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Abstract

Locusts are a highly destructive type of pest within the grasshopper species worldwide. When there is an
invasion at a specific location, they can cause severe damage to crops. This study presents a mathematical
model that examines locust invasions in terms of their dynamic behavior in both the source and invaded zones.
The model is formulated using differential equations and takes into account the parameters and variables
identified from both zones. The parameters were estimated using the least squares method, with all parameters
being normally distributed. The study thoroughly discusses the existence of solutions by identifying
equilibrium points and establishing conditions for their stability using the Jacobian matrix, Routh-Hurwitz
criteria, and Lyapunov function. The analytical solution suggests that the system is stable when the intrinsic
growth rate (o; and o) is higher. However, the numerical solution indicates that the presence of locust
populations in the two zones is determined by the intrinsic growth rate (o; and o) the locust population
increases and stabilizes after a few days. Factors such as survival and invasion rates were found to be major
contributors to the existence and dynamics of locusts in the two zones. Additionally, it was observed that the
deterrent coefficient in the invaded and source zones (n; and ) has a significant impact on controlling the
dynamic behavior of locusts.

Keywords locust behavior; mathematical modeling; least square method (LSM); community livelihood;
stability analysis.
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There are approximately 12,000 species of grasshoppers globally, with only 20 of these speciespossessing the
ability to undergo a transformation into locusts, which are recognized as hazardous crop pests (Word Ries et
al., 2024). Grasshoppers, inclusive of those capable of transitioning into locusts, are categorized under the
Acrididae family, suborder Caelifera, order Orthoptera, and class Insecta (Kariuki, 2022). Their collective
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behavior, characterized by swarming, poses a significant threat to agricultural productivity (Babar, 2023;
Hassan and Aslam, 2024; Cease et al., 2015). Among the 20 species of locusts are desert locust (Schistocerca
gregaria), migratory locust (Locusta migratoria) and red locust that are extensively distributedand have
extreme population changes (Rajak and Yadav, 2023). Desert locusts are mostly foundin Sahara Desert and is
the most destructive locust specie in the world (Cressman, 2016; Babar, 2023). Migratory locusts are mostly
found in Africa, Europe, Asia and Australia (Chen et al., 2020). The red locust, prevalent in Africa,
particularly in the Lake Chad basin, Mali, CapeVerde islands, and the Great Lakes of East Africa, specifically
in Tanzania, Zambia, Malawi, and Mozambique, has been observed to inflict substantial harm to agricultural
produce, leadingto significant concerns regarding food security (Chen et al., 2020). The last invasion of red
locust was in between 1929-1944, which affected most of African countries (Topaz et al., 2012; Price, 2023).

Approximately 20% of the world’s land surface is affected by locust invasions in arid and semiarid regions,
impacting nearly 10% of the global population. This causes poor crop harvests, food insecurity, loss of pasture,
and environmental destruction (Rai and Chavhan, 2015; Kimathi et al., 2020; Salih et al., 2020). In Tanzania,
locust invasions are a recurrent problem with severe implications for food security (Ahmad et al., 2022). The
desert locust, in particular, has caused significant agricultural losses in recent years, exacerbated by climate
change and increasingly erratic weather patterns (Babar, 2023). These invasions disrupt the livelihoods of
farmers and pastoralists, leading to food shortages, economic instability, and increased poverty levels
(Thomson and Miers, 2002).

Understanding the dynamic nature of locust behavior, particularly the unpredictable patterns of their
invasions, presents a formidable challenge in effectively mitigating their impact is of economical importance.
The comprehension of these dynamics holds paramount importance in the development of strategies aimed at
safeguarding crops and ensuring food security. The application of mathematical modeling serves as a potent
instrument in the assessment and anticipation of locust behavior, against invasions. Traditional methods of
locust control, including chemical pesticides, often thereby facilitating enhanced readiness and responsive
measures struggle to keep pace with the rapid movements and large scale of infestations. Moreover, these
methods can have detrimental environmental and health impacts, prompting the need for more sustainable and
effective management strategies (Zhang, 2025). At low density, they have short wings solitarious, they remain
in breeding areas while doing less harm to vegetation cover. As population increases, they become gregarious,
smaller body size, long winged, change their colour and can leave their breeding areas and fly up to a height of
1800 m above the ground to greater distances (Brazdil et al., 2014). Wind movement influences the locust
speed and direction. Locusts feed on all vegetation without selecting. Grasshoppers can swarm when they are
able to fly but gregarisation phase can skip between generations either one or two generations (Rai and
Chavhan, 2015).

