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Abstract 

This paper seeks to explore the stability assessment of a generalist predator-prey system with predator 

harvesting. The study presents a model examining the dynamics between primary prey and predator, 

considering the existence of a generalist predator. Prey growth follows a logistic rate, while predator 

consumption is modeled with a cyrtoid functional response. In the absence of primary prey, the predator 

population adopts a generalist strategy, akin to the Beverton-Holt model. The model also incorporates 

harvesting on the predator population. We analyze the model's equilibrium, stability, positivity, and 

boundedness, and use numerical simulations to explore its predictions. This study enhances our understanding 

of ecological interactions and supports the development of effective conservation and management strategies. 

 

Keywords equilibrium point; generalist predator; cyrtoid functional response; local and global stability; 

harvesting. 

 

 

 

 

 

 

 

 

1 Introduction  

The dynamics of prey-predator relationships play a crucial role in shaping species composition within an 

ecosystem and the dynamics of those ecosystems. Specifically, interactions between prey and predators serve 

as mechanisms leading to the emergence of population cycles. Since Lotka (1920) and Volterra's (1926) 

pioneering work, mathematical models of prey-predator interactions have continually enhanced our 

understanding of ecological dynamics. Harvesting is widely acknowledged as a critical factor in the study of 

population dynamics for biological resources, including fisheries, forestry, and wildlife management. In 

dynamical systems theory, stability analysis, persistence, bifurcation, and related concepts present significant 

challenges. In this study, we examine the stability analysis of generalist predator-prey dynamics with predator 

harvesting. Predators can be divided into two categories: generalist predators and specialist predators. The 
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population dynamics of generalist predators in prey-predator models have been relatively overlooked 

compared to those of specialist predators. A specialist predator relies exclusively on a specific prey species, 

while a generalist predator can exploit a range of food sources beyond its primary prey species. The former 

faces extinction without its primary prey species, whereas the latter can flourish depending on the availability 

of alternative food sources. This paper seeks to explore the stability assessment of a generalist predator-prey 

system with predator harvesting. The study presents a model examining the dynamics between primary prey 

and predator, considering the existence of a generalist predator. Prey growth follows a logistic rate, while 

predator consumption is modeled with a type II functional response. In the absence of primary prey, the 

predator population adopts a generalist strategy, akin to the Beverton-Holt model. The model also incorporates 

harvesting of the predator population. We analyze the model's equilibrium, stability, positivity, and 

boundedness, and use numerical simulations to explore its predictions. This study enhances our understanding 

of ecological interactions and supports the development of effective conservation and management strategies. 

The forthcoming model of ordinary differential equations can illustrate a predator-prey scenario, featuring  

either a generalist or a specialist predator (Erbach et al., 2013). 

 

dP1
dT

ൌ FכሺP1ሻP1 െ Gכ൫P1,P2൯P2 

                                                                                                                                                (1) 

dP2
dT

ൌ ΥGכ൫P1,P2൯P2 ൅ HכሺP2ሻP2 

                                

Where P1and  P2  depict the densities among prey and predator populations respectively. In the lack of  the 

other prey, functions Fכand Hכ  depict the dynamics of individual species. For instance, Fכ  may represent 

logistic growth, and when Hכ ൏ 0, it indicates a specialist predator. Conversely, for a generalist predator, we 

find that Gכሺ0, P2ሻ+H
ሺP2ሻכ ൐ 0. The function Gכ, also known as the functional response, describes predation 

as the per capita consumption rate of prey by the predator. Additionally, Υ  represents the efficiency of 

converting prey biomass into predator biomass. The functional response typically relies solely on the prey 

species (Holling, 1959); however, it may also rely on both prey and predator populations (Arditi and Ginzburg, 

1989; Beddington, 1975; Cantrell and Cosner, 2001; Kuang and Beretta, 1998). 

     This paper is structured as outline below. Segment 2 outlines the mathematical model of a two-species 

population consisting of one prey and one predator. Segment 3 analyzes the system’s positivity and 

boundedness. Segment 4 deals with the analysis of local stability in the nonlinear system. Segment 5 assesses 

global stability at the internal equilibrium point. Segment 6 presents numerical simulations, and the final 

segment provides the discussion and conclusions. 

 

2 Specific Model  

We regard a model featuring prey growth with a logistic rate and predator consumption following a cyrtoid 

functional response. In the absence of primary prey, we assume the predator to be a generalist with procreation 

governed by a Beverton-Holt-like function (Erbach et al., 2013), and the predator is the sole harvesting species.  

