisfies Lipschitz condition and contraction if the following inequality
0 <r; <1 holds.

Proof:

Consider two functions N and N

IFL (6, N) — Fi (&, M)l

N AR _
r¥® (1 - E) N — s¥®O(T — Ty)N — r¥v® (1 - E) N+ s¥O(T - TO)N”

T(t) —T(0) = — [[(t — )YO L F, (K, T(t))dk

— P — — —
=[rrOw - By === + MW = F) = s¥OT - TN - B)|

0 ~ ~ ~
< TVOIN = Nll = ——IIN + NI[IN = N|| = s¥©O(T = T)IIN — N||
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(O

< [r¥® — —— W+ N) — s¥O(T — To)] IN — N||

<nlN-N| ®)

_o
K

where r; = [rw(t) —I—(N+N) —s¥O(T - To)] is a positive constant.As a result, the Lipschitz condition

is met for ryand if 0 < r; < 1,then r;follows contraction. Similarly, it can be exihibited and demonstrated in
the other equations as follows

IF2(t, 4) = Fo (¢, DIl < rpllA - All

IF5(t, €) = F5(t, Oll < n3lIC = ClI

IFs(t, T) = Bt DIl < nlIT =Tl
Therefore F; satisfies Lipschitz condition. Also, if 0 < r; < 1, then the kernels follows contractions. From
system (3), the recurrent form can be written as follows
D1 = Ny (£) — Np_y (8)

__ 1
Y@

Dyp = Ay (t) —Ap_1 (1)

o)
(p3n = Cn(t) - Cn—l(t)

f (t = kPO [F, (K, Ny_y) — Fy (K, Ny _3)]dk
0

Syt = YO [Fy(K, Apy) — Fo(K, An_;)]dk

1 t
- Wf (t = YO [F3(K, Coy) = F3(K, Cp)]dk
0

Dy = Ty (t) — Ty (8)

= 25 o ¢ = VO [F(K, Tpoy) = Fa(K, Tp)ldk

Now taking norm for ||@,(t)]l , we get
D1 (O = [N (£) = Nppr (Ol

t
1
B @j (t = k)Y OL [Fy (K, Ny_y) — Fy (K, Ny_p)]dk
0

1 t
< 5 | 1 = PO K Nams) = Fa, N
0

Now using Lipschitz condition in the above equation, we obtain

1
191,01 = g 11000k

similarly

T
19Ol = g [ 192000k
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T
193 (O11 = g [ 192000k

124 (O < 75 o l|Pagn-y (O |k ©)

which implies that it can be written as

Np(t) = XiL; @1:(1) 5 Ap(t) = X1, Py (1),
Cn(t) = X1y P3i (1), T (t) = ity Pu(t)
Theorem 4.1.2;

The Liouville-Caputo model (3) has system of solutions if there exists t >1 such that % <1 fori=1,2,34

Proof:
Consider,

Iom@l < o f [160-1) G0k
1n =9 J 1(n-1)
Replacing n by n-1 in the above inequality

"
[®1-1y | < wof”("l(n—m(k)"dk

2
S [ﬁ] fot“(pl(n—Z)(k)"dk

Again, replacing n by n-2 in the given inequality

3 t
#1020l = [575] [ Nosms ol
0

On substituting in this way and using the initial condition we obtain

121 < 1%l [ 5]
similarly, we get v(t)

22Ol < 14,001 [ 5]
23Ol < GO 225
2@ < IO [25]

This result proved the existence and continuity of solutions.
To show that N(t) , A(t), C(t),andT(t) are the solutions of (3) ,we consider the following equations
N(&) = N(0) = Np(t) — Ryn(2)
A(t) — A(0) = Ap(t) — Ran(t)
C(t) = €(0) = Cp(t) — R3n () )
T(t) = T(0) = T,(t) — Ryn(2)

