
Computational Ecology and Software, 2012, 2(3):140-159 

 IAEES                                                                                                                                                                         www.iaees.org

Article 

 

A novel approach for modeling malaria incidence using complex categorical 

household data: The minimum message length (MML) method applied to 

Indonesian data  
 

Gerhard Visser1,  Pat Dale2,3, David Dowe1, Ermi Ndoen2, Mike Dale2, Neil Sipe2,4 

1Clayton School of I.T., Monash University, Clayton, Victoria, Australia 

2Griffith School of Environment, Griffith University, Queensland, Australia 

3Environmental Futures Centre 

4Urban Research Program 

E-mail: p.dale@griffith.edu.au 

 

Received 24 July 2012; Accepted 30 July 2012; Published online 1 September 2012 

IAEES 

 

Abstract  

We investigated the application of a Minimum Message Length (MML) modeling approach to identify the 

simplest model that would explain two target malaria incidence variables: incidence in the short term and on 

the average longer term, in two areas in Indonesia, based on a range of ecological variables including 

environmental and socio-economic ones.  The approach is suitable for dealing with a variety of problems such 

as complexity and where there are missing values in the data. It can detect weak relations, is resistant to over-

fitting and can show the way in which many variables, working together, contribute to explaining malaria 

incidence. This last point is a major strength of the method as it allows many variables to be analysed. Data 

were obtained at household level by questionnaire for villages in West Timor and Central Java.  Data were 

collected on 26 variables in nine categories: stratum (a village-level variable based on the API/AMI categories), 

ecology, occupation, preventative measures taken, health care facilities, the immediate environment, household 

characteristics, socio-economic status and perception of malaria cause. Several models were used and the 

simplest (best) model, that is the one with the minimum message length was selected for each area. The results 

showed that consistent predictors of malaria included combinations of ecology (coastal), preventative (clean 

backyard) and environment (mosquito breeding place, garden and rice cultivation).  The models also showed 

that most of the other variables were not good predictors and this is discussed in the paper. We conclude that 

the method has potential for identifying simple predictors of malaria and that it could be used to focus malaria 

management on combinations of variables rather than relying on single ones that may not be consistently 

reliable. 
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1 Introduction  

Similar to Chikungunya and Dengue (Radhika et al., 2011; Ramathilaga et al., 2012), malaria is a disease of 

the tropics and subtropics. It is a global problem, endemic in 106 countries with an estimated 3.3 billion people 

at risk of malaria in 2010. In 2010 there were 216 million cases of malaria world wide, with an estimated 
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655,000 deaths (World Health Organisation, 2011). In Indonesia around half the population lives in malarious 

areas SEARO (2010).  

The pathogens, species of Plasmodium, are transmitted by mosquitoes of the genus Anopheles. Although 

most research on malaria has been carried out in Sub-Saharan Africa, malaria is important in south-east Asia. 

The ecology of malaria is complex. Research over several areas in Indonesia has shown that its relationship 

with environmental variables (biophysical and socio-economic) is spatially and temporally heterogeneous 

(Dale et al., 2005). Most other studies are area-specific within Indonesia (e.g., Anthony et al., 1992; Baird et 

al., 1996; Barcus et al., 2002; Syafruddin et al., 2006; Syafruddin et al., 2007). 

Control of malaria often focuses on control of mosquitoes either by excluding them from contact with 

people using insecticide treated nets (ITNs) or by indoor residual spraying (IRS) of insecticide WHO (2009).  

It is difficult to relate specific mosquito control activities to malaria incidence, although mosquito control in 

parts of Australia has been shown to be related to the incidence of Ross River virus, also a mosquito-borne 

disease (Tomerini et al., 2011). This paper is about a novel modeling method applied to the incidence of 

malaria, an increasing field of research. McKenzie (2000) reviewed malaria modeling, noting that since 1928 

there have been many modeling approaches focussing on malaria. More recently, a simple internet search 

(March 2012) for ‘malaria’ and ‘model’ in the title found 358 references in the refereed literature dating from 