Hence, the model system is 

 

dP1
dT

ൌ rP1 ൬1 െ
P1
k
൰ െ

αP1P2
1 ൅ hP1
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                                                                                                                                            (2)       

            
dP2
dT

ൌ Υ
αP1P2
1 ൅ hP1

൅
δP2

1 ൅ sP2
െ ηP2 െ μP2 

                                                                                                                     

Here, 

r ‐Internal growth rate of prey.        

k‐The environment’s carrying capacity for prey. 

α

h
 ‐ Maximum hunting rate. 

h‐ Manipulation time. 

Υ ‐Efficiency of converting prey biomass into predator biomass. 

δ ‐Procreation rate per capita of the predator. 

s ‐Density dependence strength for predator.   

η ‐ The predator’s natural death rate. 

μ‐ The predator’s harvesting activity. 

 

All parameters are considered to be positive. Note that the term  rP1 ቀ1 െ
P1
k
ቁ represents prey growth with 

a logistic rate, and the growth rate of the generalist predator, represented by the Bevorton-Holt-like function 

δP2
1ାsP2

, depends upon the availability of alternative food resources. Additionally, we assume that η ൅ μ< δ to 

ensure that the predator with harvesting can carry on when their primary prey does not exist. 

     To reduce parameter complexity, we non-dimensionalize system (2)  by changing variables such that 

m1 ൌ
P1
k

,  m2 ൌ
αP2
r

  and t ൌ rT. This provides  

 

dm1

dt
ൌ m1ሺ1 െm1ሻ െ

m1m2

1 ൅ am1
 

                                                                                                                                                      (3) 

               
dm2

dt
ൌ
bm1m2

1 ൅ am1
൅

cm2

1 ൅ em2
െ fm2 െ gm2 

 

Given m1ሺ0ሻ ൐ 0  and  m2ሺ0ሻ ൐ 0  as initial conditions. 

Where a ൌ hk, b ൌ
αγk

r
, c ൌ

δ

r
, e ൌ

sr

α
, f ൌ

η

r
 and  g ൌ

μ

r
 .  In this scenario, the relationship  f ൅g  < c   holds 

true, since  η ൅ μ< δ. 

 

3 The System’s Positivity and Its State of Being Bounded 

In this segment, our aim is to define the criteria for achieving solutions that are both positive and bounded 

within the system. 

 

Theorem 3.1:   If  m1ሺ0ሻ  and m2ሺ0ሻ  are consistently positive, then all solutions in the equations (3) remain 

positive. 
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Proof: Take into consideration the initial equation in the model (3) 

 

dm1

m1
ൌ    ൤ሺ1 െ m1ሻ െ

m2

1 ൅ am1
൨ dt 

 

dm1

m1
ൌ     1ሺm1 ,m2ሻdt 

 

Where  1ሺm1 ,m2ሻ ൌ    ቂሺ1 െ m1ሻ െ
m2

1ାam1
ቃ 

Taking the integral of both sides over the interval [0, t], we get 

 

m1ሺtሻ ൌ m1ሺ0ሻexpන  1ሺm1 ,m2ሻdt 

Since    m1ሺ0ሻ ൐ 0,    m1ሺtሻ ൐ 0  for all   t. 

Next, take into consideration the secondary equation in the model (3) 

 

dm2

m2
ൌ    ൤

bm1

1 ൅ am1
൅

c
1 ൅ em2

െ f െ g൨ dt 

 

dm2

m2
ൌ     2ሺm1 ,m2ሻdt 

 

Where  2ሺm1 ,m2ሻ ൌ    ቂ
bm1

1൅am1
൅ c

1൅em2
െ f െ gቃ 

 

Taking the integral of both sides over the interval [0, t], we get 

 

m2ሺtሻ ൌ m2ሺ0ሻexpන  2ሺm1 ,m2ሻdt 

 

Since    m2ሺ0ሻ ൐ 0,   m2ሺtሻ ൐ 0  for all   t. 

Therefore, all solutions of the equations (3) remain positive. 

 

Theorem 3.2: The system (3) exhibits bounded trajectories. 