IR1n ()| =

t
1
o j [FL (K, Ny) = Fy (K, Ny )] e
0
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Lf I[F;(K,Ny,) — F; (K, N,_1)]ll dk

0
1
< 55 1N = Nl
Applying the above process recursively,
n+1

IR (Ol = [ 25
where M is the Lipschitz constant.
when n - oo, ||Ri, ()]l - 0
similarly we prove for
IRz (D1l = 0,[IR3, (D)l = 0 and||Ry, (t)]| > 0 as n - o
Theorem 4.1.3:

If the condition [1 - m >0 ,for i =1,2,3,4 holds then Liouville-Caputo model have unique solution.

Proof:
To establish the uniqueness for a solution of the system (3), consider the different set of solutions for the
system (3),say N, A,C and T. Then as an outcome of the first equation of (3), we write

— 1 2 —
N =N = s Of [Fy (K, N) — Fy (K, N)] dk

Using the norm of above equation
t
— 1 —
N@)—N®| =||-—= | [Fi(K,N) — F,(K,N)]] dk
NG~ Nl w)oj[ L) — (K, W)])

Now by applying Lipschitz condition

IN®) = NOIl = —=mntlIN@®) = Nl

ll}()

Consequently

IN® = NIl = ——=ntlIN([©) = N©®Il < 0

1l)()

IN(t) = N(@®II[1 - t]<0 (8)

1
vt

Since [1-— r;t] > 0 , equation (7) becomes the form

1!}( )
IN(E) = N(@®)II =0
i.e., N(t) = N(t)
similarly we prove
A) = A1) , C(t) = C(tand T(t) =T(t)

4.2 Existence and Uniqueness of Fractional solutions by the Caputo-Fabrizio model
Let us construct the system (2) in the sense of Caputo-Fabrizio, we have

N
CEDYOIN (D] = F, (t, N)=r¥® (1 - E) N — s¥®O(T — TN

chg’(t) [A(D)] = Fy(t, A) = \YON-y¥©O 4
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CEDYOc(t)] = F3(t,C) = Q +6%¥® A —6¥(O¢ 9)
CEDYOIT©] = Fa(6T) = ¥ O(C—C) — 0¥ O(T — Ty)
The Caputo-Fabrizio integral form of the above system is

t

1y (o)
N(t) = N(0) = M O) F(t,N) + TIIo)) J F, (7, N)dt
1y P [
A = AO) = -~ ) Fy(t,A) + oo s o) Fy(t, A)dr
o 1-y@® oM
c(t)—c(0) = ey (¢(t)) F5(t,C) + O 0 J F5(t, C)dt
T(t) — T(0) = I;Ej((f))) F,(t,T) + Ml(”dﬁz)) INACHRLE: (10)

Here we have to prove the kernel F; for i = 1,2,3,4 follows the Lipschitz condition and a contraction.
Theorem 4.2.1:

The kernel F;(z,N), for i =1,2,3,4 satisfies the Lipschitz condition and a contraction if the following
inequality 0 < p; <1 holds.

Proof:

This theorem is proved as similar as theorem 4.1.1

The recurrent form of (9) for the first equation is

$1n = Np(8) — Ny 1 ()

1—
) WIIES; [F1(t, Noey) = Fi (8 Ny 2]
O
* m J [F1 (7, Npo1) = Fi (2, Np—p)dt

Similarly ¢&,, and &, are also be derived
Using the initial condition and taking norm, we get
anll < =2 M) = e ]I
M(yp(®)
P(@)

TMEO)

f 1IFy (5, Nu_) — Fy (2, Np_p)]ll dt
0

Since p,satisfies Lipschitz condition

1§12 (Ol < ;Ef((:))) pl”[fl(n—l)(t)]“ + MZ,EZ)) P1 fot”fl(n—n('f)” dr 1)
Similarly || &, , | &, (@©)]l  and|l &4, ()]l can also be obtained.
Therefore,

