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Abstract   

Existing cluster-based methods for investigating insect species assemblages or profiles of a region to indicate 

the risk of new insect pest invasion have a major limitation in that they assign the same species risk factors to 

each region in a cluster. Clearly regions assigned to the same cluster have different degrees of similarity with 

respect to their species profile or assemblage. This study addresses this concern by applying weighting factors 

to the cluster elements used to calculate regional risk factors, thereby producing region-specific risk factors. 

Using a database of the global distribution of crop insect pest species, we found that we were able to produce 

highly differentiated region-specific risk factors for insect pests. We did this by weighting cluster elements by 

their Euclidean distance from the target region. Using this approach meant that risk weightings were derived 

that were more realistic, as they were specific to the pest profile or species assemblage of each region. This 

weighting method provides an improved tool for estimating the potential invasion risk posed by exotic species 

given that they have an opportunity to establish in a target region. 
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1 Introduction 

Pre-emergence risk evaluation, that is, evaluating which species of insect crop pest are most likely to invade a 

geographic region (Worner and Gevrey, 2006; Zhang, 2010), can be carried out using data clustering (Paini et 

al, 2010; Watts and Worner, 2009).  

Data clustering (Everitt, Landau and Leese, 2001) is an important and widely used method of data analysis 

that groups similar items together into subsets, or clusters, made up of a number of elements where each item 

in a cluster is more similar with respect to its elements to the other items in the cluster than it is to items 

outside the cluster. By determining the cluster  which a geographical region, as represented by its species 

assemblage, belongs to, it may be possible to infer which pest species may become established in that region 

(Watts and Worner, 2009; Worner and Gevrey, 2006; Gevrey et al, 2006). Such inference is based on the 

concept that regions that have similar assemblages or species profiles are likely to have climatic or other 

environmental properties in common that allow the particular mix of species to establish. If the region of 

interest (the target region) in a cluster does not have a species present, yet that species is present in a large 

proportion of other regions in that cluster, then that region is likely to have an environment that is conducive to 



Computational Ecology and Software, 2011, 1(3):138-145 

 IAEES                                                                                                                                                                         www.iaees.org

the establishment of that species, if it were to be accidentally introduced or arrive by independent means in the 

target area. By measuring the frequency at which a species appears in a cluster, a quantitative “risk weighting” 

or “risk value” can be derived. This has previously been calculated as a simple unweighted arithmetic mean 

across all assemblages present in the cluster in which the target region appears (the “target cluster”) (Watts and 

Worner, 2009). An alternative clustering method is to use the weights from a self-organising map (SOM) 

analysis as a measure of the risk value (Gevrey et al, 2006). 

A significant criticism of this approach is that all assemblages in a cluster are considered equal. That is, if an 

assemblage is in a target cluster, then the contribution of that assemblage to the final species ranking is the 

same as all other assemblages in that cluster, no matter the actual degree of similarity of that assemblage to the 

assemblage associated with the target cluster. A consequence of this is that the species risk weightings of all 

species for all regions in a cluster are equal. Equal similarity of all species assemblages in a cluster is of course 

not realistic.  

The work presented in Watts and Worner, (2009) demonstrated that, for the task of clustering a specific 

database of insect pest assemblages (CABI, 2003), k-means clustering (Lloyd, 1982) produced similar clusters 

that were of superior quality to those produced by Kohonen Self-Organizing Maps (SOM) (Kohonen, 1990) as 

determined by objective cluster measures. Additionally, its computational efficiency was many orders of 

magnitude greater than that of a SOM. These clusters were used to produce ranked risk-lists of the species 

posing the greatest threat of invasion to New Zealand. Because of its good performance on this dataset and its 

computational efficiency, k-means was used for the analysis in this study. 

The motivation for the work described in this paper was to address the criticism above by weighting 

contributions of the final species risk values by the similarity of each member of the target cluster to the target 

regions assemblage. The clusters produced by the k-means algorithm in Watts and Worner (2009) above were 

reanalysed using weighting factors for the assemblages and clusters, and new risk lists produced that are 

specific to New Zealand. The ranks of species within these risk lists were then compared to the original ranks 

and to the species ranks of another region, Tasmania, which was clustered within the same cluster as New 

Zealand in the previous analysis, so that any differences resulting from the weighting became apparent. 

