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Abstract

Aquatic ecosystems are highly sensitive to changes in environmental conditions, making it essential to identify
the key factors that influence the dynamics of species populations. This study introduced a nonlinear
mathematical model, analyzed it, and identified key sensitive parameters that were used in assessing the
impact of water pollution on aquatic ecosystems. Global sensitivity analysis was conducted to determine the
parameters significantly impacting aquatic species populations. Parameters were estimated using the least
squares method, while sensitivity analysis was performed via Partial Rank Correlation Coefficient (PRCC) and
Latin Hypercube Sampling (LHS). Parameters related to organic pollutant growth rates, pollutant absorption
rates, and oxygen penetration were identified as positively affecting aquatic species populations by enhancing
nutrient availability and metabolic activity. Conversely, competition and inorganic pollutant discharge were
found to impact aquatic populations negatively. These findings highlight the critical role of managing sensitive
parameters such as pollutants and competitive interactions to maintain and improve the health of aquatic
ecosystems.
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1 Introduction

Aquatic ecosystems are vital to the health of the planet, providing essential services such as water purification,
flood regulation, and habitat for a diverse range of species (Geist and Hawkins, 2016). These ecosystems
support a multitude of ecological functions and processes that are critical for maintaining biodiversity and the
overall health of the environment (Cadotte et al., 2011). Aquatic ecosystems include rivers, lakes, wetlands,
estuaries, and oceans, each hosting unique species and ecological dynamics. However, these ecosystems are
increasingly threatened by pollution from industrial, agricultural, and urban sources (Hader et al., 2020).
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Pollution in aquatic environments has been a growing concern for decades, with numerous studies highlighting
its adverse effects on water quality and aquatic life (Hader et al., 2020; Bashir et al., 2020).

Inorganic pollutants include heavy metals such as mercury, lead, and cadmium, which originate from
industrial discharges and mining activities, are known to bioaccumulate in aquatic organisms, causing toxic
effects at various trophic levels (Ali et al., 2019). These metals can bind to cellular components, disrupting
metabolic processes and leading to cellular damage, reproductive failure, and death in severe cases (Rainbow,
2007; Su et al., 2014). When organic matter enters a water body, it integrates into the food web, enhancing
nutrient availability for native microorganisms and potentially benefiting the entire aquatic ecosystem(Okeke
et al., 2022). Excessive nutrients from agricultural runoff lead to eutrophication, resulting in hypoxic
conditions that threaten fish populations and reduce biodiversity (Zhang and Zhang, 2007; Jan et al., 2022).
Nutrients such as nitrogen and phosphorus promote the excessive growth of algae, leading to algal blooms
(Wurtsbaugh et al., 2019). When these blooms die and decompose, the decomposition process depletes oxygen
in the water, creating hypoxic or anoxic conditions that can cause massive die-offs of fish and other aquatic
organisms (Sarma and Kumar, 2024). Eutrophication also disrupts the balance of aquatic ecosystems, favoring
the growth of certain species over others and reducing overall biodiversity (Lucas and Deleersnijder, 2020).

Environmental modeling has become an essential tool for understanding and managing the impacts of

pollutants on aquatic ecosystems (Lucas and Deleersnijder, 2020). Various modeling approaches, including
deterministic, stochastic, and mechanistic models, have been developed to simulate the behavior and fate of
pollutants, as well as their effects on aquatic species. Mathematical models have been widely used to assess the
effects of pollutants on aquatic ecosystems (Shi et al., 2023). The study by Tiwari et al. (2017) analyzed the
impact of organic and inorganic pollutants on fish survival but overlooked the role of aquatic plants in oxygen
production. This represents a significant gap, as aquatic plants not only contribute to oxygen enrichment but
also serve as a food source for aquatic organisms. Similarly, Misra (2011) investigated dissolved oxygen
depletion due to algal blooms, incorporating nutrient-algae interactions based on Holling Type-IIl dynamics.
However, this model primarily addressed nutrient dynamics without considering the combined influence of
multiple pollutants. The model developed by Shukla et al. (2008) examined the simultaneous effects of water
pollution and eutrophication on dissolved oxygen levels, revealing a greater oxygen reduction when both
factors were present. Nevertheless, it did not explore the long-term consequences of toxicants on fish
populations. Further research by Kumar et al. (2016) focused on the effects of toxicants on biological
populations, underscoring the need for regulating toxic emissions, but it lacked an assessment of the wider
ecological and human health implications. Additionally, the study by Chaturvedi et al. (2017) employed a
nonlinear differential equation model to examine nutrient-driven species growth, yet it did not account for
interactions between pollutants and other ecological components. More importantly, previous studies have
failed to assess key sensitive parameters. Sensitivity analysis and parameter estimation are vital tools for
refining these models (Computing, 2004; Yang, 2017).
This research addresses these critical gaps by integrating aquatic plants as a crucial component in oxygen
dynamics and incorporating sensitivity analysis to evaluate the most influential parameters affecting ecosystem
stability. By considering the intricate relationships among pollutants, dissolved oxygen, bacteria, and fish
populations, the study provides a more comprehensive perspective on the effects of water pollution and offers
a refined approach to identifying the most critical factors driving ecosystem health.