No(6) = Xie1 §1i(0) , An (D) = iy &2:(8) , G (1) = Xi, §ai(t)and
To() = ) £u(®

Theorem 4.2.2;
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The Caputo Fabrizio fractional derivative model (9) has system of solutions if there exists v > 1 such that

1-9() Y(©)
[M(w(t)) T
Proof:

Operating (11) recursively and using the initial conditions we have

IO < IO S50 4 s oo
Similarly we have for || & (DIl Il &3Ol (I E4n @Il and || €5, (2)[this result proved the existence and
continuity of solution.
To show that (t), A(t), C(t)and T(t) are the solutions of (9)
consider

Di v] <1, fori=1,2,3,4

n

N(&) = N(0) = Np(t) — D1, (t)

A(t) = A(0) = Ap(8) — D2 ()
C(t) = €(0) = G () — D3, (0) (12)

T(t) = T(0) = Tp(t) — Dan(t)

Now
1—
PWOIE W"g 1EL M) — Fu e Ny
+ Ml(puEZ)) fot” [F1 (T, Np) — F1(t, Np—y)]ll dT
1=y 0)

< W(t))plll]vn - Nn—l” + W(t))plll]vn — Nn_1||17

B [1 LAO S O N IV VN

O IO

Applying the above process recursively

1-y@® | $O v] ¢
Mp®)" T M)

where S is the Lipschitz constant

whenn - o, ||Dy,ll = 0

Similarly we prove for || Dy, || = 0,]|D3,|l = 0 and||Dy,|l » 0as n - o
Theorem 4.2.3:

1Dl < [

. 1-9(t) P(¢) . . .
— . . > = -
If the condition [1 [M(l/)(t)) pi + D) plv” >0 , for i=1,2,3,4 holds then the Caputo-Fabrizio fractional

derivative model have unique solutions.
Proof:
Suppose the system (8) has another solution N, A, C and T

t
_ 1 _
IN® ~ N = || Oj [Fy (K, N) — Fy (K, )] dk
19 O _
N({)—N() = m[F1(t.N) — Fi(t,N)] +mo [Fi(z,N) — F (7,N)]dt
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Using norm and applying Lipschitz condition

- 1-9@®) P(¢) =
IN(®) = NIl < [M@p(t)) p1t M(¢(t))p1v] IN(®) = NIl
Consequently we have
IN() = NI

_[1—¢(t) P(©) v]
Mp©)" " MapE)

1-(0) ()
mw©) "1 T e PV

Since [1 - [ ” > 0, we have

IN(&) = N@®Il =0

i.e.,N(t) = N(t)

Similarly we prove

A(t) = A(t), C(t) = C(t)and T(t) =T(t)

4.3 Existence and uniqueness of solutions for the Atangana-Baleanu fractional model
Let us construct (2) in AtanganaBaleanu fractional derivative in Caputo sense

ABDY D[N (0)] = F, (t, N)=r¥® (1 - %) N — s¥®O(T — TN

ABOD?(t) [A(D)] = Fy(t, A) = \YON-y¥©O 4
ABDYO[T(1)] = Fu(t,T) = %O (C—Cp) — w¥O(T — Ty)
The Atangana-Baleanu integral form of the above system is

N(t) = N(0) = Wd’g)))a(t. N) + % Of (t —=V)YOF(y, N)dy
A(t) —A(0) = Wl’ga(t. A) + % Of (t —=YO Ry, Ady
C(®)—C(0) = Wl”g)))&(t. ) + % J (t —V)YO Ry, Ody
T(t) - T(0) = W"’g)))a(t. T) + % Of (t —=)¥YOTE(y, Tdy

Now to prove the kernel F; for i = 1,2,3,4 follows the Lipschitz condition and contraction.
Theorem 4.3.1:

(13)

The kernel F;(y,N), fori = 1,2,3,4 satisfies the Lipschitz condition and contraction if 0 < §; < 1 holds.

