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Abstract 

Aquatic ecosystems are highly sensitive to changes in environmental conditions, making it essential to identify 

the key factors that influence the dynamics of species populations. This study introduced a nonlinear 

mathematical model, analyzed it, and identified key sensitive parameters that were used in assessing the 

impact of water pollution on aquatic ecosystems. Global sensitivity analysis was conducted to determine the 

parameters significantly impacting aquatic species populations. Parameters were estimated using the least 

squares method, while sensitivity analysis was performed via Partial Rank Correlation Coefficient (PRCC) and 

Latin Hypercube Sampling (LHS). Parameters related to organic pollutant growth rates, pollutant absorption 

rates, and oxygen penetration were identified as positively affecting aquatic species populations by enhancing 

nutrient availability and metabolic activity. Conversely, competition and inorganic pollutant discharge were 

found to impact aquatic populations negatively. These findings highlight the critical role of managing sensitive 

parameters such as pollutants and competitive interactions to maintain and improve the health of aquatic 

ecosystems. 
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1 Introduction 

Aquatic ecosystems are vital to the health of the planet, providing essential services such as water purification, 

flood regulation, and habitat for a diverse range of species (Geist and Hawkins, 2016). These ecosystems 

support a multitude of ecological functions and processes that are critical for maintaining biodiversity and the 

overall health of the environment (Cadotte et al., 2011). Aquatic ecosystems include rivers, lakes, wetlands, 

estuaries, and oceans, each hosting unique species and ecological dynamics. However, these ecosystems are 

increasingly threatened by pollution from industrial, agricultural, and urban sources (Hader et al., 2020). 
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Pollution in aquatic environments has been a growing concern for decades, with numerous studies highlighting 

its adverse effects on water quality and aquatic life (Hader et al., 2020; Bashir et al., 2020). 

Inorganic pollutants include heavy metals such as mercury, lead, and cadmium, which originate from 

industrial discharges and mining activities, are known to bioaccumulate in aquatic organisms, causing toxic 

effects at various trophic levels (Ali et al., 2019). These metals can bind to cellular components, disrupting 

metabolic processes and leading to cellular damage, reproductive failure, and death in severe cases (Rainbow, 

2007; Su et al., 2014). When organic matter enters a water body, it integrates into the food web, enhancing 

nutrient availability for native microorganisms and potentially benefiting the entire aquatic ecosystem(Okeke 

et al., 2022). Excessive nutrients from agricultural runoff lead to eutrophication, resulting in hypoxic 

conditions that threaten fish populations and reduce biodiversity (Zhang and Zhang, 2007; Jan et al., 2022). 

Nutrients such as nitrogen and phosphorus promote the excessive growth of algae, leading to algal blooms 

(Wurtsbaugh et al., 2019). When these blooms die and decompose, the decomposition process depletes oxygen 

in the water, creating hypoxic or anoxic conditions that can cause massive die-offs of fish and other aquatic 

organisms (Sarma and Kumar, 2024). Eutrophication also disrupts the balance of aquatic ecosystems, favoring 

the growth of certain species over others and reducing overall biodiversity (Lucas and Deleersnijder, 2020).  

Environmental modeling has become an essential tool for understanding and managing the impacts of 

pollutants on aquatic ecosystems (Lucas and Deleersnijder, 2020). Various modeling approaches, including 

deterministic, stochastic, and mechanistic models, have been developed to simulate the behavior and fate of 

pollutants, as well as their effects on aquatic species. Mathematical models have been widely used to assess the 

effects of pollutants on aquatic ecosystems (Shi et al., 2023). The study by Tiwari et al. (2017) analyzed the 

impact of organic and inorganic pollutants on fish survival but overlooked the role of aquatic plants in oxygen 

production. This represents a significant gap, as aquatic plants not only contribute to oxygen enrichment but 

also serve as a food source for aquatic organisms. Similarly, Misra (2011) investigated dissolved oxygen 

depletion due to algal blooms, incorporating nutrient-algae interactions based on Holling Type-III dynamics. 

However, this model primarily addressed nutrient dynamics without considering the combined influence of 

multiple pollutants. The model developed by Shukla et al. (2008) examined the simultaneous effects of water 

pollution and eutrophication on dissolved oxygen levels, revealing a greater oxygen reduction when both 

factors were present. Nevertheless, it did not explore the long-term consequences of toxicants on fish 

populations. Further research by Kumar et al. (2016) focused on the effects of toxicants on biological 

populations, underscoring the need for regulating toxic emissions, but it lacked an assessment of the wider 

ecological and human health implications. Additionally, the study by Chaturvedi et al. (2017) employed a 

nonlinear differential equation model to examine nutrient-driven species growth, yet it did not account for 

interactions between pollutants and other ecological components. More importantly, previous studies have 

failed to assess key sensitive parameters. Sensitivity analysis and parameter estimation are vital tools for 

refining these models (Computing, 2004; Yang, 2017). 

This research addresses these critical gaps by integrating aquatic plants as a crucial component in oxygen 

dynamics and incorporating sensitivity analysis to evaluate the most influential parameters affecting ecosystem 

stability. By considering the intricate relationships among pollutants, dissolved oxygen, bacteria, and fish 

populations, the study provides a more comprehensive perspective on the effects of water pollution and offers 

a refined approach to identifying the most critical factors driving ecosystem health. 

 

2 Material and Methods 

2.1 Modal descriptions 

The model explores the dynamics of pollutants in aquatic ecosystems, distinguishing between organic ( ଴ܲሻ and 

177



Computational Ecology and Software, 2025, 15(4): 176-196 

 IAEES                                                                                     www.iaees.org

inorganic ( ௜ܲ) substances. It incorporates other variables like bacteria density (ܤሻ, aquatic plants density (such 

as algae and water hyacinth) (ܣሻ, dissolved oxygen concentration (ܥሻand fish density (ܨሻ. 

Pollutants enter the water body at rates of ܳଵ (inorganic) and ܳଶ (organic) and degrade at rates µଵ and 

 ଶ  respectively. Bacteria thrive on organic pollutants, increasing their population, while fish experienceߤ

reduced growth due to the ingestion of inorganic pollutants. Bacteria undergo natural mortality at a rate ߤ଺and 

are subject to intra-species competition characterized by ߣଶ଴. Similarly, aquatic plants face natural mortality at 

a rate ߤଷ and intra-species competition represented by ߣଷ଴. Dissolved oxygen (C) is replenished at a rate Λଵ, 

but also naturally decreases at a rate  ߣସ. Additionally, oxygen facilitates the decomposition of bacteria into 

organic matter at the rate ߚ଴ଶ. Fish growth critically depends on the dissolved oxygen levels. It is negatively 

affected by both direct ingestion of inorganic pollutants and the indirect reduction of oxygen caused by the 

presence of organic pollutants. Fish are also subject to natural mortality at a rate ߤହIntra-species competition 

at the rate ߣଵ଴, and toxin-induced mortality from inorganic pollutants at a rate ߠ. 

The model employs a Monod-type interaction to describe species growth and nutrient dynamics. The 

organic pollutant ଴ܲ is consumed by bacteria, fish, and aquatic plants according to the rates of  
ఉమబ௉೚஻

ఉమభାఉమమ௉బ
. 

௞భ௉బி

௞భమା௞భభ௉೚
 , and  

ఉబభ௉೚஺

ఉభమାఉభభ௉೚
 respectively. Oxygen is depleted during the decomposition of organic matter atthe 

rate of 
ఉబమ௉బ஻

ఉమభାఉమమ௉బ
 while fish benefit from consuming  ଴ܲ at the rate 

ఒర௞భ௉బி

௞భమା௞భభ௉బ
. 

We therefore formulate the model system of nonlinear differential equations presented as Eq. (1) 
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2.2 Qualitative analysis 

2.2.1 Positivity of the model solution 

For the model system (1) to be ecologically and mathematically meaningful, we need to prove that all state 

variables are non-negative for all ݐ ൒ 0, 

Lemma 2.1 The solutions ൫ ௜ܲሺݐሻ, ௢ܲሺݐሻ, ,ሻݐሺܤ ,ሻݐሺܣ ,ሻݐሺܨ ሻ൯ݐሺܥ  of the model system (1) with initial 

conditions ௜ܲሺ0ሻ ൐ 0, ௢ܲሺ0ሻ ൐ 0, ሺ0ሻܤ ൐ 0, ሺ0ሻܣ ൐ 0, ሺ0ሻܥ ൐ 0 and ܨሺ0ሻ ൐ 0 are positive for all ݐ ൒ 0. 

Proof. Considering the first equation of the model system (1), we have 
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݀ ௜ܲ

ݐ݀
൐ െሺܨߙ ൅ ଵሻߤ ௜ܲ                                                                                                                                 ሺ2ሻ 

Whose solution is given by  

௜ܲሺݐሻ ൐ ௜ܲሺ0ሻ݁ି
ሺఈிାఓభሻ௧. 