2 Material and Methods

2.1 Modal descriptions
The model explores the dynamics of pollutants in aquatic ecosystems, distinguishing between organic (P,) and
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inorganic (P;) substances. It incorporates other variables like bacteria density (B), aquatic plants density (such
as algae and water hyacinth) (4), dissolved oxygen concentration (C)and fish density (F).

Pollutants enter the water body at rates of Q; (inorganic) and Q, (organic) and degrade at rates u; and
U, respectively. Bacteria thrive on organic pollutants, increasing their population, while fish experience
reduced growth due to the ingestion of inorganic pollutants. Bacteria undergo natural mortality at a rate pgand
are subject to intra-species competition characterized by A,,. Similarly, aquatic plants face natural mortality at
a rate u5 and intra-species competition represented by A;,. Dissolved oxygen (C) is replenished at a rate A,
but also naturally decreases at a rate A,. Additionally, oxygen facilitates the decomposition of bacteria into
organic matter at the rate S,,. Fish growth critically depends on the dissolved oxygen levels. It is negatively
affected by both direct ingestion of inorganic pollutants and the indirect reduction of oxygen caused by the
presence of organic pollutants. Fish are also subject to natural mortality at a rate uslIntra-species competition
at the rate 1,4, and toxin-induced mortality from inorganic pollutants at a rate 8.

The model employs a Monod-type interaction to describe species growth and nutrient dynamics. The
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We therefore formulate the model system of nonlinear differential equations presented as Eq. (1)
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2.2 Qualitative analysis

2.2.1 Positivity of the model solution

For the model system (1) to be ecologically and mathematically meaningful, we need to prove that all state
variables are non-negative forall t > 0,

Lemma 2.1 The solutions (P;(t), P,(t),B(¢t), A(t), F(t), C(¢)) of the model system (1) with initial
conditions P;(0) > 0,P,(0) > 0,B(0) > 0,A(0) > 0,C(0) > 0and F(0) > 0 are positive forall ¢t = 0.

Proof. Considering the first equation of the model system (1), we have
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dPp,
E > —((XF + ,LLl)Pl' (2)

Whose solution is given by
Pi(t) > P;(0)e~(@F+rt,

Likewise, the variables P,(t), A(t), B(t), C(t) and F(t) can be computed following a similar procedure and
establish that P,(t) > 0,B(t) > 0,A(t) > 0,F(t),C(t) > 0 whenever t = 0. Therefore, the solution set
(Pi(©), P,(t), A(D),B(t),C(t), F(t)) € R, v=0.

2.2.2 Boundness of the model

The model system (1) was developed taking into account the fields of biology, environment, epidemiology,
and ecology, assuming that all the state variables and model parameters are well-posed for all ¢ > 0. Initially,
we demonstrate that the solutions of the model (1) are bounded as presented in Lemma 2.2.

Lemma 2.2 The region of attraction for the model system (1) is contained in the following set:

Q={(Pi,PO,A,B,C,F) ere0<Ph<Zo<p,<Z0<as<i,
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Proof. Following Jha and Misra (2024), we will prove this lemma. From the first
equation of model system (1), we establish that,

dP,

Tt < Q1 —mP, 3)

whose solution is given by

lim sup P; < =

t— Hq
Therefore, we have

OSPL-S%. 4)

251

2.2.3 Equilibrium point analysis
To investigate the model’s long-term dynamics, equilibrium points are determined by setting the growth rates
of all state variables to zero, signifying steady-state solutions.

The system of equations (1) yields at least four feasible equilibrium points:
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i.  Equilibrium Point &,
& = (0,0,0,0,0,0), representing a scenario devoid of pollutants, aquatic plants, bacteria, oxygen,
and fish.
ii.  Equilibrium Point &;
&L= (ﬁ,@, O,O,A, 0), where aquatic plants, bacteria, and fish are absent inthe system.
U1 K2 Ha
iii.  Equilibrium Point &,
& =1(0,0,4,,B,,C,, F,), corresponding to a pollutant-free water body. This exists
under the conditions:

( Ay —uz >0,
Az —pg >0,
A —ps >0, (5
Ay — A; —
0<}/2(2 M3) 3(3}L :u6></1.
30 20

iv.  Equilibrium Point &~
& = (P, Py, A", B*,C*, F*), indicating the coexistence of all species within the system.
Proof of the feasibility of these equilibria is in Appendix A.

2.2.4 Linear stability of equilibria

In this section, we conduct a local stability analysis of the equilibria for the model system (1) this analysis
determines whether the system will settle into equilibrium when its state begins near, but not exactly at, an
equilibrium point. An equilibrium is considered locally asymptotically stable if, for all initial conditions within
a certain neighborhood around the equilibrium, the system converges to the equilibrium as time approaches
infinity. The stability of an equilibrium is assessed by examining the sign of the real parts of the eigenvalues of
the Jacobian matrix at the equilibrium point. Specifically, the equilibrium is stable if these eigenvalues are
negative. The methods used to analyze the dynamical behavior of the model system (1) are detailed
inAppendix B, providing insights into the stability and equilibrium properties of the system.

