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Abstract 

Dissolved Oxygen (DO) serves as a crucial measure of water quality, imperative for both aquatic life and 

human consumption. The application of deep learning, particularly through data-driven predictions, offers a 

robust tool for estimating DO concentrations. Enhanced precision is achieved by fine-tuning hyperparameters. 

Bayesian optimization methods are amongst those noteworthy for their effectiveness. This study focuses on 

predicting DO levels using a Deep Neural Network model. The study uses Bayesian optimization to refine 

hyperparameters for the best model setup, comparing the results with a baseline model using default settings. 

Results indicate that the Bayesian-optimized model outperforms the baseline. The findings underscore the 

pivotal role of Bayesian optimization in elevating model performance, exhibiting robust generalization 

capabilities while significantly reducing the need for manual parameter tuning. This successful application 

underscores a substantial methodological advancement in environmental management, particularly in 

predictive modelling for indicators of aquatic ecosystem health. 

 

Keywords water quality; dissolved oxygen; environmental management; deep learning; Bayesian 

optimisation; gaussian process. 

 

 

 

 

 

 

 

 

 

1Introduction 

One of the critical water quality indicators, Dissolved Oxygen (DO), serves as a measure of aquatic ecosystem 

health (Rouf et al., 2022). A healthy waterbody with ample concentration of DO not only supports the 

ecosystem but also fulfills human requirements for drinking, irrigation, and recreation (Tiyasha et al., 2021). It 

is a well-established fact that minor variations in DO concentration can significantly affect aquatic life (Fitri et 
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al., 2021). Furthermore, slight fluctuations in other water quality variables can dramatically alter DO 

concentrations (Garabaghi et al., 2023). Due to the sensitivity of DO to any changes in a waterbody monitoring 

DO is often prioritized as the primary parameter for providing a comprehensive overview of a water system's 

health (Kannel et al., 2007). 

Among various modelling techniques designed to capture the temporal fluctuations of DO levels, machine 

learning methods are suggested as effective solutions for addressing the challenges posed by nonlinearity 

(Ziyad Sami et al., 2022). Machines are computers that learn from their experiences and make sense of the 

world using a structured set of concepts. Each concept builds upon simpler ones. This method circumvents the 

need for humans to input all the knowledge a computer requires (Zhang et al., 2008; Agahian and Akan, 2022). 

The computer gradually learns more complex ideas from the basic ones. The structure of all simple concepts 

upon each other is complex and multi-layered, that is called deep learning (LeCun et al., 2015; Goodfellow et 

al., 2016).  

Deep learning models have been in the centre of focus of many researchers aimed to propose predictive 

models for DO concentration. Banerjee et al. (2019) presented a study in which artificial neural network 

modelling was used to predict dissolved oxygen levels. It compared the efficacy of deep learning models 

against traditional regression in correlating environmental factors with aquatic ecosystem health indicators. 

The study concluded that neural network models are better at predicting these variables, which can 

significantly aid in the management of water resources. Moghadam et al. (2021) benchmarked a Recurrent 

Neural Network (RNN) in predicting DO levels against support vector machine (SVM) and artificial neural 

network (ANN) models. Results showed the RNN model outperformed others, with high accuracy in DO 

prediction for different time leads, emphasizing the potential of deep learning in environmental monitoring. 

However, recurrent neural networks are considered computationally expensive models due to the sequential 

nature of their computations, and backpropagation through time process for training the network (Pascanu et 

al., 2013; Sutskever et al., 2014; Goodfellow et al., 2016; Sherstinsky, 2020). Zhi et al. (2021) investigated 

whether a deep learning model, specifically, a Long Short-Term Memory model (LSTM), can accurately 

predict DO levels across watersheds. The key finding of this study is that the model struggles to predict 

extreme peaks and troughs in DO concentrations. Even more interestingly, they reported that the model's 

performance did not improve with more data. The findings suggested that more targeted data collection is 

necessary to improve predictions. Zhu et al. (2021), explored the use of deep learning and transfer learning to 

predict DO concentrations in aquatic systems. They developed a pre-trained model using a large dataset from 

one aquatic system and applied it to another system with less data. They compared the model's performance 

with and without transfer learning and found that transfer learning improved the prediction of DO 

concentrations. Their study demonstrated the potential of using transfer learning to predict environmental 

parameters in different aquatic systems with limited data. 