1974. Of these there were 67 that related specifically to models of malaria incidence, as opposed to treatment 

and other modeling approaches, and 60% were published since 2005 (Dale unpublished data). Smith and 

Ruktanonchai (2010), in their review, note that the early mathematical models of malaria transmission remain 

useful conceptually but have some important shortcomings. They need to be applied to real systems and 

extended to find new ways explain malaria incidence.  Malaria presents a complex problem, with a variety of 

anopheline mosquito vectors in a wide range of habitats and transmitting the disease via several related 

pathogens of which Plasmodium falciparum is the most serious. This is a complex area and models are 

powerful tools to assist the understanding of complex issues, to integrate information from different areas. This 

has been facilitated by advances in computer modeling that extend traditional analytic approaches (McKenzie, 

2000). Modeling malaria can help identify the variables that are important to its incidence and has potential 

application in disease management. 

That modeling is important to understanding malaria is evidenced by the range of approaches in the 

modeling literature. These include disease dynamics such as transmission, vector/disease relationships with 

environment (especially with climate) as well as more detailed clinical studies, vaccine development, 

entomologic modeling of vectors and genetic research.  

Mathematical disease models for malaria may consider the dynamics (Tumwiine et al., 2007) or 

transmission (Ishikawa et al., 2003) including entomological parameters (Vargas-De-Leon, 2012) or 

transmission and resistance (Smith et al., 2007). Mathematical models may extend to a broader range of 

variables. For example Gu et al., (2003) modelled Plasmodium falciparum transmission using both 

epidemiological and entomological data. In a different ecological context, Ballesteros and Qiu (2012) have 

used a machine learning technique to model change in (location of) land use. MML is a mathematical 

technique from Bayesian information theory.” 

There are several approaches that are used to model malaria. Recent examples include Bayesian methods 

(Gosoniu et al., 2010; Riedel et al., 2010). Also there are more complex arrangements such as using Bayesian 

modeling with Markov Chain Monte Carlo (MCMC) techniques and both generalized linear models (GLM) 

and generalized additive mixed models (GAMM) (Nkurunziza et al., 2010). The interest here is in the very 

complex area of environmental modeling, using a combination of biophysical and socio-economic and 

behavioral variables. This complex area of malaria research needs to be explored, using powerful computers 
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and innovative analytic tools. An early paper by Jones and O’Neill (1993) modelled malaria using land use and 

population as independent variables in the Brazilian Amazon. Ngawa and Shu (2000) developed a 

mathematical model of endemic malaria using human population and mosquitoes and deterministic differential 

equations with variable human and mosquito populations. More recent research has shown how a range of 

environmental factors can be used to model malaria at relatively high resolution (at sub district level in Malawi, 

Africa) using regression analysis (Kazembe, 2007). The most comprehensive model is the conceptual one of 

De Vries and Martens (2000) that includes both biophysical and socioeconomic variables, though, as far as the 

authors are aware, it has not been fully implemented. Nevertheless it is a useful model. 

An innovative approach that has been used in other areas is that of using a Minimum Message Length 

(MML) criterion to select the best model (see for example (Dowe, 2008;  Dowe et al., 2007)). It has never been 

published in the malaria modeling literature and so we explore its use here. It is more fully described below.  

Complex systems need innovative modeling techniques to discover the most appropriate (best fit) model. 

Clustering can suggest groupings of like things and MML can evaluate the best fit, based on the shortest 

message length needed to describe the model.  

This paper develops a model using MML to discover the best model to explain malaria incidence. The 

modeling is optimized using the Minimum Message Length (MML) principle of machine learning and 

inductive inference (Wallace and Boulton, 1968; Boulton and Wallace 1973; Wallace and Dowe, 1999; 

Wallace, 2005; Dowe, 2008, 2011). It is statistically invariant (meaning that transforming the co-ordinates 

does not affect the answer) and it is resistant to noise, (a common problem with ecological data); it generates 

simple models that predict well (Comley and Dowe, 2003; Comley and Dowe, 2005; Dowe et al., 2007) and it 

is useful in several different tasks where model uncertainty is important (Dale and Dale 2004). MML is a 

method which involves both model and fit.  MML uses a two-part message, the first part of which encodes the 

model (and whose length is the complexity of the model) and the second part of which encodes the data, given 

the model (and whose length is the log-likelihood of the data given this model).   A more complex model is 

only acceptable if the extra ‘cost’ (measured by message length) of specifying the model gives an increase in 

the fit to data sufficient to reduce the overall message length. It is thus an implementation of Ockham's Razor 

(Needham and Dowe, 2001; Dowe, 2011, sec. 4). 