Proof:
The proof is similar to the proof of 4.1.1
For the first equation, the recurrent form of (13) is

_ _ 1y )

gln = Nn(t) Nn l(t) AB(l/)(t)) [Fl(t, Nn—l) Fl(t’ Nn—Z)]
yo [ .

*Wf (=P ARG, Nm) = Ry, Mooy

IAEES
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Similarly 6,,,6s, and 8,,, are also be derived.
Using the initial condition and taking norm, we get
- ¢( )
Ol =

— O ___ [t WO (y, Ny_y) — Fy (7, Ny_p)] Il dy

||[F1(t, Nn—l) - Fl(t' Nn—Z)]”

AB(ll)(t))llJ(t)
Since §; satisfies Lipschitz condition
t
— ¥ Y(©) f _

Ornll € ———=61 010 || + —=———5—=61 | t = V)OO0, (n d

16011 < AB(lp(t)) 1” 1(n 1)” ABW ()Y (D) 10( Y) ” 1(n 1)()/)” Y
Similarly for |02, I, 183,11 and |6, ]
which implies that it can be written as
Ny (8) = Xiq 01:(8) , An(8) = Xy 02:(8) , C(8) = XLy 63;(8) [ Tp(t) = Xiq 64:(2) (14)

Theorem 4.3.2:
The Atangana-Baleanu derivative model (13) have system of solutions, if there exists u>1 such that
—v() Y
i+
AB(y(t)) = AB@®)y(t)

6iu] <1fori=1234

Proof:
Consider,

—¥() Y(t)
16200l < IV, |5 At AEeEE
Similarly, [|8,1l, 11631l and||8,,Ican also be obtained
These results proved the existence and continuity of solution.
Now to show that (t), C(t), and T(t)are solutions of (13)
Consider
N(t) — N(0) = N, () — E1,(2)
A1) — A(0) = Ap () — E2n (D)
C(0) = €(0) = Cp(t) — E3,(0) (15)
T(6) —T(0) = Tp(t) — E4n(t)
Now

Bl < gperes

— YO __ (£ WO [F,(y, Ny) — Fy(y, No_D]ll dy

TABG WD 10
1—-3(t) P(t)

I[F1 (¢, Np) — Fy (&, Nl

< W(Sﬂ“\’n — N4l +W61”Nn —N,_q|lu
1-y@) Y(t) B
= [AB(lli(t)) ft AB@W ()P (t) 51”] [N = N

Applying the above process recursively

1—y(t) Y(t)
1B (Ol < [Zper 50 +AB(¢(t>)¢(t) W ]

where W is the Lipschitz constant
whenn - o, ||Ej,|| = 0
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Similarly we prove for ||E;, |l = 0, ||Es,ll = 0 and ||E,,ll > 0 as n - o
Theorem 4.3.3:

AB(Y (1) AB( ()Y ()
fractional derivative model have unique solutions.

If the condition [1 - [ 1-W(t) 6 + 0] 51-!1]] >0 for i=1,2,3,4 holds then the Atangana-Baleanu

Proof:
Suppose the system (13) has another solution N, 4, C and T
then
_ o 1-y(D) _
N(t)—N() = AB( (D) [Fi(t, N) — Fi(t, N)]
__v® t _ o1 _F( N

Using norm and apply Lipschitz condition

1-y(t) 0) =
IN® = NIl < (558 + T50mes Ok IN@® = N O

Consequently we have

1-p(t) Y(o)
- [ABo,b(t)) St B0 51“]

IN®) -N©®II <0

we hav
2B60) 1 T AB@O)B0O > 0, we have

IN(E) = N(@®)II =0

i.eN(t) =N(t)

Similarly we prove

A) = A(t) , ¢(t) =C(t)and T(t) = T(¢t)

Since[l - [ 1-W(t) 6, + O] 61u]