It is an ongoing discussion that deep learning models can perform tasks with varying dataset sizes. 

However, the quality of predictions and the reduction in false positives improve with larger datasets. Although, 

deep learning models can function with smaller datasets, the dimensionality and breadth of data can 

significantly impact the model's refinement and accuracy (Ionescu et al., 2023). Another task that poses a 

challenge in developing deep net models is fine tuning the hyperparameters. It takes a deep expertise, and trial 

and error to find the best hyperparameters to optimise a deep learning algorithm (Xiao et al., 2020). However, 

there are many methods for hyperparameter optimisation such as hyperparameter optimization via radial basis 

function (RBF) and dynamic coordinate search (Ilievski et al., 2017), genetic algorithms (Zhang, 2016; Thi 

Kieu Tran et al., 2020; Xiao et al., 2020), reinforcement learning (Rijsdijk et al., 2021), etc. Amongst all the 

methods for fine tuning deep nets, Bayesian approach has attracted the attention of many researchers so far.  
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Bayesian methods suggest to solve problems associated with uncertainty (Sun, 2013). This approach 

integrates existing knowledge about an unknown function with data collected from samples. Using the 

Bayesian formula, it derives the function's distribution as posterior information. From this updated information, 

the optimal value of the function can then be inferred (Zhang, 2010, 2016; Wu et al., 2019). Then, Bayesian 

methods have been used in variety of research domains where uncertainty was challenge, and it has been used 

in developing machine learning models to address the challenge associated with uncertainty of hyperparameter 

selection (Huan et al., 2018; Chandra and Tiwari, 2022; Joy et al., 2016a; Yan et al., 2023).  

One of the debates about using Bayesian optimisers in machine learning models associates with its 

complexity of computation, especially where high-dimensional problem must be addressed (Peter I. Frazier, 

2018).  

As discussed previously, deep learning models can predict DO values with a high degree of accuracy. 

However, their performance is often contingent on large datasets to ensure robust correlation and 

generalization. This study tackles the challenge of enhancing model accuracy using datasets of moderate size. 

A pivotal aspect is the optimization of hyperparameters, which, while effective in improving model 

performance, often entails a time-intensive trial-and-error process. Bayesian optimization presents a promising 

alternative, evidenced by its success across various domains. Despite its computational intensity, integrating 

this method with deep learning models could be transformative. 

To address these challenges, we introduce a deep learning model that leverages a computationally efficient 

Bayesian optimizer. This study evaluates the viability of Bayesian optimization for hyperparameter tuning 

within a deep learning context, investigating whether the computational investment in such a tool is justified 

by the resultant improvements in model generalization and performance. Our contribution lies in developing a 

model that stands at the intersection of computational feasibility and environmental management, potentially 

revolutionizing the prediction of DO levels in riverine systems. 

 

2 Methods 

2.1 Study area 

Büyük Menderes basin locates in Turkey's southwest. The basin’s longest river, Büyük Menderes river, 

stretches 584 km from the high eastern mountains. The basin covers 3.2% of Turkey's area, and it ranks as the 

seventh most densely populated basin, with an annual average flow, precipitation, discharge, and temperature 

at 3,020 billion cubic meters, 635 mm, 110 cubic meters per second, and 17.6 °C, respectively (EUP, 2016; 

Akyildiz and Duran, 2021). 

The water quality data used in this study was collected from 8 stations along the Büyük Menderes River. 

These stations represent the main flow of the basin (Fig. 1).  