To address this threat, the Tanzanian government, along with regional and international partners,
implements various strategies to manage and control locust populations. These efforts include monitoring and
surveillance of locust breeding grounds, especially after periods of rain, as well as using early warning systems
to predict outbreaks and mobilize rapid response efforts. Control measures involve the use of pesticides and
biological agents that target locusts without harming other wildlife. About USD 138,000,000/= were used in
2020 to control the desert locustand support affected people for food in the horn of Africa countries whereby in
Tanzania about USD 505,000/= were required to control the locust and support the affected people (Mamo and
Bedane, 2021). Despite the efforts made by the government and international organizations locust are still
dangerous to agriculture sector, food security and environment. Different studies have been conducted on
locust outbreak but none of them have developed a mathematical model of locust invasion. A mathematical
model is the most powerful scientific model for studying locust population dynamics and its control. Therefore,
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a mathematical model for studying locust dynamical behavior and control of locust invasion is necessary. The
model is used to study the behaviour of locusts so that the information obtained help to take important
preventions and efficient control tactics before causing massive damage. This study intends to use
mathematical model to study the locust invasion and understand its dynamical behavior.

To do this we first formulate a mathematical model of locust invasion, analyse the model for feasibility of
the system, existence and stability of equilibrium states and explore locust invasion behavior in the system
using numerical simulations.

2 Methods

2.1 Model description

The model is divided into two settings, the Source zone - region where the loust are comingfrom and the
Invaded zone - region where the locust invasion has occurred. Locust from the Source zone are denoted by
Ls(t) while those from the Invaded zone are denoted by L;(t).

2.2 Population dynamics

Locust from the source zone grow at intrinsic growth rate o5 depending on their population and environment’s
carrying capacity k;. From the source zone locust are removed through control methods with effort Es and
control coefficient #s. The removal rate is hindered by the environment and locust’s dynamical and survival
mechanism at the removal deterrent coefficient ps. When the environmental and other factor are favourite,
locust from the source move toinvade at the rate ¢ which is monitored by whether and to what extent the
factors are favouriteor unfavourite at invasion deterrent coefficient 1. Those from invaded zone grow at
intrinsic growth rate o; depending on their population and environment’s carrying capacity k.. They are
removed through control methods with effort E;jand control coefficient ;. The removal rate of locust from
invaded zone is hindered by the environment and locust’s dynamical and survival mechanism at the removal
deterrent coefficient p;. Locust from both zones die naturally at a rate a.

2.3 Variable and parameters and their description

Table 1 Parameters and their description for locust invasion model.

Parameters Description
L Biomass density of Locust from source zone
L; Biomass density of Locust from invaded zone
o Intrinsic growth rate of locust from source zone
i Intrinsic growth rate of locust from invaded zone
kq Carrying capacity of locust in source zone
ko Carrying capacity of locust in invaded zone
Ps Removal deterrent coefficient in source zone
pi Removal deterrent coefficient in invaded zone
s Control coefficient of the control method in source zone
i Control coefficient of the control method in invaded zone
Es Locust removal effort applied by control method in source zone
E; Locust removal effort applied by control method in invaded zone
o Locust invasion rate (from source zone to invaded zone)
a Locust natural death rate
y) Invasion deterrent coefficient
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2.4 Model assumption
e The locust invasion model rely on the following assumptions;
e Locust can grow independently in the two zones and their population sizes are bounded.
e Locust from the two zones have ecological interactions in their respective zones.
e The control efforts applied to the source and invaded zone are different and proportional to the level of
the invasion.
e Locust recruitment depends on the carrying capacity of the respective zone.
e Locust in both zones die naturally at the same rate.
e All other removal factors are ignored except the natural and those aided by applied control strategies.
e  Only adult locust with full invasive properties are considered in this model
2.5 Model equations
The dynamics of locust populations in Source zone and Invaded zone may be governed by the autonomous
system of differential equations as represented by system (1)

0 _ 61,0 (1 Ls(lt)) (1 = pInsEsLs(t) = (25 + @) L (1)

(12)
20 = i1, (0) (1= 19) + (5) Le®) = (1 = pmEile(®) — al(6)

(1b)

psand pjdescribe the rates at which the environment and locust’s dynamical and survival mechanism reduce
the efficient of the removal method in source and invaded zones respectively, are named as removal deterrent
coefficients.