Concerning the local stability of all equilibria in system (1), we present the following theorem:
Theorem 1
1. The equilibrium point &, is unstable provided the condition stated in equation 5 is satisfied.

2. The equilibrium point &; is unstable provided the condition stated in equation 5 is satisfied.
3. The equilibrium point &; is always unstable.
4. The equilibrium &*is locally asymptotically stable if the following conditions hold:
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(6)

The proof of this theorem is given in Appendix B.
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2.2.5 Nonlinear stability of interior equilibrium

In this section, we broaden our stability analysis from the small region near the equilibrium point to the entire
region of attraction by employing Lyapunov’s second method. The core concept of this approach for assessing
the nonlinear stability of an equilibrium point is to identify an energy function that decreases over time along
the system's trajectories. Given that the equilibrium&™, where all dynamic variables are active, is the most
significant equilibrium among those in system (1), we will establish conditions for the global asymptotic
stability of&™.

Concerning the global stability of the equilibrium &*in system (1), we present the following theorem:

Theorem 2 The interior equilibrium &* if it exists, it is non-linearly stable inside the
region of attraction if the following conditions hold:

ms0? < Ayo(uy — alp)(7a)

( myA3B1 P2 )2 < myA30B20B21L5 (7b)
(P12 + ﬁupo*)(ﬁm + ﬁ11LP0) (P21 + Bzzpa*)(ﬁm + .BzzLP,,)’
< mzA; 820821 )2 myAyokikizLp (7
) c)
(B21 + .Bzzpo*)(ﬁu + ﬁzzLPD) (P21 + .Bzzpo*)(ﬁu + ﬁzzLPD)
< B20B21Lp )2 my Bo1Bi2Lg
my , (7d)
(P21 + .Bzzpo*)(ﬁu + ﬁzzLPD) (P12 + .311Po*)(ﬁ12 + ﬁ11LP0)
kiksz ’
s ((ku T kP (ks + klleo)> < froktz e
mays < A30(v1lr — va), (71)
msy? < mydio(y1le — va). (79)

The proof of this theorem is given in Appendix C.

2.3 Quantitative analysis

2.3.1 Parameter estimation and model fitting

Following the examination of the asymptotic behaviors and long-term qualitative outcomes of the model
system, parameter estimation becomes imperative for achieving precise quantitative predictions within a finite
timeframe when constrained by empirical data. In this study, we utilized the least squares method for
parameter estimation, suitable for general parameter calibration rather than hypothesis testing or confidence
interval determination. The parameter values (refer to Table 1) were obtained by minimizing the sum of

squared residuals (min (Y, - Yl)z) between the model solutions (Y;)derived from literature values and

synthetic data (Yg) generated by incorporating Gaussian noise into the model output (Y;) Fanuel et al. (2023).
The MATLAB built-in function fminsearch, which employs the Nelder-Mead simplex algorithm, was used to
identify the local minimizers of the residual sum of squares. Initial parameter values were selected based on
compliance with the conditions outlined in the qualitative analysis. The estimated parameters were applied to
fit the data (Yg), with the optimal fits depicted in Fig. 1. Furthermore, the autocorrelation of the residuals was
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analyzed, revealing an insignificant correlation at the 5% significance level (see Fig. 4). These results
suggest that the estimated parameters yield the optimal fit for the data.

Table 1 Estimated parameter values.

Parameter Initial value Source Estimated Mean (1) and std (o)
Q. 18.056 Tiwari et al. (2018) 18.002902 N 18.0832 3.84 x 1072
Q, 18.056 Tiwari et al. (2018) 18.088006 N 18.0786 3.20 x 1072
A 16.913 Tiwari et al. (2018) 16.930407 N16.9228 1.38 x 1072
Ay 0.5 Assumed 0.503617 N 0.5003 3.78 x 107*
A, 0.5 Assumed 0.493277 N 0.5038 5.41 x 1073
A 0.5 Assumed 0.515624 N 0.4966 4.74 x 1073
a 0.05 Assumed 0.049929 N 0.0500 2.50 x 1075