 

 
Fig. 1 Study area water quality monitoring stations. 
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The dataset comprises water quality measurements taken every two months between 2004 and 2014. Using 

the method outlined by Kumar and Manjula (2012), a homogenous dataset consisting of 528 instances and 19 

parameters, including year, month, station, temperature, pH, electrical conductivity, chemical oxygen demand, 

biological oxygen demand, ammonium nitrogen, nitrite, nitrate, phosphorous, Chloride, Iron, manganese, 

sodium, sulphate, total dissolved solids, and dissolved oxygen, was created. 

2.2 Bayes’ theorem and Bayesian optimisation 

Fine-tuning of hyperparameters in a machine learning model is a significant challenge as the correct set of 

hyperparameters can boost up performance of a model (Probst et al., 2019; Weerts et al., 2020). Bayesian 

optimisation is an efficient method for tuning settings or configurations when calculating or finding the best 

setting is a challenge (Snoek et al., 2012). The nature of Bayesian optimisation is built upon Bayes’ Theorem. 

Bayes Theorem is used to update the probability estimate for a hypothesis as more evidence and information 

becomes available (Zhang, 2010). The theorem is usually written as Eq. 1, where p() is prior probability that 

is what we initially believe about the distribution of parameter . In this equation  p(y | ) is the likelihood 

function that gives information how likely the observed data y is given the parameter , and finally posterior 

distribution as ݌ሺ | ݕሻ is computed that is the updated belief about the distribution of  after seeing the data 

y (Zhang, 2010; Box and Tiao, 2011).   

 

p ( | y) =  
௣ ሺ௬ | ሻ௣ሺሻ

௣ ሺ௬ሻ
         (1) 

 

Based upon Bayes’ Theorem, Bayesian optimisation simplifies the best hyperparameter combination 

exploration as there are numerous of possible combinations whose exploration by trial and error is 

time-consuming (Joy et al., 2016). What is updated in Bayesian optimisation is the surrogate model that is the 

prior belief about the unknown function space. As more observations are gathered, these models are updated 

according to Bayes' theorem, incorporating the new data to improve the model's accuracy and the subsequent 

selection of points for function evaluation (Snoek et al., 2012). The standard objective of Bayesian 

optimisation is to diminish the sum of Regret, ࣬T, as Eq. 2, where ݂ሺכݔሻ is the true optimum of f (f: X →Թ) 

over a set X (X ؿԹ d), the unknown function that is a subset of multidimensional space Թ d denoted as Eq. 3. 

In other word, the goal is to find the maximum value of the unknown function (Kandasamy et al., 2018). 

 

∑ ሺ݂ሺכݔሻ்
௧ୀଵ െ ݂ሺݔ௧ሻሻ     (2) 

 

݂ሺכݔሻ ൌ max ݂ሺݔሻ, ݔ א ܺ    (3) 

 

In a sequential Bayesian optimisation, a batch of ࣥ points at each iteration, t, from the space X is chosen. 

These points are called queries and denoted as ൛ݔ௧
௞ൟ 0  ൑ ݇ ൏  Here, for each point, the actual function f is .ܭ

not directly observed but a noisy version of the function's value is observed (Eq. 4) (Srinivas et al., 2009). 

 

௧ݕ
௞ ൌ ݂൫ݔ௧

௞൯ ൅ ߳௧
௞      (4) 

 

where, ߳௧
௞ is Gaussian noise ࣨ with mean 0 and standard deviation of ߪଶ. 

2.3 Gaussian process and upper confidence bound (GP-UCB) 

Gaussian process is a statistical method that updates the intuition on prior distribution (function) by assuming 

that the function's values at different points are random variables that have a joint Gaussian distribution (Liu et 
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al., 2023). In other words, it means that unknown function f is a sample from GP. So, that means if any points 

is taken from f, the values at these points would collectively follow a multivariate Gaussian distribution. Let’s 

say that the unknown function f has a mean function m and a non-negative definite kernel function k (Contal et 

al., 2013): 

 

f ~ GP (m, k),       (5) 

where m: X →Թ, and k: X ൈ X ՜ Թା 

In other words, m is the way to describe the prior belief about the function’s behaviour as m(x) is the best 

guess for value f at any point x. the kernel or covariance function k gives us information on expectation from 

covary of the function’s values between two points x and ݔᇱ.  