The parameters o, K1, ps, #s, 9, A, @, pi, niand #; are assumed to be positive constants and 0 < p,<1 and

0<pi<il

Rearranging the system and using the method by Edelstein-Keshet (2001) we get;

dLg s
O = —L(0) (-0 + 0B O = ponsEs + =+ @) (22)

8010 (-

i + a) +(:5) + Ls(®). (@)

dLs(t)

Considering (2a) if —o, + (1 — pg)nsEs topta> 0 then < 0, similarly if we consider (2b) we

can observe that if there is no locust invasion from the source (§ = 0) and

dLi(t)

—0; + (1= pIniEy + a + (<5) > O then <0.

Considering the condition above, for

Ld(:) and dLS(t) to be positive we need (1 — pg)nsEs + 75 + @ < 050

1+4 + a <os and (1 — p)n;E; + @ < o; respectively. This means that the existence of locust population and
their dynamics in the two zones is possible if the intrinsic growth rate of locust from source zone and that of
the invasion zone is greater that the natural and/or human induced removal rate of locust from the source zone
and invasion zone respectively. This condition holds throughout our analysis in this work.
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e dLs(t)

If there is no invasion and no efforts invested to control the locust in the two zones; for S an to be

positive we need a <a; and a < g; respectively. This means that the existenceand the sustainable
dynamics of locust population will be possible if natural removal of locustis less than the intrinsic growth rate
of locust in the two source zone and invasion zone.

3 Existence of the Equilibria

= 0. From

To find the equilibrium points E (L}, L;) of the model system (1), we set dLi (t) = 0and de;t(t)

equation (1) we take

oLs(0) (1= 22) = (1 = pINELs(O) = (5 + @) Ls(© = 0

(32)
o;L;(t) <1 - Lk(2t)> <1 n A)L ) — (1 = pImE;Li(t) — aLi(t) =0
(3b)

Such that (3b) and (3a) yields to;

L; s
_Js+o-sk_1+(1_ps)nsEs+m+a =0,

Lk
—0; + O'l'k—;+ (1 - Pi)’?iEi +a=0.

3.1 Absence of locust in the two zones

When we consider the assumption that there is no locust in the source zone and the invaded zone then the
equilibrium point is as given in (4)

E(LS=0,Li=O) (Lfs': 7) = (0,0). (4)

3.2 Absence of locust in the source zone

When we consider the assumption that the locust are only in the invaded zone, then the stationary point in this
scenario is as in (5)

P K
Eop(Ls, LD = <0.0—2i(0i — (1= pIniE; - 01)) Q)

The stationary point E,,, is positive if o; > ((1 — p)n;E; + )

3.3 Absence of locust in the invaded zone

Here we consider the assumption that locust are available in the source zone only, the equilibrium point is as
given in (6)

E(li.o)(l‘g' 7) = (I;_: (O-s -(1- ps)nsEs -a), 0) (6)

The stationary point E,_is positive ifo; > ((1 — ps)nsEs + a).

3.4 Presence ot locust in the two zones

Here we consider the assumption that the locust are both in the source and invaded zones.
Solving system of equation (3) we obtain the the stationary points as given in (7)

E(Ls L) = (i‘ﬁ (05— 61), k, (1 + al(1+l)) (I;_f 0, + as(1+;o) 93) Q)

where
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91 - (1 pS)nSE t+ta+-——= (1+ﬂ.)

0, = ((1 — pIniE; + ),

93 - (1 pS)nSE +ta+-——= (1+ﬂ.)

The stationary point E is positive ifo;, > 8, and k, (1 + (1;)) > (% 0, + %93)

4 Stability of Equilibria

In this section we check the stability of equilibrium points. we investigate the local and global stability of the
equilibrium point E, assuming that the locust are present in source and invaded zone.

4.1 Local stability

We consider the variational matrix for the model system (1) around the equilibrium point ( L, L}) such that:

_aly)

X a(Ls)
~ L,— L) +——= Ly — Lj
S A PRCEIERE 7 BINGEND .
- a(Ly) _ a(Lz) T
i~ OLg (L3L) (Ls Ls | (Ll Ll)

by computing the partial derivatives of (1a) and (1b) using the notation in (8) it yields to:

a(Ls) 2L% )
—_— =0 -——]-(1- E;———
aLS (LZ‘L;) N ( ) ( pS)r’S N (1+A)
a(Ls) _
i 1151
a(iy s ( ©)
s (13 10) T (1A
a(Ly) — _ 2L
a_Li (L’;,L’{) = 0j (1 ) (1 Pl)m