Likewise, the variables ௢ܲሺݐሻ, ,ሻݐሺܣ ,ሻݐሺܤ  ሻ can be computed following a similar procedure andݐሺܨ ሻ andݐሺܥ

establish that ௢ܲሺݐሻ ൐ 0, ሻݐሺܤ ൐ 0, ሻݐሺܣ ൐ 0, ,ሻݐሺܨ ሻݐሺܥ ൐ 0 whenever ݐ  ൒  0. Therefore, the solution set 

൫ ௜ܲሺݐሻ, ௢ܲሺݐሻ, ,ሻݐሺܣ ,ሻݐሺܤ ,ሻݐሺܥ ሻ൯ݐሺܨ א Թା
଺ , ൒׊ 0. 

2.2.2 Boundness of the model 

The model system (1) was developed taking into account the fields of biology, environment, epidemiology, 

and ecology, assuming that all the state variables and model parameters are well–posed for all ݐ  ൒  0. Initially, 

we demonstrate that the solutions of the model (1) are bounded as presented in Lemma 2.2. 

Lemma 2.2 The region of attraction for the model system (1) is contained in the following set: 
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ଵߤଵ଴ߣ
൨. 

 

Proof. Following Jha and Misra (2024), we will prove this lemma. From the first 

equation of model system (1), we establish that, 

݀ ௜ܲ

ݐ݀
൑ ܳଵ െ ଵߤ ௜ܲ,                                                                          ሺ3ሻ 

whose solution is given by 

lim
௧ืஶ

sup ௜ܲ ൑
ܳଵ
ଵߤ
,               

Therefore, we have 

                                                        0 ൑ ௜ܲ ൑
ܳଵ
ଵߤ
.                                                                                          ሺ4ሻ 

2.2.3 Equilibrium point analysis 

To investigate the model’s long-term dynamics, equilibrium points are determined by setting the growth rates 

of all state variables to zero, signifying steady-state solutions.  

The system of equations (1) yields at least four feasible equilibrium points: 
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i. Equilibrium Point ߦ଴ 

଴ߦ  ൌ   ሺ0, 0, 0, 0, 0, 0ሻ, representing a scenario devoid of pollutants, aquatic plants, bacteria, oxygen, 

and fish. 

ii. Equilibrium Point ߦଵ 

ଵߦ ൌ ቀ
ொభ
ఓభ
,
ொమ
ఓమ
, 0,0,

ஃ

ఓర
, 0ቁ, where aquatic plants, bacteria, and fish are absent inthe system. 

iii. Equilibrium Point ߦଶ 

ଶߦ ൌ ሺ0, 0, , ଶܣ ,ଶܤ ,ଶܥ  ଶሻ , corresponding to a pollutant-free water body. This existsܨ

under the conditions: 

ە
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ۓ
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ଷ߉ െ ଺ߤ ൐ 0,
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                                                  ሺ5ሻ 

iv. Equilibrium Point כߦ 

כߦ ൌ ሺ ௜ܲ
,כ ௢ܲ

,כ ,כܣ ,כܤ ,כܥ  .ሻ, indicating the coexistence of all species within the systemכܨ

Proof of the feasibility of these equilibria is in Appendix A. 

2.2.4 Linear stability of equilibria 

In this section, we conduct a local stability analysis of the equilibria for the model system (1) this analysis 

determines whether the system will settle into equilibrium when its state begins near, but not exactly at, an 

equilibrium point. An equilibrium is considered locally asymptotically stable if, for all initial conditions within 

a certain neighborhood around the equilibrium, the system converges to the equilibrium as time approaches 

infinity. The stability of an equilibrium is assessed by examining the sign of the real parts of the eigenvalues of 

the Jacobian matrix at the equilibrium point. Specifically, the equilibrium is stable if these eigenvalues are 

negative. The methods used to analyze the dynamical behavior of the model system (1) are detailed 

inAppendix B, providing insights into the stability and equilibrium properties of the system. 

Concerning the local stability of all equilibria in system (1), we present the following theorem: 

Theorem 1 

1. The equilibrium point ߦ଴ is unstable provided the condition stated in equation 5 is satisfied. 

2. The equilibrium point ߦଵ  is unstable provided the condition stated in equation 5 is satisfied. 

3. The equilibrium point ߦଷ is always unstable. 

4.  The equilibrium כߦis locally asymptotically stable if the following conditions hold: 
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The proof of this theorem is given in Appendix B. 
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2.2.5 Nonlinear stability of interior equilibrium 

In this section, we broaden our stability analysis from the small region near the equilibrium point to the entire 

region of attraction by employing Lyapunov’s second method. The core concept of this approach for assessing 

the nonlinear stability of an equilibrium point is to identify an energy function that decreases over time along 

the system's trajectories. Given that the equilibriumכߦ, where all dynamic variables are active, is the most 

significant equilibrium among those in system (1), we will establish conditions for the global asymptotic 

stability ofכߦ. 

Concerning the global stability of the equilibrium כߦin system (1), we present the following theorem: 

Theorem 2 The interior equilibrium  כߦ if it exists, it is non-linearly stable inside the 

region of attraction if the following conditions hold: 
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The proof of this theorem is given in Appendix C. 

2.3 Quantitative analysis 

2.3.1 Parameter estimation and model fitting 

Following the examination of the asymptotic behaviors and long-term qualitative outcomes of the model 

system, parameter estimation becomes imperative for achieving precise quantitative predictions within a finite 

timeframe when constrained by empirical data. In this study, we utilized the least squares method for 

parameter estimation, suitable for general parameter calibration rather than hypothesis testing or confidence 

interval determination. The parameter values (refer to Table 1) were obtained by minimizing the sum of 

squared residuals ቀ݉݅݊∑ ൫ ௚ܻ െ ௟ܻ൯
ଶ௡

௜ୀଵ ቁ between the model solutions ሺ ௟ܻሻderived from literature values and 

synthetic data ൫ ௚ܻ൯ generated by incorporating Gaussian noise into the model output ሺ ௟ܻሻ Fanuel et al. (2023). 

The MATLAB built-in function fminsearch, which employs the Nelder-Mead simplex algorithm, was used to 

identify the local minimizers of the residual sum of squares. Initial parameter values were selected based on 

compliance with the conditions outlined in the qualitative analysis. The estimated parameters were applied to 

fit the data ൫ ௚ܻ൯, with the optimal fits depicted in Fig. 1. Furthermore, the autocorrelation of the residuals was 
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analyzed, revealing an insignificant correlation at the 5%  significance level (see Fig. 4). These results 

suggest that the estimated parameters yield the optimal fit for the data. 

 

Table 1 Estimated parameter values. 

Parameter Initial value Source Estimated Mean (ߤ) and std (ߪ) 