When a selection of points taken from an unknown function, and the outcomes at these points jointly 

follow a Gaussian distribution, this distribution is characterised by a mean vector ߤ and a covariance matrix C. 

These elements are derived from the process's mean function and its covariance function (kernel) within the 

GP framework. This holds true for any number of points n taken from the process's domain ݔଵ , … , ௡ݔ א  ܺ  

(Contal et al., 2013; Joy et al., 2016). 

 

൫݂ሺݔଵሻ,… , ݂ሺݔ௡ሻ൯ ~ ࣨሺߤ,  ሻ ,    (6)ܥ

withߤሾݔ௜ሿ ൌ ݉ሺݔ௜ሻ 

andݔൣܥ௜, ௝൧ݔ ൌ   ݇ሺݔ௜,  ௝ሻݔ

 

When we gather data from the function f, we can update our GP model. This is where Bayesian inference 

comes in. The posterior distribution then can be calculated for the function’s values at new points by 

combining our prior model that is the GP with the data. This posterior GP gives us a new mean and variance 

for each point, which represents our updated belief about the function's values after considering the data. The 

updated mean (Eq. 7) is our revised best guess for f(x), and the updated variance (Eq. 8) quantifies our 

uncertainty (Rasmussen and Williams, 2005). 

 

ሻݔାଵሺ்ߤ̂ ൌ ்ܥ்ݔ்݇ 
ିଵ்ܻ      (7) 

ො்ାଵߪ
ଶ ሺݔሻ ൌ ݇ሺݔ, ሻݔ െ ்݇ሺݔሻ்்ܥ

ିଵ்݇ሺݔሻ (8) 

 

Here, ்ܺ ൌ   ൛்ݔ
௞ൟݐ ൏ ܶ, ݇ ൏ ܭ  is the set of queried locations, ்ܻ ൌ   ௧ݕൣ

௞൧
௫೟
ೖ א ௑೅

 is the vector of noisy 

observations, ்݇ሺݔሻ ൌ   ൣ݇ሺݔ௧
௞, ሻ൧ݔ

௫೟
ೖ א ௑೅

 is the vector of covariance noisy observations between x and the 

queried points, and ்ܥ ൌ ்ܭ  ൅ ߪଶI is the kernel matrix. 

It can be inferred from the equations above that the updated mean ்̂ߤାଵሺݔሻ is calculated using the 

covariance between x and the observed points, weighted by the inverse of the covariance matrix from the 

observed data and the observed outputs, and the updated variance ߪො்ାଵ
ଶ ሺݔሻ reflects how much we don't know 

about f(x) after seeing the data. It's calculated based on the kernel's self-covariance at x minus a correction 

term that accounts for what the data has taught us (Contal et al., 2013).  

Within the Gaussian Process (GP) model, a fundamental aspect is that the posterior distribution at a 

specific point is normally distributed. This allows for the creation of an upper and lower confidence bound (Eq. 

9 and 10) around the estimated mean of the GP at that point. 
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መ்݂ା ൌ   ሻݔሺ்ߤ̂ ൅ ඥߪ்ߚො் ሺݔሻ    (9) 

 
መ்݂ି ൌ   ሻݔሺ்ߤ̂ െ ඥߪ்ߚො் ሺݔሻ    (10) 

 

where, ்ߚ א   ࣩ ሺ݈ܶ݃݋ሻ. These bounds are set in such a way that the true value of the function is likely to fall 

within them. The breadth of these bounds is determined by a scaling factor that adjusts with the number of 

iterations, aiming to ensure a high level of confidence in the interval (Contal et al., 2013).  

2.4 Model and workflow 

In our research, we have implemented a sequential deep learning model consisting of Three main layers. The 

hidden layer is a densely connected layer employing the Rectified Linear Unit (ReLU) activation function. 