 

2 Method 

2.1 Generating the original clusters 

Here we briefly describe the data and methods used to generate the source clusters. For a comprehensive 

description of these methods, please see Watts and Worner, (2009).  

The data that was clustered in this work was sourced from the CABI Crop Protection Compendium 2003 

(CABI, 2003). The data described the presence and absence of 844 phytophagous crop pest species within 459 

geopolitical regions, which represented the entirety of the world’s landmass, excluding Antarctica. Each region 

was thus represented by an 844 element binary vector, where each element represents the presence (1) or 

absence (0) of a species. Species were included in the data set only if they were present in more than 5% of the 

geographic regions. The species assemblages were verified as non-random via null-model analysis (Gotelli, 

2000) and k-means clustering (Lloyd, 1982) was performed. One thousand independent k-means clustering 

sessions were carried out. While Kohonen SOM (Kohonen, 1990) was also investigated in Watts and Worner 

(2009), that work determined that k-means yielded superior results. That is, for this data set, k-means yielded 

clusters of superior quality as measured by objective cluster measures, compared to SOM. Therefore, the SOM 

results were not re-examined in this work. The weighting technique presented here, however, makes no 

assumptions about the clustering algorithm used and can be applied to the results of SOM or any other 
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clustering method. The method also does not make any assumptions about the species being clustered: while 

most of the published material so far has been on insects, recent work (Watts, 2011) has shown that it can also 

be applied to assemblages of bacterial crop diseases. No work has yet been done, however, on mixed 

assemblages, for example, assemblages of plants and insects. 

2.2 Generating risk lists 

The goal of the experiments reported here was to generate using k-means clustering lists of insect pest species 

that were ordered according to the risk they pose to the target region, which in this case was New Zealand. 

There appears to be no reason this method could not be applied to other regions, and a SOM-based version of 

this technique has since been applied to Australia (Paini et al, 2010). New Zealand was chosen as the target 

region because the research was carried out at a New Zealand university, partially funded by a New Zealand 

government grant. The fundamental assumption made with this technique is that regions that have similar 

environmental conditions will probably have similar species assemblages. Therefore, the risk of a species 

establishing can be determined from the frequency at which it appears in assemblages that are similar to the 

target assemblage: a higher frequency means it is present in more regions, which means it is more able to 

establish in regions that are similar to the target region. The work reported in Paini et al (2010) found a high 

level of concordance between the ranks derived using this method and the ranks assigned to species by domain 

experts. The algorithm for finding risk rankings from clusters is based on that assumption, and is as follows: 

 for each trial  

o find the cluster the target region is in (the target cluster)  

o identify all regions that are in the target cluster (the neighbour regions)  

o calculate the frequency each species appears in the target cluster, where the frequency is the 

mean of species presence across the assemblages belonging to the neighbour regions (the risk 

weightings)  

o use these frequencies to calculate the ranks of each species, where higher-frequency species 

rank more highly than species with lower frequencies  

 calculate the mean of the ranks for each species  

 order species by their mean ranks  

The conceptual diagram in Fig. 1(a) shows how the risk factors are derived from the assemblage clusters. 

Rankings are assigned in descending order1. Species with the same risk values are given an average ranking. 

For example, if three species with the same risk values are ranked 18, 17 and 16, each will be given the rank of 

17, and the following species assigned the rank 15 (unless that species also shares a risk value with other 

species). The final rankings are determined as the mean of the ranked risk-lists from each of the clustering runs. 

It should be self-evident that this algorithm will assign a higher mean rank to species that appear more 

frequently in the same cluster as the target region. 

Generating risk weightings by this method results in rankings that are the same for all regions in the cluster. 

That is, the risk ranking assigned to each species is the same for each region in the target cluster, no matter 

how similar or dissimilar the species profile or the environment in that region is to that of the target region. 

This problem can be addressed by weighting the contribution each assemblage makes to the risk factors. 