Qଵ 18.056 Tiwari et al. (2018) 18.002902 ܰ 18.0832   3.84  ൈ 10ିଶ 

Qଶ 18.056 Tiwari et al. (2018) 18.088006 ܰ 18.0786    3.20  ൈ 10ିଶ 

 Tiwari et al. (2018) 16.930407 ܰ16.9228   1.38 16.913 ߉ ൈ 10ିଶ 

 ଵ 0.5 Assumed 0.503617 ܰ 0.5003    3.78߉ ൈ 10ିସ 

 ଶ 0.5 Assumed 0.493277 ܰ 0.5038   5.41߉ ൈ 10ିଷ 

 ଷ 0.5 Assumed 0.515624 ܰ 0.4966   4.74߉ ൈ 10ିଷ 

 Assumed 0.049929 ܰ 0.0500   2.50 0.05 ߙ ൈ 10ିହ 

 Assumed 0.020310 ܰ 0.0199  1.77 0.02 ߠ ൈ 10ିସ 

λଶ 0.33 Tiwari et al. (2018) 0.336046 ܰ 0.3288   1.76  ൈ 10ିଷ 

λଷ 0.2 Assumed 0.200531 ܰ 0.2013   1.83  ൈ 10ିଷ 

λସ 0.13 Assumed 0.131187 ܰ 0.1307   9.69  ൈ 10ିସ 

λଵ଴ 0.446 Tiwari et al. (2018) 0.443490 ܰ 0.4461   1.46  ൈ 10ିସ 

λଶ଴ 8.278 Tiwari et al. (2018) 8.373243 ܰ 8.1913   1.23  ൈ 10ିଵ 

λଷ଴ 0.5 Assumed 0.503893 ܰ 0.5019   2.75  ൈ 10ିଷ 

 ଴ଵ 0.029 Tiwari et al. (2019) 0.028717 ܰ 0.0293   4.31ߚ ൈ 10ିସ 

 ଴ଶ 0.112 Tiwari et al. (2018) 0.110319 ܰ 0.1137   2.47ߚ ൈ 10ିଷ 

 ଶ଴ 4.38 Tiwari et al. (2017) 4.409343 ܰ 4.4076   3.91ߚ ൈ 10ିଶ 

 ଵଵ 0.051 Tiwari et al. (2019) 0.051012 ܰ 0.0509   1.70ߚ ൈ 10ିସ 

 ଵଶ 1.0 Tiwari et al. (2019) 1.012754 ܰ 0.9837   2.30ߚ ൈ 10ିଶ 

 ଶଵ 7.81 Tiwari et al. (2017) 7.778490 ܰ 7.8338   3.37ߚ ൈ 10ିଶ 

 ଶଶ 1.48 Tiwari et al. (2017) 1.497801 ܰ 1.4931   1.85ߚ ൈ 10ିଶ 

݇ଵ 1.0 Assumed 0.999306 ܰ 0.9969   4.33  ൈ 10ିଷ 

݇ଵଵ 1.0 Assumed 1.004568 ܰ 1.0000   4.7  ൈ  10ିହ 

݇ଵଶ 1.0 Assumed 1.007983 ܰ 0.9923   1.09  ൈ 10ିଶ 

μଵ 0.2 Assumed 0.199239 ܰ 0.2000     2.5  ൈ  10ିହ 

μଶ 1.804 Tiwari et al. (2018) 1.810026 ܰ 1.8050   1.41  ൈ 10ିଷ 

μଷ 0.031 Assumed 0.031419 ܰ 0.2997   4.22  ൈ 10ିସ 

μସ 0.3 Tiwari et al. (2018) 0.299548 ܰ 0.0310   1.80  ൈ 10ିହ 

μହ 1.5 Tiwari et al. (2018) 1.498941 ܰ 1.4986   1.92  ൈ 10ିଷ 

μ଺ 0.28 Tiwari et al. (2018) 0.282797 ܰ 0.2803   4.38  ൈ 10ିସ 

 ଵ 0.1 Tiwari et al. (2018) 0.100089 ܰ 0.1000   3.50ߛ ൈ 10ିହ 

 ଶ 0.5 Assumed 0.501070 ܰ 0.5001   1.57ߛ ൈ 10ିସ 
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Fig. 1 Model fitting (lines) corresponding to estimated parameter values for Inorganic Pollutants( ௜ܲ), Organic Pollutants ( ௢ܲ), 
Aquatic Plants (A), Bacteria (B), Oxygen Concentration (C) and Fish (F). 

 

Fig. 2 Population dynamics using initial parameter values (in red sold line) and the best fit ofgenerated synthetic data (in black 
dashed) using Std = 0.05, in Inorganic Pollutants (Pi), OrganicPollutants (Po), Aquatic Plants (A), Bacteria (B), Oxygen 
Concentration (C) and Fish (F). 
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Fig. 3 The sample autocorrelation of the residuals in relation to Inorganic Pollutants (Pi), Organic Pollutants (Po), Aquatic Plants 
(A), Bacteria (B), Oxygen Concentration (C), and Fish Population (F). 
 
 

 

    Fig. 4 Normal distribution of the model variables with standard deviation σ=0.05 and Confidence interval (C.I) =95%。  
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2.3.2 Sensitivity analysis 

An exploratory analysis was carried out using time-varying sensitivity analysis, as no specific periods of 

interest were identified for the study. The analysis sought to identify meaningful time–dependent correlations 

spanning the entire period under investigation (Fanuel et al., 2023). The sensitivity of input parameters on the 

aquatic species, such as the aquatic plant populationሺܣሻ, bacteria population ሺܤሻ and the fish population 

ሺܨሻ was determined by plotting the PRCC values computed at various time intervals against time. The results 

of the analysis are presented in Figs. 5(a)–(c). From this figure, the shaded region represents PRCCs that are 

insignificantly different from zero ሺെ0.2  ൑  ܥܥܴܲ  ൑  0.2ሻ (Marino et al., 2008). 

 

Fig. 5 A visual representation showing the evolution of parameter sensitivity throughout theprogression of the system dynamics. 
PRCC values over a time span of 80 days with respect to (a) Aquatic Plants, (b) Bacteria, and (c) Fish. 
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3 Results and Discussion 

The model fitting and parameter estimation approach in this study provided a quantitative basis for 

understanding the aquatic ecosystems dynamics. Using the least squares method, the model's parameter values 

were adjusted to minimize the residuals between the model's predictions and the synthetic data, ensuring that 

the model fits the empirical data as closely as possible. Using the Nelder-Mead simplex algorithm via 

MATLAB's `fminsearch` function enabled efficient local minimization of residual sums, resulting in a good fit 

with insignificant residual autocorrelation. 

The sensitivity analysis, conducted using Partial Rank Correlation Coefficients (PRCC) and Latin 

Hypercube Sampling (LHS), provided valuable insights into the time-dependent effects of various parameters 

on different components of the aquatic ecosystem. From Fig. 5(a), for aquatic plants (A), the sensitivity 

analysis revealed that the growth rate driven by organic pollutants ሺߣଷሻ, the absorption rate of pollutantsሺߚ଴ଵሻ, 

and the discharge rate of organic pollutants ሺܳଶሻ they are highly influential parameters, positively impacting 

the aquatic plant population. These factors promote plant growth by enhancing nutrient availability and 

favorable conditions, leading to increased biomass. On the other hand, the death rate due to intraspecific 

competition ሺߣଷ଴ሻ and the half-saturation constant negatively affects the plant population. Intraspecific 

competition reduces the availability of resources among plants, limiting growth, while the half-saturation 

constant likely represents a threshold beyond which the effectiveness of nutrient uptake diminishes, further 

restraining population growth. 

From Fig. 5(b) we can see the growth rate of bacteria (B) driven by organic pollutants ሺߣଶሻ, the uptake 

rate of organic pollutants by bacteria ሺߚଶ଴ሻ, and the discharge rate of organic pollutants ሺߚଶ଴ሻ, are identified 

as positively sensitive parameters, meaning they are directly proportional to the increase in bacterial 

population. These parameters promote bacterial growth by providing essential resources and conditions that 

enhance bacterial proliferation. Conversely, negative sensitivity is observed in parameters such as the death 

rate of bacteria due to intraspecific competition  ሺߣଶ଴ሻ , and certain constants ሺߚଶଵሻ  and  ሺߚଶଶሻ . These 

negatively sensitive parameters hinder bacterial population growth, with intraspecific competition limiting the 

available resources among bacteria, and the constants likely representing factors that negatively influence 

bacterial viability or resource acquisition. Considering Fig. 5(c) of the fish population, the analysis indicates 

that the fish population (F) is highly sensitive to both the uptake rate of organic pollutants ሺ݇ଵሻ and the 

penetration rate of oxygen into water ሺߣଶሻ, with both parameters showing a positive correlation. The increased 

absorption of organic pollutants by fish enhances their population, likely due to the role of certain organic 

pollutants as nutrients or energy sources that support fish growth and metabolic functions. Additionally, 

oxygen is essential for fish survival and growth, as it is fundamental to respiration and various metabolic 

processes (Abdel-Tawwab et al., 2019). Therefore, these two factors are critical in sustaining and promoting a 

healthy fish population. Conversely, the graph shows that the fish population (F) is negatively affected by the 

death rate due to the consumption of inorganic pollutants ሺߠሻ, the discharge rate of inorganic pollutants ሺܳଵሻ, 

and the death rate due to interspecific competition ሺߣଵ଴ሻ. These parameters are negatively sensitive, meaning 

increases in any of them lead to a decrease in the fish population. This underscores the importance of 

controlling inorganic pollutant discharge and managing interspecific competition to sustain healthy fish 

populations in aquatic environments. 