5 Numerical Scheme
In this section, the Numerical scheme (Solis-Pérez et al., 2018) is considered in the sense of Liouville-Caputo,
Caputo-Fabrizio and Atangana —Baleanu fractional derivatives.
Let us consider our fractional model as
sDfu(t) =f(t,u())
where * denotes LC,CF and AB terms and u(t) = (N(t), A(t),C(t),T(t)).
Now we use the numerical scheme (Solis-Pérez et al., 2018) represented for Liouville-Caputo (16),
Caputo-Fabrizio (17) and Atangana-Baleanu (18) fractional derivatives in (2)
RO F(t )

( w(f)(w(t)+13p(t)f(t -

Unsa (8) = u(0) + o Do | (0=t 24 20) — T | (16

\ ( (n+1— m¥®O+ — > /
(n— m)w(t))(n -m+1+9Y(t)

2 — 1-
( ll)(t))z( ¢(t)) ¢(t)(2 w(t))]f (t, un) =

(Un41) = (up) +

C-yp@®)A-yp @) +

W2 f (tus ) (17)
L) @ - ()
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YA - ()
YOI =p(@) + ()

un+1(t) = u(O) + f(tn' un)

hWOF (b, um)
( m+1-m¥Om—m+2+yY(t)) \
N 1 n ( —(n—m¥Om —m+ 2+ 2a(t) )
@O+D(A-POIP(D)+p(t) ~M=0 —h¥Of (t_1, Umet)
(n+1- m¥®O+
(—(n — MO —m+ 1+ ¢(t))>

(18)

6 Results and Discussion
The primary objective of our proposed fractional model is to observe the impact of CO,emission caused by
human activities on atmospheric temperature through various variables as well as fractional orders.
Case 1(Variable-order case): The growth of human population N(t) is affected adversely by the atmospheric
temperature contributing global warming is represented by the variable order function y(t) =P+Q e™?,
where P represents the initial value while Q indicates the difference between initial and steady state value and
Nsymbolizes the decay constant with respect to time t. A(t) takes the variable order form as (t)=K/(1+e™),
where K represents the carrying capacity and r is the growth rate parameter. This type of function is more
appropriate for situations where pollution increases with increasing automobile usage until it reaches a limit
imposed by environmental factors or regulations. C(t) takes the variable order as 1 (t)=See™, where Sgsignifies
the initial concentration of CO,and r exemplifies the growth rate of CO, concentration. T(t) takes the variable
order as y(t)=Tee", where T, depicts the initial temperature of the atmosphere and r conveys the growth rate
constant.

Figs 1, 2, 3 and 4 represents the above discussed variable-order fractional forms of N(t), A(t), C(t) and T(t)
in LC,CF and AB senses by taking possible parameter values from the literature. We utilized MATLAB
R2023a programming language to perform numerical simulation of our fractional model.

- * _ *t *
900 W(t) I1+O.Ol. exlp( 0.1.*. (9.50))

800 |

700 |
600 |
500%
Z 400
300 f

200

100 |\, :

_100 1 1 1 1 1
0 100 200 300 400 500 600

Fig. 1 Comparison graph of N(t) via LC, CF and AB.
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Fig. 1 presents a graphic representation of the distribution of human population according to a variable order
y(t)=1+0.01exp(-0.1 x t x 0.50). It is observed that in the cases of CF and AB, the density of the population
rapidly decreases and stabilizes over time. However, in the case of LC, the population density decreases until it
reaches a saturation point, which is considered unusual due to the singularity of the LC derivative.

- (-0.01t)
043 ¢ Y(t)=2/(1+e )

0.42

0.41

0.4

0.39

0.38

0.37

0.36

0.35

0.34 1 1 1 1 1 ]
0 100 200 300 400 500 600

time

Fig. 2 Comparison graph of A(t) via LC, CF and AB

Fig. 2 depicts the variation in cumulative density of human activities by (t)=2/(1+e*").Here 2(tons of
CO, per unit area) represents the carrying capacity and 0.01 signifies the growth rate parameter. It is evident
that in all instances of LC, CF and AB, the total density of human impacts on the environment increases rapidly
before eventually stabilizing in the atmosphere.