 

                                                        
1This is for consistency with the previous work (Watts and Worner, 2009; Worner and Gevrey, 2006). Obviously, ranks could be 

assigned in ascending order without affecting the results presented here beyond high-risk species getting lower ranks than low 

risk species. Assigning ranks is descending order is clearer, however, as a high risk equals a high rank in the final risk list. 
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Weighted risk lists were generated by applying weighting factors to the species assemblages present in the 

target cluster for each rep, then calculating the unweighted mean risk values across all of the reps (that is, 

weighting the assemblages). This process is shown in conceptual form in Fig. 1. The weights applied to the 

assemblages were the inverse of the Euclidean distance between each assemblage and the target assemblage, 

that is, assemblages that were more similar to the target assemblage contributed more to the risk weighting 

than assemblages that were less similar to the target assemblage. While any similarity measure could have 

been used to generate weighting factors (such as Jaccard similarity, Manhattan distance or the simple similarity 

coefficient (Krebs, 1999)), Euclidean distance was used because this was the measure used to perform the 

clustering.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Conceptual diagram of risk value calculation process. In (a) unweighted values are found as the centres of clusters. In (b) 
risk values are weighted towards the NZ (New Zealand) region. In (c) risk values are weighted towards the AUta (Tasmania) 
region. 

 

 

The weighted mean  was calculated according to Equation 1:  

    (1) 

where,  is the presence or absence of species i is the current cluster, where presence is represented by unity 

and absence by zero, and  is the weighting factor applied to the assemblage. As mentioned above, the 
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weighting factor was the inverse of the Euclidean distance between the current and target assemblage, as in 

Equation 2:  

              (2) 

where  is the Euclidean distance between assemblage i and the target assemblage t. 

2.3 Comparison with neighbour regions 

In the k-means clustering reported in Watts and Worner (2009), the region other than New Zealand that 

appeared the most in the target cluster was Tasmania. Since the major criticism of the unweighted risk-

generation approach was that every region in the target cluster has the same risks derived, a comparison was 

carried out between the weighted risks for New Zealand and the weighted risks for Tasmania. Ranks were 

derived for New Zealand and Tasmania only using clusters where both New Zealand and Tasmania were 

present. That is, trials where Tasmania was in a different cluster to New Zealand were excluded. This was to 

eliminate any species risk variation that would have arisen from comparing different clusters: any differences 

between the final weighted ranks were therefore entirely due to the weighting method2. The conceptual 

diagrams in Figures 1(a) and 1(b) illustrate how the risk factors are made region-specific. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Euclidean weighted ranks vs. unweighted ranks. The line represents 1:1 agreement 

 

                                                        

2Since Tasmania was occasionally in a different cluster from New Zealand, the rankings for Tasmania over all clustering trials 

would have been slightly different anyway. However, some clustering algorithms such as Kohonen Self-Organizing Maps 

(Kohonen, 1990) are often only run once (Paini et al, 2010). The region weighting technique described here, as demonstrated on 

k-means clustering, is useful for producing distinct risk weighting from other clustering algorithms. 
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3 Results 

Since the ultimate goal of this work is to produce lists of species that threaten geographic regions, species 

ranks are presented in these results, rather than the absolute risk weighting values. The species ranks resulting 

from weighted risks are compared to the original, unweighted ranks in Fig. 2. The gaps in the lower left-hand 

corner of this plot are caused by groups of species being assigned mean ranks, that is, several species having 

the same rank. To quantify the difference between the ranks, the species were divided into groups by 

inspection and the mean difference between the species in each group found. The results of this are in Table 1. 

The weighted ranks for Tasmania are plotted against the weighted ranks for New Zealand in Fig. 3. Since 

these regions appear in the same cluster, the original, unweighted risk algorithm assigned identical species risk 

ranks to both regions. From Fig. 3, however, it is plain that using weighted ranks has produced clearly 

differentiated risk lists for the two regions, especially with the top-ranked species. The differences between the 

two sets of species ranks were again quantified by finding the mean difference between species in each group. 