 

4 Conclusion 

The model fitting and parameter estimation conducted in this study offer a robust quantitative foundation for 

understanding the complex dynamics of aquatic ecosystems. By applying the least squares method and the 

Nelder-Mead simplex algorithm, the model was finely tuned to align closely with empirical data, minimizing 
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residuals and ensuring accuracy. Sensitivity analysis, using Partial Rank Correlation Coefficients (PRCC) and 

Latin Hypercube Sampling (LHS), highlighted the critical roles of various parameters in shaping the 

populations of aquatic plants, bacteria, and fish. Parameters such as the growth rates driven by organic 

pollutants, pollutant absorption rates, and oxygen penetration were identified as highly influential, positively 

affecting population growth by enhancing nutrient availability and metabolic processes. Conversely, factors 

like intraspecific and interspecific competition, along with the discharge and consumption of inorganic 

pollutants, were found to have negative impacts, underscoring the need for careful management of these 

parameters. The findings emphasize the importance of regulating pollutant levels and competition within 

aquatic environments to sustain and promote healthy ecosystem dynamics. 
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Appendices 

Appendix A: Equilibrium Point ࣈ૛ and כࣈ 

Existence of Pollutant-Free Equilibrium Point ࣈ૛ 

ە
۔

ۓ
ሺΛଶ െ ଷߤ െ ଶܣଶሻܣଷ଴ߣ ൌ 0,
ሺ߉ଷ െ ଺ߤ െ ଶܤଶሻܤଶ଴ߣ ൌ 0

߉ െ ଶܨଶܥଵߛ െ ଶܤଶߛ െ ଶܥସߤ ൌ 0,
ሺ߉ଵ െ ଶܥଵߛ െ ହߤ െ ଶܨଶሻܨଵ଴ߣ ൌ 0,

                                                                  ሺ1ܣሻ 

The first two equations yield ܣଶ ൌ
ሺ௸మିఓయሻ

ఒయబ
 and ܤଶ ൌ

ሺ௸యିఓలሻ

ఒమబ
 for ܣଶ, ଶܤ ് 0. 

From the fourth equation, with ܨଶ ് 0, we have ܨଶ
ሺ௸భିఓఱሻାఊభ஼మ

ఒభబ
, denoted as ܨଵሺܥଶሻ ൌ ଶ݂. Substituting ܣଶ,  ,ଶܤ

and ܨଵሺܿଶሻ into the third equation of (A1) gives another function of ܥଶ: 

ଶ݂ሺܥଶሻ ൌ ߉ െ ଶܥଵߛ ଵ݂ሺܥଶሻ െ ଶߛ ൬
ଶ߉ െ ଷߤ
ଷ଴ߣ

൰ െ ଷߛ ቆ
ሺ߉ଷ െ ଺ሻߤ

ଶ଴ߣ
ቇ െ ଶܥସߤ ൌ 0.                    ሺ2ܣሻ 

The following results are established: 

i. ଶ݂ሺ0ሻ ൌ ߉ െ ଶߛ ቀ
௸మିఓయ
ఒయబ

ቁ െ ଷߛ ቀ
ሺ௸యିఓలሻ

ఒమబ
ቁ ൐ 0, given the condition: 

0 ൏ ଶߛ ൬
ଶ߉ െ ଷߤ
ଷ଴ߣ

൰ ൅ ଷߛ ቆ
ሺ߉ଷ െ ଺ሻߤ

ଶ଴ߣ
ቇ ൏  .߉

ii. ଶ݂ ቀ
ஃ

ఓర
ቁ ൌ െߛଵ ቀ

ஃ

ఓర
ቁ ଵ݂ ቀ

ஃ

ఓర
ቁ െ ଶߛ ቀ

ஃమିఓయ
ఒయబ

ቁ െ ଷߛ ቀ
௸యିఓల
ఒమబ

ቁ ൏ 0. 

iii. ଶ݂
,ሺܥଶሻ ൌ െߛଵ ଵ݂ሺܥଶሻ െ ଶܥଵߛ ଶ݂

,ሺܥଶሻ െ ସߤ ൏ 0. 

These results indicate that ଶ݂ሺܥଶሻ possesses a unique non-negative solution ܥଶ,  with 0 ൏ ଶܥ ൏
ஃ

ఓర
. Hence, 

the equilibrium point ߦଶ ൌ ሺ0,0, ,ଶܣ ,ଶܤ ,ଶܥ  ଶሻ exists under theܨ

conditions: 

ە
ۖ
۔

ۖ
ۓ

ଶ߉ െ ଷߤ ൐ 0
ଷ߉ െ ଺ߤ ൐ 0
ଵ߉ െ ହߤ ൐ 0

0 ൏ ଶߛ ൬
ଶ߉ െ ଷߤ
ଷ଴ߣ

൰ ൅ ଷߛ ቆ
ሺ߉ଷ െ ଺ሻߤ

ଶ଴ߣ
ቇ ൏ .߉

                                                       ሺ3ܣሻ 

Existence of Interior Equilibrium Point ሺࣈሻכ 

The interior equilibrium כߦis determined by solving the following system of equations: 
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ە
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۓ
0 ൌ ܳଵ െ ߙ ௜ܲ

כܨכ െ ଵߤ ௜ܲ
                                                                                                                                ,כ

0 ൌ ܳଶ െ
ଶ଴ߚ ௢ܲ

כܤכ

ଶଵߚ ൅ ଶଶߚ ଴ܲ
כ െ

݇ଵ ௢ܲ
כܨכ

݇ଵଶ ൅ ݇ଵଵ ௢ܲ
כ െ

଴ଵߚ ௢ܲ
כܣכ

ଵଶߚ ൅ ଵଵߚ ௢ܲ
כ െ ଶߤ ௢ܲ

                                                              ,כ

0 ൌ כܣଶ߉ ൅
଴ଵߚଷߣ ௢ܲ

כܣכ

ଵଶߚ ൅ ଵଵߚ ௢ܲ
כ െ ߤଷܣ

כ െ ߣଷ଴כܣଶ,                                                                                              

0 ൌ כܤଷܣ ൅
ଶ଴ߚଶߣ ௢ܲ

כܤכ

ଶଵߚ ൅ ଶଶߚ ௢ܲ
כ െ כܤ଺ߤ െ 4ሻܣଶ                                                                                        ሺכܤଶ଴ߣ

0 ൌ ߉ െ
଴ଶߚ ௢ܲ

כܤכ

ଶଵߚ ൅ ଶଶߚ ௢ܲ
כ െ כܨכܥଵߛ െ כܣଶߛ െ כܤଷߛ െ                                                                            ,כܥସߤ

0 ൌ כܨଵ߉ ൅
ସ݇ଵߣ ௢ܲ

כܨכ

݇ଵଶ ൅ ݇ଵଵ ௢ܲ
כ ൅ כܨכܥଵߛ െ ߠ ௜ܲ

כܨכ െ כܨହߤ െ                                                                .ଶכܨଵ଴ߣ

 

Given that all variables are positive, we can express ௜ܲ
 :using the first equationכܨ as a function of כ

௜ܲ
כ ൌ

ܳଵ
כܨߙ െ ଵߤ

ൌ ଷ݂ሺכܨሻ                                               ሺ5ܣሻ 

Similarly, we can define כܣ, as functions of ௜ܲכܥ and כܤ
 :respectively ,כܨ and כ

כܣ ൌ ൬
Λଶ െ ଷߤ
ଷ଴ߣ

െ
଴ଵߚଷߣ ௢ܲ

כ

ଵଶߚଷ଴ሺߣ ൅ ଵଵߚ ௢ܲ
ሻכ
൰ ൌ ଶ݂ሺ ௢ܲ

 6ሻܣሻ,                                                        ሺכ

כܤ ൌ ൬
Λଷ െ ଺ߤ
ଶ଴ߣ

െ
଴ଶߚଷߣ ௢ܲ

כ

ଶଵߚଶ଴ሺߣ ൅ ଶଶߚ ௢ܲ
ሻכ
൰ ൌ ହ݂ሺ ௢ܲ

 7ሻܣሻ,                                                    ሺכ

כܥ ൌ
1

כܨଵߛ െ ସߤ
൭Λ െ

଴ଶߚ ௢ܲ
כ
ହ݂ሺ ௢ܲ

ሻכ
ሺߚଶଵ ൅ ଶଶߚ ௢ܲ

ሻכ
െ ଶߛ ସ݂ሺ ௢ܲ

ሻ൱כ ൌ ଺݂ሺ ௢ܲ
,כ  8ሻܣሻ.                       ሺכܨ

Substituting these into the system, we derive the isoclines A9 and A10: 

ܳଶ െ
ଶ଴ߚ ௢ܲ

כ
ହ݂ሺ ௢ܲ

ሻכ
ሺߚଶଵ ൅ ଶଶߚ ௢ܲ

ሻכ
െ

݇ଵ ௢ܲ
כܨכ

݇ଵଶ ൅ ݇ଵଵ ௢ܲ
כ െ

଴ଵߚ ௢ܲ
כ
ସ݂ሺ ௢ܲ

ሻכ

ଵଶߚ ൅ ଵଵߚ ௢ܲ
כ െ ଶߤ ௢ܲ

כ ൌ ଻݂ሺ ௢ܲ
,כ    9ሻܣሻ.                ሺכܨ

ሺΛଵ െ ହሻߤ ൅
ସ݇ଵߣ ௢ܲ

כ

݇ଵଶ ൅ ݇ଵଵ ௢ܲ
כ ൅ ଵߛ ଺݂ሺ ௢ܲ

,כ ሻכܨ െ ߠ ଷ݂ሺכܨሻ െ כܨଵ଴ߣ ൌ ଼݂ ሺ ௢ܲ
,כ  10ሻܣሻ.                ሺכܨ

From the isocline A9, the following deductions can be made 

1. For כܨ ൌ 0,  the function ଻݂ሺ ௢ܲ
,כ 0ሻ simplifies to ݃ଵሺ ௢ܲ

 :ሻכ

ܳଶ െ
ଶ଴ߚ ௢ܲ

כ
ହ݂ሺ ௢ܲ

ሻכ
ሺߚଶଵ ൅ ଶଶߚ ௢ܲ

ሻכ
െ
଴ଵߚ ௢ܲ

כ
ସ݂ሺ ௢ܲ

ሻכ

ଵଶߚ ൅ ଵଵߚ ௢ܲ
כ െ ଶߤ ௢ܲ

כ ൌ  ݃ଵሺ ௢ܲ
 ሻכ

(a) For ௢ܲ
כ ൌ 0, ݃ଵሺ0ሻ ൌ ܳଶ ൐ 0. 