This choice is motivated by ReLU's ability to introduce non-linearity into the model while mitigating the 

vanishing gradient problem commonly encountered in deep networks (Glorot et al., 2011). The output layer is 

a dense layer with a single neuron utilizing a linear activation function. This configuration is standard for 

regression tasks where the goal is to predict a continuous outcome (Goodfellow et al., 2016). For training the 

network, we have selected the Adam optimizer. This optimizer is renowned for its computational efficiency 

and robustness, featuring adaptive learning rate adjustments, which are particularly advantageous for handling 

the sparse and noisy gradients that often arise in complex optimization landscapes (Kingma and Ba, 2014). Fig. 

2 illustrates the schematic workflow of this study.  

 

 

Fig. 2 Schematic workflow of the model development and evaluation. 

 

 

The data were collected and provided by the General Directorate of State Hydraulic Works in Türkiye. A 

data integration process was undertaken to compile a cohesive dataset, thoughtfully designed to align with the 

objectives of the study. Subsequently, the data were cleaned and scaled to minimize noise as effectively as 

possible. To determine the optimal hyperparameters for the model, we employed a Gaussian Process Upper 
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Confidence Bound (GP-UCB) Bayesian Optimizer. This optimizer was tasked with identifying the ideal 

number of neurons, learning rate, and activation function—a parameter we refer to as the activation index—to 

enhance the model's performance. The model was then trained using the hyperparameters optimized by the 

Bayesian approach. The performance of this Bayesian-optimized model was evaluated using the metrics 

described in the previous section and benchmarked against a model configured with default hyperparameters.  

2.5 Evaluation metrics 

Four evaluation metrics were employed to assess the performance of the models. The Mean Absolute Error 

(MAE) quantifies the average magnitude of the absolute errors between the observed and predicted values, as 

defined in Eq. 11. The Root Mean Squared Error (RMSE) is a metric based on squared differences, outlined in 

Eq. 12. The RMSE provides a scale-sensitive error measure by computing the square root of the Mean Squared 

Error, so it reverts the measurement to the same scale as the original data. The reason for choosing these 

metrics for evaluation of the models is their focus on the average sparseness without considering bias (Steurer 

et al., 2021). In this study, the Pearson correlation coefficient (PCC) was utilized (Eq. 13) to assess the 

robustness and the linear relationship between the actual and predicted values (Li et al., 2022).  

 

ܧܣܯ ൌ 
ଵ

ே
∑ ௡݌| െ  ௡|ே̂݌
௡ୀଵ     (11) 

ܧܵܯܴ ൌ  ට
∑ ሺ௣೙ି ௣ො೙ሻమಿ
೙సభ

ே
        (12) 

௫,௬ݎ ൌ  
∑ ሺ௫೔ି ௫ҧሻሺ௬೔ି ௬തሻ
೙
೔సభ

ට∑ ሺ௫೔ି ௫ҧሻమ
೙
೔సభ ି ට∑ ሺ௬೔ି ௬തሻమ

೙
೔సభ

      (13) 

 

 

3 Results 

3.1 Convergence analysis of the optimiser 

The convergence plot of the Bayesian optimiser used in this study is shown in Fig. 3 representing the 

performance of the optimiser over iterations. The target score used for evaluation of the performance of the 

optimiser is negative MSE. The reason for using the negative value of MSE is for the fact that Bayesian 

optimiser tend to maximise the target function (Snoek et al., 2012; Gabler and Wollherr, 2022). In other words, 

minimising the MSE results in proceeding the optimisation in a correct way so adopting the negative amount 

of MSE allows us to reach this goal. Therefore, in this Fig. 3, the lower the values of MSE, the better model 

performance, and vice versa. The initial phase of the plot is characterised by significant variations of target 

score with improvements and deteriorations between continuous iterations. Here, the optimiser undertakes the 

exploration. In this phase, the optimizer is sampling the parameter space to identify regions of high 

performance. Although spaces of high performance can be identified in between the fluctuations, the overall 

trend of this phase in downward. This suggests that over time, the optimizer is successfully finding 

hyperparameters that lead to better model performance (lower MSE). The plot indicates that up to around 

iteration 40, the models starts to converge. Although there is a significant fluctuation after iteration 40, the 

values of MSE are less negative compared to the initial values of MSE. This suggests that the optimizer has 

likely identified a region of the hyperparameter space that yields relatively good model performance and is 

fine-tuning within that region. When it comes to the stability of the convergence, the plot indicates that the 

stability is not achieved completely as the target scores have not fixed around a single value. This may suggest 

that the optimiser avails of several factors such as 1) more iterations, 2) different selection of hyperparameters, 