The results of this are presented in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Tasmanian species ranks vs. New Zealand species ranks. The line represents 1:1 agreement 

 

Table 1 Mean difference between groups of weighted and unweighted species ranks 

Ranks Mean difference 

700-800 14.6 

650-699 41.14 

500-649 10.29 

400-499 7.53 

300-399 0.53 
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Table 2 Mean difference between groups of New Zealand and Tasmanian species ranks 

Ranks Mean difference 

710-830 18.17 

501-709 15.79 

401-500 0.97 

300-400 0.06 

 

 

4 Discussion 

Ranks from weighted risks are plotted in Fig. 2. While there is some scattering of the ranks around the middle 

region, there is a large upwards shift at the upper-right of the plot. The results in Table 1 show that the largest 

difference in ranks were between the species in the 650-700 ranked group, where the ranks are the original, 

unweighted ranks. This was followed by the species in the 700-844 ranked group. Lower ranked species had 

their ranks changed much less. This is logical as regions that are more like the target regions will be assigned 

to the target cluster more often. Weighting by similarity to the target region is therefore acting like a “booster”3 

to the risk evaluation process, amplifying the effect of the clustering. 

The results of comparing the weighted risks of New Zealand and Tasmania are plotted in Fig. 3. This shows 

that while there are some very similarly ranked species at the top and bottom ranks, there are many species that 

are more highly ranked for Tasmania than they are for New Zealand, and vice versa. The largest difference in 

ranks was for species ranked 710-844, where the ranks were the original ranks. The mean differences between 

the lower ranked groups were much smaller. Thus, the weighting method has clearly produced risk ranks that 

are specific to the individual regions, despite those regions clustering to the same cluster. It should be borne in 

mind that only clusters that contained both Tasmania and New Zealand were used to generate these risk ranks. 

Therefore, the unweighted ranks were identical for these two regions and the weighted ranks-specific to each 

region. 

Validating the results of this kind of risk analysis is very difficult. Controlled experiments introducing pests 

into a new environment are of course out of the question. Reports of incursions that have occurred 

subsequently to the compilation of the data used in the clustering can be useful, but these reports are sporadic 

and depend not only upon the detection of the invader but also upon the cooperation of the reporting agency. 

Expert opinion of the risks of pests invading tend to be highly subjective or biased (Burgman, 2005), which 

limits their utility as a comparison. However, some support for this method can be garnered from the example 

of Chrysomphalus aonidum, which is commonly known as the Florida Red Scale. This pest was in the top 

twenty of the threat lists in Watts and Worner (2009), and was detected in Auckland, New Zealand, in 2004 

(Gill, 2005). It is since believed to have been eradicated by New Zealand biosecurity. Another example is 

Ceratitis capitata, the Mediterranean fruit fly. This species was also highly ranked in Watts and Worner 

(2009), and is frequently intercepted by New Zealand biosecurity. An established population of C. capitata 

was eradicated in 1996 (Gevrey et al, 2006). 

Although these techniques were applied to the results of k-means clustering, they could be applied to the 

outputs of any clustering algorithm. Even if a single clustering run is carried out (such as in Paini et al (2010), 

where a Kohonen SOM (Kohonen, 1990) was used to perform the clustering), weighting of the neighbour 

regions can assist by producing results that are distinct for each region. Weighting factors could also be 

derived from abiotic factors, such as the similarity of regional climates or even information on trade between 

                                                        
3This should not be confused with the statistical technique of “boosting” 
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regions. Including abiotic factors could improve the accuracy of the risk assessment process and will be the 

basis of future work. 

 

5 Conclusion 

The paper has presented a method of producing highly region-specific species invasion risk rankings from 

clusters of regional species assemblages. This was achieved by weighting the contribution of each assemblage 

within the same cluster as the region of interest.  

In a case study re-analysing the previously published results of k-means clustering, weighting the 

contributions of assemblages by the Euclidean distance between those assemblages and the target assemblage 

produced regional risk lists that were clearly differentiated. A comparison of the ranks assigned to species for 

New Zealand and Tasmania, two regions that were frequently assigned to the same cluster, showed that the 

weighting method is capable of producing clearly differentiated risk rankings for individual regions.  
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