(b) For ௢ܲ
כ ൌ

ொమ
ఓమ
,  we have: 

݃ଵ ൬
ܳଶ
ଶߤ
൰ ൌ െ ቎

ଶ଴ߚ ቀ
ொమ
ఓమ
ቁ ହ݂ ቀ

ொమ
ఓమ
ቁ

ଶଵߚ ൅ ଶଶߚ ቀ
ொమ
ఓమ
ቁ
൅
଴ଵߚ ቀ

ொమ
ఓమ
ቁ ସ݂ ቀ

ொమ
ఓమ
ቁ

ଵଶߚ ൅ ଵଵߚ ቀ
ொమ
ఓమ
ቁ
቏ ൏ 0. 

(c) It can be shown through appropriate calculations that g1′ (Poכ) < 0 if inequality (A11) is satisfied: 

ଶ଴ߚ ௢ܲ
כ
ସ݂ሺ ௢ܲ

ଶଶߚሻכ
ሺߚଶଵ ൅ ଶଶߚ ௢ܲ

ሻଶכ
൅
଴ଵߚ ௢ܲ

כ
ଷ݂ሺ ௢ܲ

ଵଵߚሻכ
ሺߚଵଶ ൅ ଵଵߚ ௢ܲ

ሻଶכ
൏ 

 

ଶ଴ߚ ସ݂ሺ ଴ܲሻ ൅ ଶ଴ߚ ௢ܲ
כ
௢݂
,ሺ ௢ܲ

ሻכ

ଶଵߚ ൅ ଶଶߚ ௢ܲ
כ ൅

଴ଵߚ ଷ݂ሺ ௢ܲ
ሻכ ൅ ଴ଵߚ ௢ܲ

כ
ଷ݂
,ሺ ௢ܲ

ሻכ

ଵଶߚ ൅ ଵଵߚ ௢ܲ
כ ൅  11ሻܣଶ.         ሺߤ
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(d) The conditions (a)–(c) confirm that A9 has a unique positive solution for ௢ܲ
 כ in the interval 

0 ൏ ௢ܲ
כ ൏

ொమ
ఓమ

. 

2. The derivative ቀ
ௗ௉೚כ

ௗி
ቁ is negative, ቀ

ௗ௉೚כ

ௗி
ቁ ൏ 0. 

From the analysis of the isocline given in equation (A10), we can derive the following outcomes: 

1. If כܨ ൌ 0, we denote the resulting function as ଷ݂ሺ ௢ܲ
,כ 0ሻ ൌ ݃ଶሺ ௢ܲ

  ,ሻ.  Henceכ

ሺΛଵ െ ହሻߤ ൅
ସ݇ଵߣ ௢ܲ

כ

݇ଵଶ ൅ ݇ଵଵ ௢ܲ
כ ൅ ଵߛ ଺݂ሺ ௢ܲ

ሻכ െ
ଵܳߠ
ଵߤ

ൌ ݃ଶሺ ௢ܲ
 12ሻܣሻ.                      ሺכ

(a) When ௢ܲ
כ ൌ 0, it follows that ݃ଶሺ0ሻ ൏ ሺ0ሻ, provided the condition in (A13) is satisfied 

 

ሺΛଵ െ ହሻߤ ൅ ௜ߛ ଺݂ሺ0ሻ ൏
ଵܳߠ
ଵߤ

.                                                                        ሺ13ܣሻ  

(b) For ௢ܲ
כ ൌ

ொమ
ఓమ
, we obtain ݃ଶ ቀ

ொమ
ఓమ
ቁ ൐ 0, under the inequality in (A14): 

ሺΛଵ െ ହሻߤ ൅
ସ݇ଵߣ ቀ

ொమ
ఓమ
ቁ

݇ଵଶ ൅ ݇ଵଵ ቀ
ொమ
ఓమ
ቁ
൅ ଵߛ ଺݂ ൬

ܳଶ
ଶߤ
൰ െ ൬

ܳଵ
ଵߤ
൰ ൐

ଵܳߠ
ଵߤ

.                  ሺ14ܣሻ 

 

(c) Differentiating ݃ଶሺ ௢ܲ
ሻ with respect to ௢ܲכ

 :gives כ

݃ଶ
ᇱ ሺ ௢ܲ

ሻכ ൌ
ସ݇ଵଵ݇ଵଶߣ

ሺ݇ଵଵ ௢ܲ
כ ൅ ݇ଵଶሻଶ

൅ ଵߛ ଺݂
ᇱሺ ௢ܲ

 .ሻכ

Considering the points in (a) through (c), we conclude that equation (A10) has a unique positive solution 

within the interval 0 ൏ ௢ܲ
כ ൏

ொమ
ఓమ

. 

2. The derivative ቀ
ௗ௉೚כ

ௗிכ
ቁ
ଶ
൐ 0. 

As a result, the equilibrium values of ௢ܲ
are uniquely determined within the intervals 0כܨ andכ ൏ ௢ܲ ൏  ௉೚ܮ

and 0 ൏ ܨ ൏ ி, respectively, provided that ቀܮ
ௗ௉೚
ௗி
ቁ
ଵ
൏ 0and ቀ

ௗ௉೚
ௗி
ቁ
ଶ
൐ 0 

Once ௢ܲ
are known, the equilibrium values of ௜ܲכܨ and כ

,כ ,כܣ  ,can be computed from equations (A5) כܥ andכܤ

(A6), (A7), and (A8), respectively. 
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Fig. A1 The plot illustrates the intersection of the isoclines (A9) and (A10), signifying the presence ofሺ ௢ܲ

 ሻ within theכܨכ
interior of the first quadrant 

 

Appendix B: Linear Stability of Equilibrium Points 

The local stability of equilibrium points ߦ଴ߦଵ and ߦଶof the model system (1) is analyzed by using the 

eigenvalue method, while the stability of an interior equilibrium point כߦ is evaluated by using an appropriate 

Lyapunov candidate. The general Jacobian matrix (J) of the model system (1) is given by 

ܬ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵଵܬ 0 0 0 0 ଵ଺ܬ
0 ଶଶܬ ଶଷܬ ଶସܬ 0 ଶ଺ܬ
0 ଷଶܬ ଷଷܬ 0 0 0
0 ସଶܬ 0 ସସܬ 0 0
0 ହଶܬ 0 ହସܬ ହହܬ ହ଺ܬ
଺ଵܬ ଺ଶܬ 0 0 ହ଺ܬ ے଺଺ܬ