 

Proof: Define the operation  vሺtሻ ൌ m1 ൅ m2 and differentiate  vሺtሻ with respect to t,  we get 

 

 

dvሺtሻ
dt

ൌ  
dm1

dt
൅ 
dm2

dt
 

 

dvሺtሻ
dt

ൌ   m1ሺ1 െ m1ሻ ൅
cm2

1 ൅ em2
െ fm2 െ gm2 
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Now, 

 

dvሺtሻ
dt

൅  ̆vሺtሻ ൌ  m1ሺ1 െ m1ሻ ൅
cm2

1 ൅ em2
െ fm2 െ gm2  ൅  ̆m1 ൅  ̆m2 

 

Where  ̆ is positive constant for  ̆൅ 1 ൐ 0, c ൐ f ൅ g ൐  ̆൐ 0,  given  ൐ 0  there exists t0 such that t ൒ t0  we get 

 

                                         
dvሺtሻ

dt
൅  ̆vሺtሻ ൑ χ́ ൅  ,  χ́ ൌ min ቄሺ ̆൅ 1ሻ, ቀ

cିሺfାgሻା ̆

eሺሺfାgሻି ̆ሻ
ቁቅ 

 

Lemma 3.3:   Let � be an absolutely-continuous function satisfying the differential inequality 

 

d ሺtሻ

dt
൅ α1 ሺtሻ ൑ α2, t ൒ 0,where ሺα1, α2ሻ א Rା 

2 , α1 ് 0. 

Then, 

 

t ׊ ൒ T෩ ൒ 0,  ሺtሻ ൑
α2
α1
െ ቆ

α2
α1
െ  ൫T෩൯ቇ eିα1൫tିT෩൯. 

 

By aforementioned lemma (Aziz-Alaoui and Daher Okiye, 2003), we get 

 

֜  vሺtሻ ൑ vሺt0 ሻeି ̆
ሺtିt0 ሻ ൅ ൬

χ́ ൅  
 ̆
൰ ൫1 െ eି ̆ሺtିt0 ሻ൯ 

Letting the limit as t ՜ ∞,  and letting  ՜ 0 

 

lim
୲՜∞

ሺsup vሺtሻሻ ൑
χ́
 ̆
 

 

Hence, the model (3) of equations is bounded under the initial conditions. 

 

4 Analysis of Local Stability In Nonlinear Systems 

In this segment, we first verify the presence of equilibrium points in the model (3), then proceed to assess their 

local stability by calculating the eigenvalues of the Jacobian matrix at each equilibrium point. 

4.1 Equilibrium points 

The system's equilibrium points are crucial for examining the local stability properties of the predator-prey 

system. There exist four equilibrium points within the system (Table 1). 
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                                           Table 1 Explanation of equilibrium points. 
Equilibrium points Explanation 

E0 {m1=0, m2= 0} 
 
E1{m1=1, m2= 0} 
 

 E2 ሼm1 ൌ 0,  m2 ൌ ቂ
cିሺfାgሻ

eሺfାgሻ
ቃሽ 

 
 E3 ሼm1 ൌ m1

,כ m2 ൌ m2
 ሽכ

Trivial 
 
Predator washed out 
 
Prey washed out 
 
      
Coexistence 

 

4.2 Assessment of the presence and local stability of the equilibrium points 

Given model (3) at the equilibrium point  Eሺm1,m2ሻ , the Jacobian matrix is 

 

J ൌ

ۏ
ێ
ێ
1ۍ െ 2m1 െ

m2

ሺ1 ൅ am1ሻ2
െm1

1 ൅ am1
 bm2

ሺ1 ൅ am1ሻ2
bm1

1 ൅ am1
൅

 c
ሺ1 ൅ em2ሻ2

െ f െ g
ے
ۑ
ۑ
ې
 

 

Theorem 4.2.1:  The equilibrium point E0{m1=0,m2= 0} in the system (3) exhibits instability.  

 

Proof:  Given system (3) at E0 {m1=0,m2= 0}, the Jacobian matrix is 

 

J0 ൌ ൤
1 0 
0 c െ ሺf ൅ gሻ൨ 

 

The eigenvalues are λ1 ൌ 1 and λ2 ൌ c െ ሺf ൅ gሻ. 

 

Since  c ൐ f ൅ g,  both eigenvalues are positive. 

 

Hence, the equilibrium point E0 {m1=0,m2= 0} in the system (3) exhibits instability. 

 

Theorem 4.2.2:  The equilibrium point E1{m1=1,m2= 0} in the system (3) is a saddle point.  

 

Proof:  Given model (3) at E1{m1=1,m2= 0}, the Jacobian matrix is 

 

J1 ൌ ൦
െ1

െ1 
1 ൅ a

0
b

1 ൅ a
൅  c െ ሺf ൅ gሻ

൪ 

 

The eigenvalues are λ1 ൌ െ1 and λ2 ൌ
b

1ାa
൅ c െ ሺf ൅ gሻ. 