0.02 Assumed 0.020310 N 0.0199 1.77 x 10~*
Ay 0.33 Tiwari et al. (2018) 0.336046 N 0.3288 1.76 x 1073
A3 0.2 Assumed 0.200531 N 0.2013 1.83 x 1073
Aa 0.13 Assumed 0.131187 N 0.1307 9.69 x 107*
Ao 0.446 Tiwari et al. (2018) 0.443490 N 0.4461 1.46 x 107*
Az 8.278 Tiwari et al. (2018) 8.373243 N 8.1913 1.23 x 107!
As0 0.5 Assumed 0.503893 N 0.5019 2.75 x 1073
Box 0.029 Tiwari et al. (2019) 0.028717 N 0.0293 431 x 10~*
Boz 0.112 Tiwari et al. (2018) 0.110319 N 0.1137 2.47 x 1073
Boo 4.38 Tiwari et al. (2017) 4.409343 N 44076 3.91 x 1072
Bix 0.051 Tiwari et al. (2019) 0.051012 N 0.0509 1.70 x 10~*
Bi2 1.0 Tiwari et al. (2019) 1.012754 N 0.9837 2.30 x 1072
Bor 7.81 Tiwari et al. (2017) 7.778490 N 7.8338 3.37 x 1072
Baa 1.48 Tiwari et al. (2017) 1.497801 N 1.4931 1.85 x 1072
ky 1.0 Assumed 0.999306 N 0.9969 4.33 x 1073
ki1 1.0 Assumed 1.004568 N 1.0000 4.7 x 1075
ki, 1.0 Assumed 1.007983 N 0.9923 1.09 x 1072
W 0.2 Assumed 0.199239 N 0.2000 2.5 x 107°
Hy 1.804 Tiwari et al. (2018) 1.810026 N 1.8050 1.41 x 1073
Hg 0.031 Assumed 0.031419 N 0.2997 4.22 x 107*
15 0.3 Tiwari et al. (2018) 0.299548 N 0.0310 1.80 x 1075
Us 15 Tiwari et al. (2018) 1.498941 N 1.4986 1.92 x 1073
Ue 0.28 Tiwari et al. (2018) 0.282797 N 0.2803 4.38 x 107*
Y1 0.1 Tiwari et al. (2018) 0.100089 N 0.1000 3.50 x 1075
Y2 0.5 Assumed 0.501070 N 0.5001 1.57 x 107*
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Fig. 1 Model fitting (lines) corresponding to estimated parameter values for Inorganic Pollutants(P;), Organic Pollutants (P,),
Agquatic Plants (A), Bacteria (B), Oxygen Concentration (C) and Fish (F).

Fig. 2 Population dynamics using initial parameter values (in red sold line) and the best fit ofgenerated synthetic data (in black
dashed) using Std = 0.05, in Inorganic Pollutants (Pi), OrganicPollutants (Po), Aquatic Plants (A), Bacteria (B), Oxygen
Concentration (C) and Fish (F).
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Fig. 3 The sample autocorrelation of the residuals in relation to Inorganic Pollutants (Pi), Organic Pollutants (Po), Aquatic Plants
(A), Bacteria (B), Oxygen Concentration (C), and Fish Population (F).

Fig. 4 Normal distribution of the model variables with standard deviation 6=0.05 and Confidence interval (C.I) =95%.
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2.3.2 Sensitivity analysis

An exploratory analysis was carried out using time-varying sensitivity analysis, as no specific periods of
interest were identified for the study. The analysis sought to identify meaningful time—dependent correlations
spanning the entire period under investigation (Fanuel et al., 2023). The sensitivity of input parameters on the
aquatic species, such as the aquatic plant population(A4), bacteria population (B) and the fish population
(F) was determined by plotting the PRCC values computed at various time intervals against time. The results
of the analysis are presented in Figs. 5(a)—(c). From this figure, the shaded region represents PRCCs that are
insignificantly different from zero (—0.2 < PRCC < 0.2) (Marino et al., 2008).

Fig. 5 A visual representation showing the evolution of parameter sensitivity throughout theprogression of the system dynamics.
PRCC values over a time span of 80 days with respect to (a) Aquatic Plants, (b) Bacteria, and (c) Fish.
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3 Results and Discussion

The model fitting and parameter estimation approach in this study provided a quantitative basis for
understanding the aquatic ecosystems dynamics. Using the least squares method, the model's parameter values
were adjusted to minimize the residuals between the model's predictions and the synthetic data, ensuring that
the model fits the empirical data as closely as possible. Using the Nelder-Mead simplex algorithm via
MATLAB's “fminsearch™ function enabled efficient local minimization of residual sums, resulting in a good fit
with insignificant residual autocorrelation.

The sensitivity analysis, conducted using Partial Rank Correlation Coefficients (PRCC) and Latin
Hypercube Sampling (LHS), provided valuable insights into the time-dependent effects of various parameters
on different components of the aquatic ecosystem. From Fig. 5(a), for aquatic plants (A), the sensitivity
analysis revealed that the growth rate driven by organic pollutants (13), the absorption rate of pollutants(8y1),
and the discharge rate of organic pollutants (Q,) they are highly influential parameters, positively impacting
the aquatic plant population. These factors promote plant growth by enhancing nutrient availability and
favorable conditions, leading to increased biomass. On the other hand, the death rate due to intraspecific
competition (A3,) and the half-saturation constant negatively affects the plant population. Intraspecific
competition reduces the availability of resources among plants, limiting growth, while the half-saturation
constant likely represents a threshold beyond which the effectiveness of nutrient uptake diminishes, further
restraining population growth.