ۑ
ۑ
ۑ
ۑ
ې

                                                ሺ15ܤሻ 

Where 

ଵଵܬ ൌ െܨߙ െ ,ଵߤ ଵ଺ܬ ൌ െߙ ௜ܲ, 

ଶଶܬ ൌ െ൬
ܤଶଵߚଶ଴ߚ

ሺߚଶଶ ௢ܲ ൅ ଶଵሻଶߚ
൅

݇ଵ݇ଵଶܨ
ሺ݇ଵଵ ௢ܲ ൅ ݇ଵଶሻଶ

൅
ܣଵଶߚ଴ଵߚ

ሺߚଵଵ ௢ܲ ൅ ଵଶሻଶߚ
െ  ,ଶ൰ߤ

ଶଷܬ ൌ െ
଴ଵߚ ௢ܲܤ

ଵଶߚ ൅ ଵଵߚ ௢ܲ
, ଶସܬ ൌ െ

ଶ଴ߚ ௢ܲ

ଶଵߚ ൅ ଶଶߚ ௢ܲ
, ଶ଺ܬ ൌ െ

݇ଵ ௢ܲ

݇ଵଶ ൅ ݇ଵଵ ௢ܲ
, ଷଶܬ ൌ

ଵଶߚܣ଴ଵߚଷߣ
ሺߚଵଵ ௢ܲ ൅ ଵଶሻଶߚ

, 

ଷଷܬ ൌ ሺΛଶ െ ଷሻߤ ൅
଴ଵߚଷߣ ௢ܲ

ଵଶߚ ൅ ଵଵߚ ௢ܲ
െ , ܣଷ଴ߣ2 ସଶܬ ൌ

ଶଵߚଶߣܤଶ଴ߚ
ሺߚଶଶ ௢ܲ ൅ ଶଵሻଶߚ

 ,  

ସସܬ ൌ ሺ߉ଷ െ ଺ሻߤ ൅
଴ଶߚ ௢ܲܤ

ଶଵߚ ൅ ଶଶߚ ௢ܲ
െ , ܤଶ଴ߣ2 ହଶܬ ൌ

ଶଵߚܤ଴ଶߚ
ሺߚଶଶ ௢ܲ ൅ ଶଵሻଶߚ

  , ହଷܬ ൌ െߛଶ, ହସܬ ൌ െߛଷ,  

ହହܬ ൌ ଶߛ െ ܨଵߛ െ ଷߛ െ ,ହߤ ହ଺ܬ ൌ െߛଵܥ, ଺ଵܬ ൌ ,ܨߠ ଺ଶܬ ൌ
ଵଶ݇ܨସ݇ଵߣ

ሺ݇ଵଵ ௢ܲ ൅ ݇ଵଶሻଶ
  , ଺ହܬ ൌ   , ܨଵߛ

଺଺ܬ ൌ ሺΛଵ െ ହሻߤ ൅
ସ݇ଵߣ ௢ܲ

݇ଵଶ ൅ ݇ଵଵ ௢ܲ
൅ ܥଵߛ െ ߠ ௜ܲ െ   . ܨଵ଴ߣ2
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Stability of Trivial Equilibrium ࣈ૙ 

Eigenvalues of the Jacobian matrix J evaluated at trivial equilibrium point, E0 are െߤଵ,െߤଵ, ሺΛଶ െ ,ଷሻߤ ሺ߉ଷ െ

,଺ሻߤ ଶߛ െ ଷߛ െ ଵ߉ହ and ሺߤ െ ହሻ. Conditions (A3) show that eigenvaluesሺΛଶߤ െ ଷሻߤ ൐ 0  and ሺ߉ଷ െ ଺ሻߤ ൐
0 respectively, suggesting instability of equilibrium point ξ଴. 

Stability of Bacteria-Plants and Fish-Free Equilibrium Point ࣈ૚ 

Eigenvalues of the Jacobian matrix J evaluated at the Bacteria-Plants and fish free equilibrium point, ξଵ are 

െߤଵ,െߤଵ, ሺΛଶ െ ଷሻߤ ൅
ఒయఉబభொమ

ఉభమఓమାఉభభொమ
  , ሺ߉ଷ െ , ଺ሻߤ ሺߛଶ െ ହሻߤ െ   ଷ ,   andߛ

ሺ߉ଵ െ ହሻߤ ൅
ఒర௞భொమ

௞భమఓమା௞భభொమ
൅ ܥଵߛ െ

ఏொభ
ఓభ
 .  Conditions (A3) show that eigenvalues 

ሺ߉ଶ െ ଷሻߤ ൅
ఒయఉబభொమ

ఉభమఓమାఉభభொమ
൐ 0 and ሺ߉ଷ െ ଺ሻߤ ൐ 0  which confirms that the equilibrium point ߦଵ is unstable. 

Stability of Pollutants Free Equilibrium Pointࣈ૛ 

Eigenvalues of the Jacobian matrix J evaluated at the pollutant-free equilibrium pointܧଶ are െሺߙଵܨଶ ൅

,ଵሻߤ ቀ
ఉమబఉమ
ఉమభ

൅
௞భிమ
௞భమ

൅
ఉబభ஺మ
ఉభమ

൅ ଶቁߤ , ሺ߉ଶ െ ଷሻߤ െ ,ଶܣଷ଴ߣ2 ሺ߉ଷ െ ଺ሻߤ െ ,ଶܤଶ଴ߣ2 ሺߛଶ െ ହሻߤ െ ሺߛଵܨଶ ൅

,ଶܥଶߛଷሻ,െߛ െߛଵܨଶ, and ሺ߉ଵ െ ହሻߤ ൅ ଶܥଵߛ െ ଶܨଵߛଶ,sinceܨଵ଴ߣ2 ൐ 0,  
the equilibrium ξଶis unstable. 

Stability of Coexistence Equilibrium Pointכࣈ 

Following Fanuel et al. (2023), we study the behavior of the system in the neighborhood of the equilibrium 

point when given a small perturbation.We begin by linearizing the system using the following transformations: 

௜ܲ ൌ ௜ܲ
כ ൅ ,௜݌ ௢ܲ ൌ ௢ܲ

כ ൅ ,௢݌ ܣ ൌ כܣ ൅ ܽ, ܤ ൌ כܤ ൅ ܾ, ܥ ൌ כܥ ൅ ܿ   and ܨ ൌ כܨ ൅ ݂ ,where݌௜, ,௢݌ ܽ, ܾ, ܿ , and 

݂represent small perturbations around the equilibrium. 

The linearlized system is given by 

௜݌݀
ݐ݀

ൌ ሺെכܨߙ ൅ ଵሻ݅ߤ െ ଵߤ ௜ܲ
                                                                                                       , ݂כ

௢݌݀
ݐ݀

ൌ ቆ
ଶଶߚଶ଴ߚ ௢ܲ

כܤכ

ሺߚଶଶ ଴ܲ
כ ൅ ଶଵሻଶߚ

െ
כܤଶ଴ߚ

ଶଶߚ ଴ܲ
כ ൅ ଶଵߚ

െ
݇ଵכܨ

݇ଵଵ ௢ܲ
כ ൅ ݇ଵଶ

൅
݇ଵ݇ଵଵ ௢ܲ

כܨכ

ሺ݇ଵଵ ௢ܲ
כ ൅ ݇ଵଶሻଶ

െ
כܣ଴ଵߚ

ଵଵߚ ௢ܲ
כ ൅ ଵଶߚ

ቇ  ௢݌

           െ ൬
଴ଵߚ ௢ܲ

כ

ଵଶߚ ൅ ଵଵߚ ௢ܲ
൰כ ܽ െ ቆ

ଶ଴ߚ ௢ܲ
כ

ଶଵߚ ൅ ଶଶߚ ଴ܲ
ቇכ ܾ െ ൬

݇ଵ ௢ܲ
כ

݇ଵଶ ൅ ݇ଵଵ ௢ܲ
൰כ ݂ ,                                             

݀ܽ
ݐ݀

ൌ ൬
כܣଵଶߚଵߚଷߣ

ሺߚଵଵ ௢ܲ
כ ൅ ଵଶሻଶߚ

൰ ௢݌ ൅ ൬Λଶ ൅
ଵߚଷߣ ௢ܲ

כ

ଵଶߚ ൅ ଵଵߚ ௢ܲ
כ െ ଷߤ െ ൰כܣଷ଴ߣ2 ܽ ,           

ܾ݀
ݐ݀

ൌ ൬
כܤଶଵߚଶ଴ߚଶߣ

ሺߚଶଶ ௢ܲ
כ ൅ ଶଵሻଶߚ

൰ ௢݌ ൅ ൬Λଷ െ
଴ଶߚ ௢ܲ

כܤכ

ଶଵߚ ൅ ଶଶߚ ௢ܲ
כ െ ଺ߤ െ ൰כܤଶ଴ߣ2 ܾ, 

݀ܿ
ݐ݀

ൌ െቆ
כܤଶଵߚ଴ଶߚ

ሺߚଶଶ ଴ܲ
כ ൅ ଶଵሻଶߚ

ቇ ௢݌ െ ଶܽߛ െ ଷܾߛ ൅ ሺߛଶ െ כܨଵߛ െ ଷߛ െ ହሻܿߤ െ  .݂כܥଵߛ

݂݀
ݐ݀

ൌ ௜݌כܨߠ ൅ ൬
כܨସ݇ଵ݇ଵଶߣ

ሺ݇ଵଵ ௢ܲ
כ ൅ ݇ଵଶሻଶ

൰ ௢݌ ൅  כܨଵߛ
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                 ൅ ൬߉ଵ ൅
ସ݇ଵߣ ௢ܲ

כ

݇ଵଶ ൅ ݇ଵଵ ௢ܲ
כ ൅ כܥଵߛ െ ߠ ௜ܲ

כ െ ହߤ െ ൰כܨଵ଴ߣ2 ݂.                                               ሺ16ܤሻ 

Now, we consider the following positive definite function: 