3) change in the acquisition function, and 4) adjustment to the exploration-exploitation (Bull, 2011; Orlando 
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Fig. 4 Loss plots of the validation: a) Loss plot of the Bayesian optimised model, b) Loss plot of the default model. 

 

 

3.3 Models’ performance analysis 

In this study, PCC, MAE, and MSE are considered as metrics to evaluate the performance of the models as 

shown in Table 1. Here, the higher PCC value of the Bayesian optimised model (0.955) compared to the PCC 

value of default model (0.74) suggest a stronger linear relationship between the actual and predicted values. 

Besides, Bayesian optimised model has a lower MAE value (0.454) compared to the default model’s MAE 

(1.049). This demonstrates that the Bayesian optimised model’s predictions are closer to the actual values on 

average. It is supported by the results of RMSE of the Bayesian optimised (0.643) and the default model 

(1.447) as the lower value of the RMSE of the Bayesian optimised model indicates more accurate predictions 

from the model.   

 

Table 1 Performance evaluation metrics of the models. 

 PCC MAE RMSE 

Default Model 0.74 1.049 1.447 

Bayesian-Optimised Model 0.955 0.454 0.643 

 

 

Fig. 5.a is the scatter plot of the actual against predicted values of DO for the default deep neural network 

model, that shows the relationship between actual and predicted values. This plot along with the PCC value of 

0.74 indicate a moderate positive linear relationship. The sparsity around the best-fit line indicates variability 

in the accuracy of the predictions. Fig. 5.b shows the residual plot of the default model, that is the differences 

between actual and predicted values plotted against the predicted values. An ideal residual plot is characterised 

by a random dispersity of the points around the horizontal axis at zero without any distinguished pattern. Fig. 

5.b indicates that residuals are centred around zero suggesting no bias, however, the noticeable sparsity 

indicates variability in prediction accuracy.   

 

  

(a) (b)
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Fig. 5 Default deep neural network model’s performance plots: a) Scatter plot of the actual vs predicted, b) Residual plot of the 

predictions. 

 

 

Fig. 6a shows the scatter plot of the actual against predicted values of DO for the default deep neural 

network model. High value of PCC (0.96) suggests an excellent linear relationship between the actual and 

predicted values. The tight cluster of data points around the best-fit line indicates that the Bayesian optimised 

model’s prediction are extremely close to the actual values. In Fig. 6b that illustrates the residual plot of the 

Bayesian optimised model, although there is some sparsity, there is no clear pattern or systematic deviation 

from the red dashed line at zero. This suggests that the model has no obvious biases in prediction across the 

range of values. 

 

 

(a)

 

(b)

 

166



Computational Ecology and Software, 2025, 15(4): 157-175 

 IAEES                                                                                     www.iaees.org

 

Fig. 6 Bayesian optimised deep neural network model’s performance plots: a) Scatter plot of the actual vs predicted, b) 

Residual plot of the predictions. 

 

 

In summary of the above analysis, Bayesian optimised deep neural network model outperformed the deep 

neural network model with default hyperparameters in terms of both linear correlation and residual distribution. 

The higher PCC value along with the random sparsity of the residuals suggest that the Bayesian Optimized 

model has a better fit to the data so better generalisation. The Bayesian optimized model's predictions does not 

only show great intimacy to the actual values but also indicates consistency across the range of predictions 

without systematic deviations. 

3.4 Models’ accuracy analysis 

Fig. 7 is provided to visually represent the distribution of residuals of the default deep neural network model. 