From Fig. 5(b) we can see the growth rate of bacteria (B) driven by organic pollutants (4,), the uptake
rate of organic pollutants by bacteria (8,,), and the discharge rate of organic pollutants (B5,), are identified
as positively sensitive parameters, meaning they are directly proportional to the increase in bacterial
population. These parameters promote bacterial growth by providing essential resources and conditions that
enhance bacterial proliferation. Conversely, negative sensitivity is observed in parameters such as the death
rate of bacteria due to intraspecific competition (1,,), and certain constants (8,;) and (B,,). These
negatively sensitive parameters hinder bacterial population growth, with intraspecific competition limiting the
available resources among bacteria, and the constants likely representing factors that negatively influence
bacterial viability or resource acquisition. Considering Fig. 5(c) of the fish population, the analysis indicates
that the fish population (F) is highly sensitive to both the uptake rate of organic pollutants (k;) and the
penetration rate of oxygen into water (4,), with both parameters showing a positive correlation. The increased
absorption of organic pollutants by fish enhances their population, likely due to the role of certain organic
pollutants as nutrients or energy sources that support fish growth and metabolic functions. Additionally,
oxygen is essential for fish survival and growth, as it is fundamental to respiration and various metabolic
processes (Abdel-Tawwab et al., 2019). Therefore, these two factors are critical in sustaining and promoting a
healthy fish population. Conversely, the graph shows that the fish population (F) is negatively affected by the
death rate due to the consumption of inorganic pollutants (8), the discharge rate of inorganic pollutants (Q,),
and the death rate due to interspecific competition (A;,). These parameters are negatively sensitive, meaning
increases in any of them lead to a decrease in the fish population. This underscores the importance of
controlling inorganic pollutant discharge and managing interspecific competition to sustain healthy fish
populations in aquatic environments.

4 Conclusion

The model fitting and parameter estimation conducted in this study offer a robust quantitative foundation for
understanding the complex dynamics of aquatic ecosystems. By applying the least squares method and the
Nelder-Mead simplex algorithm, the model was finely tuned to align closely with empirical data, minimizing
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residuals and ensuring accuracy. Sensitivity analysis, using Partial Rank Correlation Coefficients (PRCC) and
Latin Hypercube Sampling (LHS), highlighted the critical roles of various parameters in shaping the
populations of aquatic plants, bacteria, and fish. Parameters such as the growth rates driven by organic
pollutants, pollutant absorption rates, and oxygen penetration were identified as highly influential, positively
affecting population growth by enhancing nutrient availability and metabolic processes. Conversely, factors
like intraspecific and interspecific competition, along with the discharge and consumption of inorganic
pollutants, were found to have negative impacts, underscoring the need for careful management of these
parameters. The findings emphasize the importance of regulating pollutant levels and competition within
aquatic environments to sustain and promote healthy ecosystem dynamics.
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Appendices
Appendix A: Equilibrium Point &, and §&*

Existence of Pollutant-Free Equilibrium Point &,

( (A2 =3 —A3042)4; =0,
i (A3 — pe — A20B2)B, = 0 (A1)
A —y1GF, —y;B; —usC, = 0,
(A1 = ¥1Co — us — AoF2)F, = 0,

The first two equations yield A4, = (A; “) and B, = (A; “s) for A, B, # 0.

30 20

From the fourth equation, with F, # 0, we have sz’fw denoted as F; (C,) = f,. Substituting A,, B,,
10

and F;(c,) into the third equation of (A1) gives another function of C,:

A, — Az —
f2(C) = A —y1Cf1(C) — v <2/170M3) — V3 <%> — paCy = 0. (A2)

The following results are established:

i.  f£0)=4- yz( 23:3) —¥3 ((AZ:")) > 0, given the condition:

A, —
0<V2( 2130113)_'_)/3 <( 3/120#6)> <A

A= @A) n ) () <o

ii.  f£;(C) = —v1f1(C3) — v1Cof5(C3) — g < 0.

These results indicate that f,(C,) possesses a unique non-negative solution C,, with 0 < C, < MA Hence,
4

the equilibrium point &, = (0,0, 4,, B,, C,, F,) exists under the

conditions:
Ay —uz >0
Az — e >0
Ay —ps >0 (43)

A, — A; —
Ik0<y2( 2 #3)+y3 <( 3 M6)><A.
A30 Ao

Existence of Interior Equilibrium Point (§)*

The interior equilibrium &*is determined by solving the following system of equations:
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((0=0Q; —aPF" — P/,
B2oFs B* k Py F* Bo1Fs A

0=0Q;— i i -~ HoFy,
2 Bo1 + B2y kiz + kiiPs Biz + B1iFos 2o

A3Bor P A*
0=/A,A"+ AsPorbod” [z A* — 30472,
A2B20P5 B”
2200~ cB* — 1,0B*2 A4)
Bo1 + Ba2 By ¥ 20 (

* *

P’B
02 * ¥k * * *
Y, C'F" —y, A" — 3BT — 1, C,

A

O=A3B*+

0=A4-
B21 + B22Fs
A,k P2 )
0 =AlF*+—+V1C*F*_QPLF*_MsF*_AloF*Z.