Since  c ൐ f ൅ g,  both eigenvalues have opposite signs. 

 

Hence, the equilibrium point E1{m1=1,m2= 0} in the system (3) is a saddle point. 
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Theorem 4.2.3:  If 1 ൏ ቂ
cିሺfାgሻ

eሺfାgሻ
ቃ ,  then the equilibrium point E2 ሼm1 ൌ 0,m2 ൌ ቂ

cିሺfାgሻ

eሺfାgሻ
ቃሽ in the system (3) 

exhibits local asymptotic stability. 

 

Proof: Given system (3) at E2 ሼm1 ൌ 0,m2 ൌ ቂ
cିሺfାgሻ

eሺfାgሻ
ቃሽ ,  the Jacobian matrix is  

 

J2 ൌ

ۏ
ێ
ێ
ێ
1ۍ െ ൤

c െ ሺf ൅ gሻ
eሺf ൅ gሻ

൨ 0

b ൤
c െ ሺf ൅ gሻ
eሺf ൅ gሻ

൨
െሺf ൅ gሻ

c
ሾc െ ሺf ൅ gሻሿ

ے
ۑ
ۑ
ۑ
ې
 

  

The eigenvalues are λ1 ൌ  1 െ ቂ
cିሺfାgሻ

eሺfାgሻ
ቃ and λ2 ൌ  

ିሺfାgሻ

c
ሾc െ ሺf ൅ gሻሿ. 

 

Therefore, if 1 ൏ ቂ
cିሺfାgሻ

eሺfାgሻ
ቃ, then the equilibrium point E2 ሼm1 ൌ 0,m2 ൌ ቂ

cିሺfାgሻ

eሺfାgሻ
ቃሽ in the system (3) exhibits 

local asymptotic stability. 

 

Theorem 4.2.4:  If  tr൫J3൯ ൏ 0 and det൫J3൯ ൐ 0, then the internal equilibrium point E3 ሼm1 ൌ m1
m2,כ ൌ

m2
  .ሽ in the system (3) exhibits local asymptotic stabilityכ

 

Proof: Given system (3) at the internal equilibrium point  E3 ሼm1 ൌ m1
m2,כ ൌ m2

 ሽ, the Jacobian matrix isכ

 

J3 ൌ

ۏ
ێ
ێ
1ۍ െ 2m1

כ െ
m2

כ

ሺ1 ൅ am1
ሻ2כ

െm1
כ

1 ൅ am1
כ

 bm2
כ

ሺ1 ൅ am1
ሻ2כ

bm1
כ

1 ൅ am1
כ ൅

 c
ሺ1 ൅ em2

ሻ2כ
െ f െ g

ے
ۑ
ۑ
ې
 

 

The Jacobian matrix J3 has a characteristic equation of 

 

Fሺλሻ ൌ   λ2 െ tr൫J3൯λ ൅  det൫J3൯ ൌ 0. 

 

Where trace and determinant of the Jacobian matrix J3 is denoted by  tr൫J3൯ and det൫J3൯. 

 

Where tr൫J3൯ ൌ 1 െ 2m1
כ െ

m2
כ

ሺ1ାam1
ሻ2כ
൅

bm1
כ

1ାam1
כ ൅

 c

ሺ1ାem2
ሻ2כ
െ f െ g 

and 

det൫J3൯ ൌ ቂ1 െ 2m1
כ െ

m2
כ

ሺ1ାam1
ሻ2כ
ቃ ቂ

bm1
כ

1ାam1
כ ൅

 c

ሺ1ାem2
ሻ2כ
െ f െ gቃ ൅ ቂ

 bm1
m2כ

כ

ሺ1ାam1
ሻ3כ
ቃ. 

 

When the following Routh-Hurwitz criteria are fulfilled, the internal equilibrium point  E3ሺm1 ൌ  m1
m2,כ ൌ

m2
  ;ሻ  in the system (3) exhibits local asymptotic stability (Erbach et al., 2013; Manna and  Banerjee,  2022כ
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Manna and Banerjee, 2024): 

 

tr൫J3൯ ൌ 1 െ 2m1
כ െ

m2
כ

ሺ1 ൅ am1
ሻ2כ

൅
bm1

כ

1 ൅ am1
כ ൅

 c
ሺ1 ൅ em2

ሻ2כ
െ f െ g ൏ 0 

and 

                         det൫J3൯ ൌ ቂ1 െ 2m1
כ െ

m2
כ

ሺ1ାam1
ሻ2כ
ቃ ቂ

bm1
כ

1ାam1
כ ൅

 c

ሺ1ାem2
ሻ2כ
െ f െ gቃ ൅ ቂ

 bm1
m2כ

כ

ሺ1ାam1
ሻ3כ
ቃ ൐ 0. 