ܸ ൌ
1
2
ቆ݌௜

ଶ ൅ ݉ଵ݌௢ଶ ൅
݉ଶܽଶ

כܣ
൅
݉ଷܾଶ

כܤ
൅ ݉ସܿଶ ൅

݉ହ݂ଶ

כܨ
ቇ ,݉௜ ൐ 0, ݅ ൌ 1,… ,5 

and use a linearized model (B16) to get 

ܸ݀
ݐ݀

ൌ െሺכܨߙ ൅ ଵሻߤ ௜ܲ
ଶ 

െ൬
݉ଵߚ଴ଵכܣ

ଵଵߚ ௢ܲ
כ ൅ ଵଶߚ

൅
݉ଵߚଶ଴כܤ

ଶଶߚ ௢ܲ
כ ൅ ଶଵߚ

൅
݉ଵ݇ଵכܨ

݇ଵଵ ௢ܲ
כ ൅ ݇ଵଶ

െ
݉ଵߚଶ଴ߚଶଶכܤ

ሺߚଶଶ ௢ܲ
כ ൅ ଶଵሻଶߚ

െ
݉ଵ݇ଵ݇ଵଵ ௢ܲ

כܨכ

ሺ݇ଵଵ ௢ܲ
כ ൅ ݇ଵଶሻଶ

൰ ௢ܲ
ଶ 

െ݉ଶ ൬ߤଷ ൅ כܣଷ଴ߣ2 െ Λଶ െ
ଵߚଷߣ ௢ܲ

כ

ଵଶߚ ൅ ଵଵߚ ௢ܲ
൰כ ܽ

ଶ െ ݉ଷ ൬
଴ଶߚ ௢ܲ

כܤכ

ଶଵߚ ൅ ଶଶߚ ௢ܲ
כ ൅ ଺ߤ ൅ כܤଶ଴ߣ2 െ Λଷ൰ ܾଶ 

െ݉ସሺߛଵכܨ ൅ ଷߛ ൅ ହߤ െ ଶሻܿଶെ݉ହߛ ൬ߠ ௜ܲ
כ ൅ ହߤ ൅ כܨଵ଴ߣ2 െ Λଵ െ

ସ݇ଵߣ ௢ܲ
כ

݇ଵଶ ൅ ݇ଵଵ ௢ܲ
כ െ ൰כܥଵߛ ݂ଶ 

െሺߤଵ ௜ܲ
כ െ ݉ହכܨߠሻ݌௜݂ െ ൬

݉ଶߣଷߚଵߚଵଶכܣ

ሺߚଵଵ ௢ܲ
כ ൅ ଵଶሻଶߚ

െ
݉ଵߚଵ ௢ܲ

כ

ଵଶߚ ൅ ଵଵߚ ௢ܲ
൰כ  ௢ܽ݌

െቆ
݉ଵߚଶ଴ ௢ܲ

כ

ଶଵߚ ൅ ଶଶߚ ଴ܲ
כ െ

݉ଷߣଶߚଶ଴ߚଶଵכܤ

ሺߚଶଶ ௢ܲ
כ ൅ ଶଵሻଶߚ

ቇ ௢ܾ݌ െ ݉ସ ൬
כܤଶଵߚ଴ଶߚ

ሺߚଶଶ ௢ܲ
כ ൅ ଶଵሻଶߚ

൰  ௢ܿ݌

െ൬
݉ଵ݇ଵ ௢ܲ

כ

݇ଵଶ ൅ ݇ଵଵ ௢ܲ
כ െ

݉ଷ݇ଵ݇ଵଶכܨ

ሺ݇ଵଵ ௢ܲ
כ ൅ ݇ଵଶሻଶ

൰ ௢݂݌ െ݉ସߛଶܽܿ െ ݉ସߛଷܾܿ െ ሺ݉ସߛଵכܥ ൅ ݉ହߛଵכܨሻ݂ܿ . 

Select the values of ݉ଵ  ൌ  1,݉ଶ ൌ െ
௠భ௉೚כሺఉభభ௉೚כାఉభమሻ

ఒయఉభమ஺כ
,݉ଷ ൌ െ

௠భ௉೚כሺఉమమ௉೚כାఉమభሻ

ఒమఉమభ஻כ
, 

݉ସ ൌ െ
௠భ௉೚כሺ௞భభ௉೚כା௞భమሻ

ఒరఊభ௞భమ஼כ
, and ݉ହ ൌ

௠భ௉೚כሺ௞భభ௉೚כା௞భమሻ

ఒరఊభ௞భమ஼כ
 arbitrary, the time derivative of V becomes 

ܸ݀
ݐ݀

ൌ െሺכܨߙ ൅ ଵሻߤ ௜ܲ
ଶ 

              ൅ ൬
כܤଶ଴ߚ

ଶଶߚ ௢ܲ
כ ൅ ଶଵߚ

൅
݇ଵכܨ

݇ଵଵ ௢ܲ
כ ൅ ݇ଵଶ

൅
כܣ଴ଵߚ

ଵଵߚ ௢ܲ
כ ൅ ଵଶߚ

െ
ଶଵߚଶ଴ߚ ௢ܲ

כܤכ

ሺߚଶଶ ௢ܲ
כ ൅ ଶଵሻଶߚ

െ
݇ଵ݇ଵଵ ௢ܲ

כܨכ

ሺ݇ଵଵ ௢ܲ
כ ൅ ݇ଵଶሻଶ

൰  ௢ଶ݌

               ൅݉ଶ ൬ߤଷ െ כܣଷ଴ߣ2 െ Λଶ െ
ଵߚଷߣ ௢ܲ

כ

ଵଶߚ ൅ ଵଵߚ ௢ܲ
൰כ ܽ

ଶ ൅ ݉ଷ ൬
଴ଶߚ ௢ܲ

כܤכ

ଶଵߚ ൅ ଶଶߚ ௢ܲ
כ ൅ ଺ߤ ൅ כܤଶ଴ߣ2 െ ଷ൰߉ ܾଶ 

൅݉ଷ൫ሺߛଵכܨ ൅ ଷߛ ൅ ହߤ െ ଶሻ൯ܿଶߛ ൅ ݉ହ ൬ߠ ௢ܲ
כ ൅ ହߤ ൅ כܨଵ଴ߣ2 െ Λଵ െ

ସ݇ଵߣ ௢ܲ
כ

݇ଵଶ ൅ ݇ଵଵ ௢ܲ
כ ൅ ൰כܥଵߛ ݂ଶ 

                ൅ሺߤଵ ௜ܲ
כ െ ݉ହכܨߠሻ݌௜݂ െ ݉ସߛଶܽܿ െ ݉ସߛଷܾܿ 

The criteria for 
ௗ௏

ௗ௧
 to be negative definite, based on Sylvester’s criterion, are as follows: 

ሺכܨߙ ൅ ଵሻߤ ൬ߠ ௢ܲ
כ ൅ ହߤ ൅ כܨଵ଴ߣ2 െ Λଵ െ

ସ݇ଵߣ ௢ܲ
כ

݇ଵଶ ൅ ݇ଵଵ ௢ܲ
כ ൅ ൰כܥଵߛ ൐ ሺߤଵ ௜ܲ

כ െ ݉ହכܨߠሻଶ ,  

݉ଶ ൬ߤଷ െ כܣଷ଴ߣ2 െ Λଶ െ
ଵߚଷߣ ௢ܲ

כ

ଵଶߚ ൅ ଵଵߚ ௢ܲ
൰כ ሺߛଵܨ

כ ൅ ଷሻߛ ൐
௢ܲ
ሺ݇ଵଵכ ௢ܲ

כ ൅ ݇ଵଶሻ

כܥଵ݇ଵଶߛସߣ
ଶߛ
ଶ ,                 ሺ17ܤሻ 

൬
଴ଶߚ ௢ܲ

כܤכ

ଶଵߚ ൅ ଶଶߚ ௢ܲ
כ ൅ ଺ߤ ൅ כܤଶ଴ߣ2 െ ଷ൰߉ ሺߤହ െ ଶሻߛ ൐

௢ܲ
ሺ݇ଵଵכ ௢ܲ

כ ൅ ݇ଵଶሻ

כܥଵ݇ଵଶߛସߣ
ଷߛ
ଶ .                            ሺ1ܤሻ  

A positive value for m2 can be selected from these inequalities, such that inequality 

B18 to be satisfied. Consequently, the time derivative of V is negative definite, 

confirming the linear stability of the coexistence equilibrium. 
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Appendix C: Non-Linear Stability of Coexistence Equilibrium Points 

To demonstrate the global stability of the equilibrium כߦ, we start with the following positive definite function, 

as proposed by Fanuel et al. (2023); Kalra and Tangri (2020): 

ܹ ൌ
1
2
ሺ ௜ܲ െ ௜ܲ

ሻଶכ ൅
݉ଵ

2
ሺ ௜ܲ െ ௜ܲ

ሻଶכ ൅ ݉ଶ ൬ܣ െ כܣ െ כܣ ln
ܣ
כܣ
൰ ൅ 

݉ଷ ൬ܤ െ כܤ െ כܤ ln
ܤ
כܤ
൰ ൅

݉ସ

2
ሺܥ௜ െ ሻଶܥ ൅ ݉ହ ൬ܨ െ כܨ െ כܨ ln

ܨ
כܨ
൰ 

 

where m1, m2, m3, m4, and m5 are positive constants. We establish that the function 

W is positive definite by proving ܹ ሺ ௜ܲ, ௢ܲ, ,ܣ ,ܤ ,ܥ ሻܨ  ൐  0  within the interior of Ω and 

ܹሺ ௜ܲ, ௢ܲ, ,ܣ ,ܤ ,ܥ ሻܨ ൌ  0 only at כߦ.  