Given that all variables are positive, we can express P;" as a function of F*using the first equation:

e Q0
P; T = f3(F") (45)
Similarly, we can define A*, B* and C*as functions of P/ and F*, respectively:
Ay — s A3Bo1 Py
A =( - i )= ) 46
A30 A30(B12 + P11 P) fa(Fo (46)
Az — g A3Bo2 Py
B* = ( — - ) = f:(PD), A7
A2 A20(Ba1 + B22F3) fslFo (A7)
1 Bo2Fs f5(Fy)
c* = " A— —~—V2fs(Py) | = fo(Py, F"). A8
Y1 F _M4< (B21 + B22P5) 2falFo felFo (48)
Substituting these into the system, we derive the isoclines A9 and A10:
P f-(P; kPJF* P f.(P;
Qz_ .820 ofs(oz _ 1%o0 *_.801 0f4( 03—M2P0*=f7(P;,F*). (A9)
(B21 + B22P5)  kiz + kitPS Brz + BiaFs
Ak P}
T 1 fe (B, FY) = 0f3(F) = AaoF* = fo(Py, F). (410)

A — [ —
(A1 — us) +k12 T
From the isocline A9, the following deductions can be made
1. For F* =0, the function f;(P;,0) simplifiesto g,(P;):
BaoPs f5(Fs)  Bo1Ps fa(Py)
Q2 — e - — WPy = g1(F))
2 (Bz1 + BazPs) Pz + BurPs 2lo = g1l
(@ For Py =0,9,(0) =0Q, > 0.

(b) For Py = %, we have:
2

Q2 Q2 Q2 Q2
QP ()55 () Bon (2) 12 ()
915——ﬁ B (%)4_[3 Y (&) < 0.
21 22 o 12 11 s
(c) It can be shown through appropriate calculations that g1’ (Pox) < 0 if inequality (A11) is satisfied

B20Ps fa(Py) B2z 4 Bo1 Py f3(P5) P11
(B21 + B22P5)?  (Brz + B11Py)?

B20fa(Po) + B20Ps f5(Ps) | Borfs(F5) + BoiFo f3(FS)
P21+ P22 By * P12 + B11 Py T Ha: (A11)
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(d) The conditions (a)—(c) confirm that A9 has a unique positive solution for P, in the interval

0<P <%
u

2

P}
dF

A dpy\ .
2. The derivative (F) iS negative, ( )< 0.

From the analysis of the isocline given in equation (A10), we can derive the following outcomes:
1. If F* =0, we denote the resulting function as f;(P;,0) = g,(P;). Hence,

5. T Vfe(P) ——— = g.(R). Al12

K1z + ki P; 1f6(Po u 92\Up ( )

(@) When Py = 0, it follows that g,(0) < (0), provided the condition in (A13) is satisfied

Ask Py 0
(s — ) + 20 L
1

60,

(A —us) +vife(0) < ,u_ (A13)
1
(b) For Py = %, we obtain g, (%) > 0, under the inequality in (A14):
2 2
Jaks (2) Q2\ (1) _ 6Q
(b ) + ———* sy (52) - () > 22 (414)
kiz + kqq (—) Ha 51 M1
(c) Differentiating g,(P;) with respectto P, gives:
Askqqk
95 (P) = == + V1 fe (B

(k11 Py + k12)?
Considering the points in (a) through (c), we conclude that equation (A10) has a unique positive solution

within the interval 0 < Py < %.

2

2. The derivative (Zi‘f) > 0.
2

As a result, the equilibrium values of Pjand F*are uniquely determined within the intervals 0 < B, < Lp,
dp,

and 0 < F < Lp, respectively, provided that (%) < Oand (dF) >0
1 2

Once P, and F*are known, the equilibrium values of P;,A*,B*and C* can be computed from equations (A5),
(AB), (A7), and (A8), respectively.
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Fig. Al The plot illustrates the intersection of the isoclines (A9) and (A10), signifying the presence of(P,"F*) within the
interior of the first quadrant

Appendix B: Linear Stability of Equilibrium Points

The local stability of equilibrium points &,&; and &,0f the model system (1) is analyzed by using the
eigenvalue method, while the stability of an interior equilibrium point &* is evaluated by using an appropriate
Lyapunov candidate. The general Jacobian matrix (J) of the model system (1) is given by

Ju 0 0 0 0 Je
0 ]22 ]23 ]24 0 ]26]

A A @s)
[ 0 Jsz O Jss Jss Jse
61 Je2 0 0 Js¢ Jes
Where
Ji1=—aF —py,J16 = —ab;
J22 = —< PaoP1 B kikioF Bo1Bi2A llz),
(Ba2Po + P21)*  (ki1Po + k12)?  (B1aPo + Pr2)?
]23 = _M,]m — _MJ% - _ klPO Jay = ASﬁOlA.Bu :
P12 + P11Fo B21 + B22Fo kiz + k11Fp (B11Po + B12)?
A3Bo1 P B20B 22021
Jaz = (Az — p3) + By + Bl 24304 ,J42 = BoaPo + Bor)?
Po2FoB Boz2BB21
Jaa = (A3 — pe) + Bor + BogPs 22208 ,Js52 = BoaPo + By)? Js3 = Y2, )54 = V3,

Jss = F Jo = —1iCole = 6F, =tttz ;o p
s5=YV2—"V" Y3 — Us, /56 Y1l,J61 ) 62 (k11po+k12)2,65 yit,

AskiFy

P e—— C —0P; —2,F .
klz + kllpo +)/1 L 10

Joo = (A —us) +
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Stability of Trivial Equilibrium &,

Eigenvalues of the Jacobian matrix J evaluated at trivial equilibrium point, EO are —pu,, —py, (A, — t3), (A5 —
Ue), Y2 — Y3 — s and (A; — us). Conditions (A3) show that eigenvalues(A, — pz) > 0 and (A; — ug) >
0 respectively, suggesting instability of equilibrium point & .