=0.00046(0-029
a5 (t)=0.0004e

T T
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Fig. 3 Comparison graph of C(t) via LC, CF and AB.
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Fig. 3 displays the progression of concentration of CO, by the variable order function 1 (t)=0.0004e%%
where 0.0004 (parts per million) represents the initial concentration of CO, and 0.02 indicates the rate of
CO,concentration growth in the atmosphere. It is observed that the CO, concentration gradually increases and
stabilizes more slowly in the cases of CF and AB compared to LC.

(0.01.1)

y(t)=15e

0 100 200 300 400 500 600
time

Fig. 4 Comparison graph of T(t) via LC,CF and AB.

Fig. 4 provides variation in the atmospheric temperature by the variable order function 1 (t)=15e"%",
where 15 (degree Celsius) initial temperature of the atmosphere and 0.01 represents the growth rate. It is noted

that in all instances LC, CF and AB ,the atmospheric temperature rises gradually increases over time.
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Fig. 5 Numerical simulations for various order of y at 0.75, 0.85, 0.95 and 1 in Liouville-Caputo sense.
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Fig. 6 Numerical simulations for various order of y at 0.75, 0.85, 0.95 and 1 in Caputo-Fabrizio sense.
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Fig. 7 Numerical simulations for various order of y at 0.75, 0.85, 0.95 and 1 in Atangana-Baleanu sense.

Case 2 (Fractional-order case): Figs 5,6 and 7 depicts the numerical simulation of N(t), A(t), C(t) and T(t) for
various fractional values 0.75, 0.85, 0.95 and 1 of Liouville-Caputo,Caputo-Fabrizio and Atangana-Baleanu
models respectively.

In the context of Liouville-Caputo interpretation, Fig. 5 illustrates a sudden decline in the human population
density, reaching a saturation point. Conversely, in the case of CF Fig. 6, the quantity N(t) promptly diminishes
and remains constant for all considered values of y. When considering Figs 5 and 7, it is evident that the overall
density of human impacts on the environment, denoted as A(t), increases linearly as y grows, particularly seen in
LC and AB scenarios. Conversely, as shown in Fig. 6, the simulation of CF remains consistent across all y
values, showcasing a steady pattern in human impacts on the environment. Figs 5 and 7 demonstrate that as v
increases, the concentration of CO, also increases and remains stable in the atmosphere for LC and AB.
However, in the case of CF, the CO, concentration increment remains consistent across all y values. From
Figs 5 and 7 it is observed that, when 1 increases for LC,AB there is a gradual rise in atmospheric
temperature. Conversely, in Fig. 6 (CF), the temperature T(t) spikes instantly and remains stable across all ¥
values.

As from the literature (Misra and Verma, 2013; Tsai, 2019; Onozaki, 2009), it seems that for variable order
case the results of CF and AB have almost the same variation when compared to LC. For fractional-order
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case ,it is observed that AB have better memory effect than LC and CF. Since LC reaches a saturation point in
the study of human population density, it's not feasible. Additionally, for all CF cases, it's observed that no
variation occurs for any values of y, which violates our core consideration.

7 Conclusions

The research investigates the impact of human-induced carbon dioxide emissions on global warming using a
novel fractional variable-order model. It examines the relationship between CO, emissions and atmospheric
temperature through numerical simulations employing different fractional derivatives. The study emphasizes
the changes in greenhouse gas balance since the Industrial Revolution and their effects on Earth's climate. The
results demonstrate differences in population density, human activities, CO, concentration, and temperature
across different parameters and fractional derivatives. The study highlights the significance of fractional
calculus in understanding climate dynamics and suggests implications for mitigation strategies.
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