Thus, the variational matrix J(Ls, L;) as computed in (9) of the locust invasion model is given
by;

2 SLS 5
. s 05 — % (1 ps)ns (l'l-—)l)_a 0
JLL L) = 5 SR, (10)
(1+2) O; — Pi Th i

We compute characteristics equation of a variational matrix in the form

Ay + PIA+ P, (11)
The coefficients P; and P, of the characteristics equation of variational matrix (10) is as given in (12) and (13)
respectively

iLi )
Pl =2a+ 0; + (’sz + (1 - pi)rliEi + (1+_/1) + (1 - ps)ns s — Oy (12)
20.L 20;L 2L;
P2 = — (Gi + } l + (1 pz)mE + 0() + (1 Ps)Uﬂ?s (1 + _)
K k, K,
1) 20;L;
+(1 = pInsEs((1 = pniE; + ) + a+n (Gi + K + (1 - p)niE; + a)
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ta (Ui + ZZ_;LL + 0‘) + (1 = pniEa — <UsUi (%))

+o,((1 — pIniE; + ) (13)
We apply the Routh-Hurwitz criteria by Mathebula (2012) to prove the the stability of equilibrium
point E( Ly, L}). In our case, using Routh-Hurwitz criteria the E( Li, L}) is locally asymptotically stable (LAS)
if and only if P;> 0 and P,>0. The Routh array is constructed as follows:

211 0
2P 0
A00P, 0

(14)

Now analysing P;> 0 and P,> 0 in (12) and (13) we can see that, the equilibrium point E( L%, L}) is LAS if and
only if it satisfies the condition in (15) and (16).

a—as—%(a—as)>o (15)
2L
(16)

4.2 Global stability
Here we determine the conditions under which the equilibrium points E is globally stable. In this case we need
to prove whether the solution starting sufficiently close to the equilibrium remains close to the equilibrium and
approaches the equilibrium as t — oo, or if there aresolutions starting arbitrary close to the equilibrium
which do not approach it respectively.
Theorem 4.1 (Lyapunov’s Stability Theorem)
Given a continuously differentiable function V : R™ — R the equilibrium point x = 0 of thesystem
x = f(x) isglobally asymptotically stable if:

e V(0)=0an V(x)>0 forall x=0 and V(0) =VV(x)-f(x) <0 forall x € R".

where, V(x) > serves as a Lyapunov function, ensuring positive definiteness around x = 0.V (x) represents
the derivative of V' (x) along the trajectories of x = f(x), determining the stability properties of the
equilibrium.

As applied by past research (Drazin, 1992; Chen, 2004; Karafyllis and Jiang, 2011), choose the Lyapunov
function V(L,, L;) as:

1(12 | 12
V(Ls, LL') = 2 (k_1 + k_z) (17)

where k; and k, are positive constants.
Compute the time derivative of V(L,, L;) inequation (17) such that

dLg
S dt

dL;

V(L L)) = Ly =+ L (18)

by substituting (1) and (2) in (18) we have:
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. L 1)
V(Ls' Li) = Ls [JSLS <1 - k_s) - (1 - ps)r)sEsLs - < + a) Ls]
1

1+21
L 5
+L; [UiLi (1 - k—z) + (m) Ly — (= p)niEiL; — aLi] (19)
After simplification (19), we obtain:
V(Ls, L) = —(1 = pInsEsLs — (1 — pIniEiLf (20)

Since ng,m;, Eg, E; > 0 and ps, p; € [0, 1]in (20), we have:

(1-ps) 20 and (1—p;) =0andng,n;, Es, E; > 0.
Therefore, V(Lg, L;) < 0 forall Ly, L; > 0.
« Positive Definiteness: V(Lg, L;) is positive definite for Lg,L; > 0 and V (0,0) = 0.
« Decreasement Condition: V(Ls,L;) < 0 withequality V(Ls,L;) = 0 ifandonlyifL; =0 and L; = 0.
Therefore, by the Lyapunov theorem, the equilibrium point (Lg, L;) = (0,0) of the system described by
equations (1a) and (1b) is globally asymptotically stable. This implies that, under the given conditions and
parameter values, the locust population dynamics will converge tozero in the absence of external perturbations,
ensuring the control and stabilization of the locust populations in both the source and invaded zones.

5 Numerical Analysis of the Model

In this section, we illustrate the invasion behavior of the locust through numerical simulation. The chosen
parameter values align with those documented in relevant literature, and in cases where specific parameters are
not explicitly delineated; estimations are derived from secondary statistical data, as delineated in the
accompanying Table 2.