Stability of Bacteria-Plants and Fish-Free Equilibrium Point §;

Eigenvalues of the Jacobian matrix J evaluated at the Bacteria-Plants and fish free equilibrium point, &, are

— — _ _A3B01Q2 _ — ) —
e, =, (Ay — ug) + Biotin i1 (A3 —ug), (2 —us) —vys, and
Ay —us) + —AakaQ y,C — %% Conditions (A3) show that eigenvalues
ki2p2+k110Q2 M1
(A, —pg) + Aol ) gng (A5 — ug) > 0 which confirms that the equilibrium point &, is unstable.
Bizu2+$110Q2

Stability of Pollutants Free Equilibrium Pointé,

Eigenvalues of the Jacobian matrix J evaluated at the pollutant-free equilibrium pointk, are —(ayF, +

kyF. A
H1), (_ﬁmﬁz L liz)' (Ay — p3) — 223042, (A3 — ) — 2220B3, (V2 — ts) — (y1F +
B21 k12 P12

¥3), —V2C2, —V1Fy, and (Ay — ps) + y1C; — 2440F,,sincey; F, > 0,
the equilibrium &, is unstable.

Stability of Coexistence Equilibrium Pointé&”

Following Fanuel et al. (2023), we study the behavior of the system in the neighborhood of the equilibrium
point when given a small perturbation.We begin by linearizing the system using the following transformations:
Pp=P +p,P, =P +p,,A=A"+a,B=B"+b,C=C"+c and F =F"+ f ,wherep;,p,, a,b,c, and
frepresent small perturbations around the equilibrium.

The linearlized system is given by

dp; . .
dtl =(—aF" + )i — 4 P'f,

dp0:< B20B22P5 B _ B2oB” _ kyF* n kiki1 Py F* _ Bo1A" >p
dt (Ba2Ps + B21)?  BoaPy + Por kiiPs +kip  (kitPs +ki2)? BiaPs +Biz) °

_( BoiPs )a_< BzoFs )b_( ki Py )f
Bz + B11Fs B21 + B22Fy kip +ky Py

da ( A3B1B12A" ) < A3B1 By

o (mahet N (A 2P 22 A*)a,

dt (B11P5 + B12)? Po 27 Biy + PPy 3 30
Bo2 P B*

ﬁ _ < A2B20B21B"
dt (B22P5 + B21)?
dc ( Bo2B21B"

)Po + <A3 - — U6 — 2AzoB*> b,

Ba1 + B22Fs

)po —Y2a —v¥3b + (2 —v1F" —v3 —us)c —y1C*f.

dt — \(Ba2Ps +B21)?
ar . Aykikyo F* ) .
E =0F pi + <(k11Po* + k12)2 Po + ylF
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+(/1 + AakrFy +y,C* — 0P} 21 F*) B16

Now, we consider the following positive definite function:
! ma? | msb? msf*? .
V=2<p12+m1p§+ A" + B +m4cz+? ’mi>0'l=11---:5

and use a linearized model (B16) to get

av
P —(aF* + )P}
_( myfo1A° myBr0B” n myk,F* _ myB20B22B" _ myk ik Py F* ) 2
B11Ps + Bz BazPs + P21 kiiPs +kiz  (BooPs +PB21)?  (kiiPy + k)% °

/1331P0* )a2 _ ( ﬂOZPO*B*
Bz + B11Fs A

—m4(]/1F* + Y3 + Us — yz)cz_ms (gpi* + Us + leoF* — Al —

—m, (ﬂg + 2).3014* - AZ - + He + 21203* - A3) bZ

Agkei By

__*r 0 _ C*) 2
ki, + ky1Fy ne)r

MyA3 018124 my 1Py
—(u P — msOF*)p; —( - - *)pa
v > it (Bi1Ps + B12)?  Piz + PP/ °
my 0Py M3A;020821B” Bo2B21B"
- i " 2 Dob —my "5 br 1 Nz2)PoC€
P21+ B22Py  (Ba2Ps + Pa1) (B22P5 + B21)
< myk,P, mgk ki, F*
kip + ki Py (kyy P+ kyp)?

)pof — myy,ac — myysbc — (myy,C* + mgy F*)cf .

P5(B11P5+B12) My Py (B22P5+P21)
Select the values of m; = 1,m, = — e futothzl oy Mo FaztotPon)
1 2 A3f124* 3 A2B21B*
P(kq1P5+k Py(kq1P5+k . . L
my = —TafolarPotkiz) ong 1 = MaPolarPotkag) o rpiirary the time derivative of V becomes
Aq¥1k12C Aq¥1k12C
dv
— = —(aF* + w)P?
dt ( .ul) i

ps

+( B20B* ke F* Bo1A" _ B20B21F5 B _ kyiki1 P F” )
B22Py + P21 kiaPy +kiz  P1aPs + B2 (BaaPy + B21)?  (ky1 Py + kyp)?