The distribution of the residuals (kernel density estimate line (KDE)) seems to be symmetrical normal 

distribution with central tendency around zero and tails extending roughly equally in both directions. This 

symmetry suggests that the model does not have systematic bias either overfitting or underfitting. It is 

indicated in the plot that roughly 68% of the residuals fall within the first standard deviation from the mean, 

and Approximately 95% of the data falls within two standard deviations from the mean that is consistent with 

the empirical rule. The residuals fall outside the acceptable confidence interval are considered outliers that 

significantly affect the accuracy of the model. As seen in the plot, the tails of the KDE extending on both sides 
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higher standard deviation in the diagram representing the default model (Fig. 11a), indicates that the 

predictions from this model are more sparse than the observed data. Conversely, the Bayesian-optimized 

model has a lower standard deviation (Fig. 11b), meaning its predictions are more closely clustered around the 

mean and better match the observed data's spread. What else justifies the positive impact of hyper parameter 

tuning in Bayesian-optimised model is the model’s closeness to the perfect correlation of 1.0, implying a better 

linear relationship between the predictions and the observed data compared to the default model. 

 

 
Fig. 11 Taylor diagram of the models: a) Taylor diagram of the default deep neural network model, b) Taylor diagram of the 

Bayesian-optimised deep neural network model. 

 

 

We have explored the optimum configuration space of three hyperparameters in this study (i.e. learning 

rate, number of neurons, activation index). The importance of selecting the optimum learning rate is due to its 

capability of converging a model. Too high learning rate may cause overshoot the minimum loss, leading to 

unstable training and divergence, and too low learning rate may require more epochs for convergence that can 

be time-consuming and computationally expensive (Bengio, 2012; Goodfellow et al., 2016). Number of 

neurons is another key elements in deep neural networks affecting models’ capacity, generalisation, training 

time, and overfitting (Bashiri and Farshbaf Geranmayeh, 2011; Bashiri and Farshbaf-Geranmayeh, 2013). 

Another key factor affecting the performance of neural networks is the activation function that enables the 

networks to capture non-linear relationships in the data (Johannes Lederer, 2021). The importance of proper 

selection of these hyperparameters clearly justifies the application of a Bayesian hyperparameter optimiser, 

and the findings of this study and other exemplary studies in the literature demonstrate the positive impact of 

tuning the hyperparameters in deep nets. For instance, Parsa et al. (2020), adopted a Bayesian optimiser for 

designing neural network accelerators efficiently. The results of this study shows the positive impact of 

multi-objective hyperparameter optimization by Bayesian optimiser on the performance of deep neural 

network models.  

Bayesian optimizers have a positive impact on the generalization performance of neural networks, yet they 

are not without limitations. A significant drawback is their computational complexity, which leads to 

resource-intensive models. This complexity stems from the need to evaluate the surrogate model at each 

iteration, which can be computationally demanding (Lu et al., 2023). Consequently, it raises the question of 

whether the benefits of employing a costly tool like Bayesian optimizers outweigh the drawbacks, or if 

alternatives should be considered. Despite these concerns, our study's findings affirm the value of Bayesian 
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optimizers for hyperparameter tuning. Optimal hyperparameter settings can markedly enhance the performance 

and accuracy of deep neural network models. Furthermore, Bayesian optimizers eliminate the need for 

time-consuming and error-prone manual tuning of the hyperparameter space through trial and error.    

 

5 Conclusions 

In this study, a DNN model was utilized to predict DO levels in riverine environments. The GP-UCB Bayesian 

optimization approach wasemployed to fine-tune hyperparameters, seeking the optimal configuration. We 

benchmarked the optimized model against a baseline model with default settings. The results illustrate that the 

Bayesian-optimized model significantly surpasses the baseline, especially with moderately sized datasets. 

Bayesian optimization has thus proven to be instrumental in enhancing model performance, offering strong 

generalization while greatly reducing manual tuning efforts. This successful application heralds a 

methodological leap in environmental management, advancing predictive modelling for aquatic ecosystem 

health indicators. 
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