Table 2 A table showing the invasion of locust swarms in Tanzania (for Eastern Africa, 2022).

SIN Year Estimated Swarms Controlled
1 2009 650
2 2010 700
3 2011 650
4 2012 650
5 2013 350
6 2014 -
7 2015 -
8 2016 -
9 2017 -

10 2018 -
11 2019 -
12 2020 700
13 2021 820

Table 2 shows estimates of locust swarms for thirteen years from 2009 to 2021. The records show that
locust invasion in the years 2009 to 2013, 2020 and 2021 was an invasion of locustswarms whereby from 2014
to 2019 there was no invasion of locust swarms in Tanzania. Ingeneral, the information implies that locusts are
dangerous and Tanzania is a vulnerable country.
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5.1 Parameter values

5.1.1 Model fittings and parameter estimation

After conducting model analysis of the dynamics and qualitative outcomes of the locust model, it becomes
essential to accurately determine the model’s parameters for making quantitative predictions within a limited
time frame using real-world data (Charles et al., 2024). In this study, we employed the non-linear least squares
method (NLSM) to estimate the parameters of model equation (1a) and (1b). To achieve this, we generated
synthetic data that represented the expected locust invation patterns at various time points, denoted as t;
(Capaldi et al., 2012; Charles et al., 2024). These patterns were computed by numerically solving equation (1a)
and (1b) with a fifth-order Runge-Kutta method in the MATLAB environment, initializing the parameters with
value from literature denoted as ®; and inintial condition for the number of L(0) = 700, L;j(0) = 500. In order
to generate the locust dataset RD(t; ©;) we added random Gaussian noise 1;(t; ®;) measurements to the data
simulate real-world dynamics where measurement errors are common. Thus the observed dependent data were

given as;
Y; = RD(t; ©;) + n;(t; ©;) for each time ¢; € [1,n] (21)

The parameter values YY (Table.3) were determined by minimizing the sum of squared residuals expressed as;
YY(0) = min T, (¥; — ¥)? (22)

between the model solutions (Y ) obtained through solving the locust 1b model using the real parameters from
the generated data and the synthetic data Y; generated by introducing random Gaussian noise to the model
output RD (t; ©;) (Herrera et al., 2022). Estimated parametervalues were then used to fit the data Y;, and the
resulting best fits were depicted in Figs. 1 (a)-(b) Table 3 presents the values of parameters used in the
simulation

Fig. 2 depicts the normal distribution of ecological parameters, such as growth rates (o,0;), carrying
capacities (ki, ko), and removal deterrent rate (ps, pi, J, @), signifies natural variability within ecosystems. This
variability, driven by genetic diversity, environmental factors, and stochastic events, shapes population
dynamics and species interactions. Parameters like resource conversion efficiencies (ys, #i), environmental
carrying capacities (Es, E;), and invasion deterrent coefficient (1) further reflect how species respond to varying
resource availability and environmental conditions. Understanding these distributions provides insights into
species resilience, community structure, and ecosystem stability, crucial for effective conservation and
management strategies in dynamic ecological systems.
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Fig. 1 Scatter estimated with standard deviation of 0.05 and numerical simulation (sold) with confidence interval of 95%.

5.1.2 Evaluation of error metrics and model performance

In order to quantifies the average absolute difference between observed and estimated values, measures the
average relative deviation between observed and estimated values. The Mean Absolute Error (MAE) and Mean
Relative Error (MRE) metrics were used to evaluate the accuracy of estimated values §; compared to
observed values y;in the context of estimating Lsand L; (population sizes) using the formula below

1 N 1 i—Ji
MAE = ¥, ly: - 9;| and MRE = {3, [ (25)

where;

yi: Observed values of Lsor L;, ¥: Estimated values of Lsor L;, N : Total number of data points.

Using the advantage of MATLAB along with equations (1a), (1b) and (23) the results were dipicted in Table 4
and Fig. 3. Table 4 shows that the MAE for Lsis 1.599081, indicating that, on average, the predictions for L
differ from the observed noisy data by 1.599 units. In contrast, the MAE for L; is significantly higher at
28.317970, suggesting that the predictions for Ljare, on average, about 28.318 units away from the observed
values.

When examining the MRE, we find that for L, the MRE is 0.209269, meaning that the absolute error
constitutes approximately 20.93% of the observed values for L. For L;, the MRE is substantially lower at
0.038030, indicating that the absolute error is only about 3.80% of the observed values.