By differentiating the above equation with respect to time t along the trajectories of the model system (1) and 

rearranging the terms, we obtain: 

ௗௐ

ௗ௧
ൌ ሺ ௜ܲ െ ௜ܲ

ሻכ ௗ௉೔
ௗ௧
൅ ݉ଵሺ ௢ܲ െ ௢ܲ

ሻכ ௗ௉೚
ௗ௧
൅ ݉ଶ ቀ

஺ି஺כ

஺
ቁ
ௗ஺

ௗ௧
൅ ݉ଷ ቀ

஻ି஻כ

஻
ቁ
ௗ஻

ௗ௧
  ൅ ݉ସ ቀ

஼ି஼כ

஼
ቁ
ௗ஼

ௗ௧
൅ ݉ହ ቀ

ிିிכ

ி
ቁ
ௗி

ௗ௧
. 

By differentiating this equation with respect to time t along the solutions of the model(1) and further 

rearranging terms, we proceed with the analysis. 

 

ܹ݀
ݐ݀

ൌ െሺߤଵ െ ሻሺܨߙ ௜ܲ െ ௜ܲ
ሻଶכ െ ൤

݉ଵߚଶ଴ߚଶଵܤ
ሺߚଶଵ ൅ ଶଶߚ ௢ܲ

ሻכ ൅ ሺߚଶଵ ൅ ଶଶߚ ௢ܲሻ
൅

݉ଵ݇ଵ݇ଵଶܨ
ሺ݇ଵଶ ൅ ݇ଵଵ ௢ܲ

ሻכ ൅ ሺ݇ଵଶ ൅ ݇ଵଵ ௢ܲሻ
 

൅
݉ଵߚ଴ଵߚଵଶܤ

ሺߚଵଶ ൅ ଵଵߚ ௢ܲ
ሻכ ൅ ሺߚଵଶ ൅ ଵଵߚ ௢ܲሻ

൅ ݉ଵߤଶ൨ ሺ ௢ܲ െ ௢ܲ
ሻଶכ െ ݉ଶߣଷ଴ሺܣ െ ሻଶכܣ െ ݉ଷߣଶ଴ሺܤ െ  ሻଶכܤ

െ݉ସሺߛଵܨ െ ܥସሻሺߛ െ ሻଶכܥ െ ݉ହߣଵ଴ሺ ௜ܲ െ ௜ܲ
ሻଶכ െ ݉ହߠሺ ௜ܲ െ ௜ܲ

ܨሻሺכ െ  ሻכܨ

െ൬
݉ଶߣଷߚଵߚଵଶ

ሺߚଵଶ ൅ ଵଵߚ ௢ܲሻሺߚଵଶ ൅ ଵଵߚ ௢ܲ
ሻכ
൰ ሺ ௢ܲ െ ௢ܲ

ܣሻሺכ െ  ሻכܣ

െ൬
݉ଷߣଶߚଶ଴ߚଶଵ

ሺߚଶଵ ൅ ଶଶߚ ௢ܲሻሺߚଶଵ ൅ ଶଶߚ ௢ܲ
ሻכ
൰ ሺ ௢ܲ െ ௢ܲ

ܤሻሺכ െ  ሻכܤ

െ൬
݉ସߚଶ଴ߚଶଵܤ

ሺߚଶଵ ൅ ଶଶߚ ௢ܲሻሺߚଶଵ ൅ ଶଶߚ ௢ܲ
ሻכ
൰ ሺ ௢ܲ െ ௢ܲ

ܥሻሺכ െ  ሻכܥ

െ൬
݉ହ݇ଵ݇ଵଶ

ሺ݇ଵଶ ൅ ݇ଵଵ ௢ܲ
ሻሺ݇ଵଶכ ൅ ݇ଵଵ ௢ܲሻ

൰ ሺ ௢ܲ െ ௢ܲ
ܨሻሺכ െ ሻכܨ െ ݉ସߛଶሺܣ െ ܥሻሺכܣ െ  ሻכܥ

െ݉ହߛଵሺܥ െ ܨሻሺכܥ െ  .ሻכܨ

ܹ݀
ݐ݀

ൌ െሾܽଵଵሺ ௜ܲ െ ௜ܲ
ሻଶכ ൅ ܽଶଶሺܨ െ ሻଶכܨ ൅ ܽଷଷሺܣ െ ሻଶכܣ ൅ ܽସସሺܤ െ ሻଶכܤ ൅ ܽହହሺܥ െ  ሻଶכܥ

          ൅ܽ଺଺ሺܨ െ ሻଶכܨ ൅ ܽଵ଺ሺ ௜ܲ െ ௜ܲ
ܨሻሺכ െ ሻכܨ ൅ ܽଶଷሺ ௢ܲ െ ௢ܲ

ܣሻሺכ െ ሻכܣ ൅ ܽଶସሺ ௢ܲ െ ௢ܲ
ܤሻሺכ െ  ሻכܤ

൅ܽଶହሺ ௢ܲ െ ௢ܲ
ܥሻሺכ െ ሻכܥ ൅ ܽଶ଺ሺ ௢ܲ െ ௢ܲ

ܨሻሺכ െ ሻכܨ ൅ ܽଷହሺܣ െ ܥሻሺכܣ െ  ሻכܥ

൅ܽହ଺ሺܥ െ ܨሻሺכܥ െ       .ሻሿכܨ

 

Where, 

ܽଵଵ ൌ ሺߤଵ െ  ,ሻܨߙ

ܽଶଶ ൌ ൤
݉ଵߚଶ଴ߚଶଵܤ

ሺߚଶଵ ൅ ଶଶߚ ௢ܲ
ଶଵߚሻሺכ ൅ ଶଶߚ ௢ܲሻ

൅
݉ଵ݇ଵ݇ଵଶܨ

ሺ݇ଵଶ ൅ ݇ଵଵ ௢ܲ
ሻሺ݇ଵଶכ ൅ ݇ଵଵ ௢ܲሻ

൅
݉ଵߚ଴ଵߚଵଶܤ

ሺߚଵଶ ൅ ଵଵߚ ௢ܲ
ଵଶߚሻሺכ ൅ ଵଵߚ ௢ܲሻ

൅ ݉ଵߤଶ൨, 

ܽଷଷ ൌ ଷ଴,           ܽସସߣ ൌ ଶ଴,        ܽହହߣ ൌ ݉ସሺߛଵܨ െ ସሻ,          ܽ଺଺ߛ ൌ ݉ହߣଵ଴ 
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ܽଵ଺ ൌ ݉ହߠ, ܽଶଷ ൌ ൬
݉ଶߣଷߚଵߚଵଶ

ሺߚଵଶ ൅ ଵଵߚ ௢ܲሻሺߚଵଶ ൅ ଵଵߚ ௢ܲ
ሻכ
൰ , ܽଶସ ൌ

݉ଷߣଶߚଶ଴ߚଶଵ
ሺߚଶଵ ൅ ଶଶߚ ௢ܲሻሺߚଶଵ ൅ ଶଶߚ ௢ܲ

ሻכ
, 

ܽଶହ ൌ ൬
݉ସߚଶ଴ߚଶଵܤ

ሺߚଶଵ ൅ ଶଶߚ ௢ܲሻሺߚଶଵ ൅ ଶଶሻߚ
൰ , ܽଶ଺ ൌ ൬

݉ହ݇ଵ݇ଵଶ
ሺ݇ଵଶ ൅ ݇ଵଵ ௢ܲ

ሻሺ݇ଵଶכ ൅ ݇ଵଵ ௢ܲሻ
൰ , ܽଷହ ൌ ݉ସߛଶ,ܽହ଺ ൌ ݉ହߛଵ. 

Sufficient conditions for 
ௗௐ

ௗ௧
 to be negative definite, as determined by Sylvester’s criterion, are given in 7a-7g. 

Any positive values for ݉ଵ, ݉ଶ, ݉ଷ, ݉ସ, and ݉ହ can be selected as long as these inequalities (7a-7g) are 

satisfied. 
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