A3BiFy 02F B
+m —2304" — A ——)a2+m (—+ + 21 B*—A)b2
2 (,113 30 2 Pig+ Puibs *\Baox + B2aPs He 20 3
* 2 * * A4k1P; * 2
+ms((V1F* +vs + s —v2))c? +ms (HPO + s + 2200F" = Ay — ————-+71C )f
kiz + ki1 P
+( P —msOF)p;f — myy,ac —myysbc
The criteria for ‘;—‘Z to be negative definite, based on Sylvester’s criterion, are as follows:

Aok P}

_ C*) > (u P — meOF*)?,
Kep + ki P L2 (u P —ms )

(aF* + uy) (HPO* + s + 20 0F* — Ay —

A3B1 Py Py (k1 Py + k1)
m — 24304 — A ——) F*+ > 2 B17
2 (#3 30 2 By + BiiP; (r1 Y3) AayikisC” Y2 ( )
Bo2PyB* Py (k11Py + k12)
——— 4 U+ 21,0B*— A ) — > 2. B1
(521 + Byl Ue 20 3 ) (s —v2) TayikisC” V3 (B1)

A positive value for m2 can be selected from these inequalities, such that inequality
B18 to be satisfied. Consequently, the time derivative of V is negative definite,
confirming the linear stability of the coexistence equilibrium.
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Appendix C: Non-Linear Stability of Coexistence Equilibrium Points

To demonstrate the global stability of the equilibrium &*, we start with the following positive definite function,
as proposed by Fanuel et al. (2023); Kalra and Tangri (2020):

1 m A
W=o (P - P) +71(Pi — P2 +m, (A — A —A*lnE) +

B my F
ms (B - B* —B*ln;) +7(CL- —C)?+ms <F —F*— F*lnF>
where m1, m2, m3, m4, and m5 are positive constants. We establish that the function
W is positive definite by proving W (P,P, A,B,C,F) > 0 within the interior of Q and
w(P;, P, A B,C,F) = 0onlyat &*.
By differentiating the above equation with respect to time t along the trajectories of the model system (1) and

rearranging the terms, we obtain:
et me () G rms (50) & +ma (55) T4 ms ()5
a T )t ) T ) e T s U

By differentiating this equation with respect to time t along the solutions of the model(1) and further
rearranging terms, we proceed with the analysis.

aw %y AP *
E:(Pi_Pi)E‘}'ml(Po_Po)

aw
dt

myB20B218 n myk ko F
(Ba1 + B22Py) + (Ba1 + BazBy)  (kip + ky1Py) + (kyp + kq14P,)

+ m1#2] (P, = P3)? —myA39(A — A")* — m3A,0(B — B*)?

= ~(u - aP)(P,~ P - |

" my Bo1P12B
(P12 + B11F3) + (P12 + P11 Fo)
—my(y1F = y,)(C = C*)? — mgh;o(P; — Pi*)z —mg0(P; — P)(F — F")
My A3B1Bi2 DA A
<(.312 + B11P) (Brz + Bllpo*)) (Fo —Fo)(A =47
_ ( M342820821
(B21 + B22P) (P21 + B22F5)
_ ( My 208218
(B21 + B22Py) (P21 + B22F5)
mskikq, . . . .
- <(k12 + k11Py) (ke + k11P0)> (Fo = F)(F = ) = may2(4 = AD(C =€)

—msy,(C — C*)(F — F").

)& =P B - B)

)5, = B(C - ¢

aw
o —[ay1 (P; = P{)? + apo(F — F*)? + az3(A — A")? + a44(B — B*)? + a55(C — C*)?
+aes(F — F*)* + ay6(P; — P))(F — F*) 4 a3(P, — Py)(A — A*) + a4 (P, — P;)(B — B*)
+ays(P, — Py)(C —C*) +aze(P, — P;)(F —F") + ags(A—A")(C - C")
+a56(C - C*)(F - F*)]

Where,
a;; = (g — aF),
_ myBr0P21B myk ki, F myBo1P12B
Ayp = " + " + " + milz |,
(Ba1 + B22Py )(Ba1 + B22Py)  (kyp + ky1Py)(kyz + ky1Py)  (Biz + B11Ps) (Biz + B11Fs)
ass = Az, A4q = Az, ass = my(y1F — v4), Age = Mslyg
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o =( myAs3B1 P12 ) aon = M3A2B20P21
16 OB T\ (Baz + BraPo) Biz + B1aPs)) P T (B + BaaPo) (Bar + BaaPs)

m B mckik
Qzs = ( P20l )'a26 = ( 5* e ),a35 = M4Y2,ase = MsYq-
(B21 + B22P,) (P21 + F22) (kiz + ky1Py) (k1 + k11 P,)

Sufficient conditions for %to be negative definite, as determined by Sylvester’s criterion, are given in 7a-7g.

Any positive values for m;, m,, ms, m,, and mg can be selected as long as these inequalities (7a-7g) are

satisfied.
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