These metrics suggest that while the model has higher precision in absolute terms for Ls due toits lower
MAE, the predictions for L;are more accurate in relative terms, as indicated by the lower MRE. Therefore, the
model demonstrates better relative accuracy for Ljcompared to L (see Fig. 3).
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Fig. 3 Model’s performance, Mean Absolute Error (MAE) amd the Mean Relative Error (MRE) for two variables, Ls and L;.

5.2 Numerical results

In Fig. (4) (a), it is observed that the intrinsic growth rate o; of locusts from the invaded zone L; initially
increases with the rise in L;for the first 20 days, and subsequently decreases after 21 days. A 70% increase in
oi results in 1500 units of L;, while a 60% increase yields 800 unitsof L;, and a 50% of ¢; increase leads to 700
units of L;. Furthermore, Fig. (4)(b) Indicates that an increase in the removal deterrent coefficient in the
invaded zone #; leads toa decrease in L;, suggesting that #; is an effective control measure for L;. Finally, Fig. 4
¢ illustrates that an increase in pj results in an increase in L.

Fig. 4 Effect of parameters on Locust invaded Li.
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Fig. 5 Dynamics of locust in Source and Invasion zones with baseline parameters.

When there is effort applied to control the locust population increase in the population tend to decrease at
high rate as the large biomass of locust will be removed through the control mechanism applied. Fig. 5 shows
the rapid decrease of the locust population both from theinvasion zone and source zone. It can also be seen that
the invasion period is short as the time locust population reach and stay at its highest level is very short before
it decreases to the level where they are not chancy. Efforts applied to control the locust population in the
source zones reduce the possibility of the invasion to occur. When there is an active control strategies inboth
zones the locust invasion possibility become even thinner as the locust population will be maintained at a level
that won’t be ample for invasion. The importance of control is vivid as depicted in Fig. 5, but when no control
is applied to both zones (Source and invasion zone) the condition become uncontrollable and the possibility of
occurrence of invasion becomes high to the two zones. Fig. 6 demonstrates that the locust removal effort (E;)
causes a reduction in L;: with a 30% (0.3) increase in E;, a decrease of 780000 units of L; ensues, and with a 60%
(0.6) increase of E;, a decline in L;joccurs; a 90% (0.9) increase of E;eliminates L; altogether.
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Fig. 6 Effect of variation of level of control in invasion zone.

0

Fig. 7 Locust population of dynamics without control efforts.

The results depicted in Fig. 7 highlight the fact that efforts invested to control the locust invasion dictate
the time the locust spend in the invaded area and as a result the effect caused bythe locust invasion in the
particular area. The choice of the control method is also an important factor to consider when planning for
control of locust, this is due to the fact that the control mechanisms varies in the control efficiency of locust
and the cost. Therefore for a fruitful control results, one should think of the optimal control of locust both in
the source zone and the invasion zone. The next section thoroughly discuses the optimal control of locust that
will suggest the kind of control mechanism and the related costs for optimal control results. In Fig. 8 (a), it is
observed that the intrinsic growth rate ps of locusts from the source zone Lsinitially decrease with a minimal
increase in magnitute of Lsfor the first 20 days, and subsequently decline to zero after 21 days. Furthermore,
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Fig. 8 (b) indicates that an increase in the removal deterrent coefficient in the locust source zone o leads to a
decrease in Lg, suggesting that #; is an effective control measure for L;. Finally, Fig. 9 (c) illustrates that an
increase in pgresults in an increase in Ls.

100

Fig. 8 Effect of parameters on Locust source L.

Fig. 9 Effect of parameters on Locust source L.

6 Conclusions

The application of Mean Absolute Error (MAE) and Mean Relative Error (MRE) metrics has illustrated that
while the model provides reasonably accurate predictions for the population size Ls with a low MAE, it
demonstrates superior relative accuracy for L; as indicated by a lower MRE. These metrics underscore the
model’s effectiveness in quantifying predictionerrors and highlight its variable-specific performance
characteristics. Factors such as growth rates and removal coefficients have a significant influence on
population sizes (Zhang et al., 2020), emphasizing the need for early intervention and adaptive management.
Effective control measures offer hope for reducing locust outbreaks and ensuring food security. Coordinated
efforts are crucial for reducing population sizes and preventing widespread invasions, highlighting the
necessity of strategic interventions to improve resilience against locust threats in the future.
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