 

 

5 Global Stability Analysis 

In this segment, we explore the global asymptotic stability of the internal equilibrium point E3  of  the  system 

(3) through the Bendixson-Dulac criteria. 

 

Theorem 5.1: The internal equilibrium point E3 in the system (3) exhibits global asymptotic stability 

 

Proof: Let H(m1,m2ሻ ൌ
1ାam1

m1m2
 

 

Clearly H(m1,m2ሻ is positive for both  m1 ൐ 0, m2 ൐ 0 

 

Let   β1(m1,m2ሻ ൌ m1ሺ1 െm1ሻ െ
m1m2

1ାam1
 

β2(m1,m2ሻ ൌ
bm1m2

1ାam1
൅

cm2

1ାem2
െ fm2 െ gm2 

 

Then  Δ(m1,m2ሻ ൌ
ப

பm1
൫β1H൯ ൅

ப

பm2
൫β2H൯ 

 

                                = െ ቂ
1ା2am1ିa

m2
ቃ െ ቂ

ceሺ1ାୟ୫1ሻ

m1ሺ1ାem2ሻ2
ቃ 

 

                                <0 

 

Using the Bendixson-Dulac criterion (Hsu and Huang, 1995), we observe that Δ(m1,m2ሻ   maintains a 

consistent sign and is not identically zero within the inside of the positive quadrant of the  m1 െm2  plane. 

Hence, the internal equilibrium point E3 in the system (3) exhibits global asymptotic stability 

 

6 Numerical Simulation 

For the numerical simulation, consider the model (3). 

By defining the system's parameters as  τ ൌ ሺa ൌ 10, b ൌ 3.35, c ൌ 1.4, e ൌ 0.9, f ൌ 0.2, g ൌ 0.3 ሻ, the initial 

conditions ሺm1 ൌ 0 ,m2 ൌ 15ሻ  are satisfied, representing an assessment of the  predator's stability  

incorporating  predator  harvesting (see Fig. 1), and allowing for the creation of a phase diagram depicting  

prey and predator populations based on the same initial conditions (see Fig. 2). 

Defining the system's parameters, as mentioned above, allows for an assessment of prey and predator 
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interaction stability incorporating predator harvesting based on satisfying the initial conditions ሺm1 ൌ

10 ,m2 ൌ 5ሻ  (see Fig. 3). It also enables the creation of a phase diagram depicting prey and predator 

populations (see Fig. 4). 

 

 

Fig. 1 Assessment of the predator's stability incorporating predator harvesting. 

 

 
 

Fig. 2 The phase diagram depicting prey and predator populations at ሺm1 ൌ 0 ,m2 ൌ 15ሻ. 
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Fig. 3 Assessment of prey and predator interaction stability incorporating predator harvesting. 

 

 
 

Fig. 4 The phase diagram depicting prey and predator populations at ሺm1 ൌ 10 ,m2 ൌ 5ሻ. 

 

7 Discussions and Conclusions 

For ecological communities, understanding prey-predator interactions is crucial. Researchers have examined 

various mathematical models and analyzed their dynamics for this purpose. Our contribution involved 

proposing a predator-prey model that included a generalist predator. In this model, we used a mathematical 

expression to describe the dynamics of several prey populations, specifically incorporating the cyrtoid 

functional response for the generalist predator. Our paper presented a model that investigated the stability 
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assessment of generalist predator-prey dynamics with predator harvesting, utilizing the cyrtoid functional 

response. Unlike many studies that focused on generalist predators and opted for a sigmoidal functional 

response, often for predators switching prey or targeting refuge-seeking prey, we chose the cyrtoid response. 

This choice was motivated by our long-term aspiration to explicitly include multiple prey populations as 

sources for the generalist predator. 

This model analyzed the stability and following conclusions were drawn. 

The dynamics of the stability assessment for a prey-predator model that includes predator harvesting are 

shown in Figures 1 and 3. 

Thus, it is observed that our assumption that c ൐ f ൅ g  is important for the persistence of generalist 

predators with harvesting, even in the absence of primary prey. 
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