 

2 Methods 

2.1 Data collection 

Data were collected by household in villages in two provinces which both had endemic malaria. These were 

West Timor and Central Java (Fig. 1). The villages were selected by stratified random sampling, subject to an 

access constraint. Stratification was based on malaria status (incidence of malaria – high or medium) and village 

topographic character: coastal, hilly or highland topography, which is related to the distribution of various 

mosquito vectors of malaria in the area (Ndoen, 2010).  

Malaria incidence data were collected at the district health office, based on the monthly routine 

surveillance data reports from health centres. These were assigned to two malaria status categories (High or 

Medium) based on the Annual Malaria Incidence (AMI) or the Annual Parasite Incidence (API).  

The main data used here were 26 attributes, in nine categories, as shown in Table 1. They were selected 

from 67 attributes collected in a broader household survey (Ndoen, 2008). The selection was based on 

variables identified as important in the literature and identified by Ndoen (2008). Data were collected by 

interview, using a semi-structured questionnaire. Trained health centres staff conducted the interviews. One 

day training was provided for the interviewers prior to data collection. The trainings were conducted in health 

centres or in district health offices.   The sampling unit was household or family, selected systematically. There 
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were 529 households (respondents); 339 in West Timor and 190 in Central Java. Each respondent was an adult 

family member (18 years old or older), preferably the head of household. Information was obtained about the 

independent variable: recent malaria history and that of the family over the previous year. Dependent variables 

were the 26 variables in nine categories, referred to above (Table 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Location of the study areas 

2.2 Aim of the modeling 

Our aim is to use the data in a predictive model of the incidence of malaria in house-holds. Table 1 summarises 

each attribute in 9 categories.  All attributes are either binary or ordinal. 

Malaria incidence (in a house-hold) is represented by two target variables.  The first is the recent malaria 

ratio (Recent Ratio), which is the average number of malaria cases per house-hold member during the last 

three months.  The Recent Ratio is an objective measure of malaria incidence in the recent past.  The second 

target variable (Av. Malaria) is a subjective estimate of how often a household had malaria in the previous year. 

The challenges in modeling the link between these attributes and the incidence of malaria (our two target 

variables) include that: 

 there are many attributes compared to the number of respondents 

 there are many missing values 

 many attributes are not independent of each other 

 several attributes may interact with each other in complex ways to affect malaria incidence 

Our methods must therefore: 

• deal appropriately with missing data  

• be able to detect weak relations 

  • be resistant to over-fitting 

  • have a solid foundation in Bayesian probability theory 

  • be able to handle the high ratio of attributes to respondents 

  • be able take advantage of the relations between attributes 

        • take into account the fact that all attributes affect the incidence of malaria simultaneously (We do not 

want to look at the relations between malaria incidence and each attribute separately.  We are instead 
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interested in complete models that show how all attributes work together to contribute to malaria 

incidence.) 

       • produce results that are easy to interpret 

• be able to select between models of different complexities 

 

 

Table 1 Attributes selected for analysis 

Category Attribute Name Description 

Stratum Stratum malaria stratum of the respondents village 

Ecology Highland . 

Ecology Hilly . 

Ecology Coastal . 

Occupation Farmer . 

Occupation Fisher . 

Occupation Other true if not fisher or farmer 

Preventative Measures Clean Backyard frequency of cleaning backyard  

Preventative Measures IRS indoor residual spraying  

Preventative Measures Long Sleeve Use wearing covering clothing 

Preventative Measures Bed-net Ratio ratio of house-hold members using bed-nets 

Health Care Facilities HF Access ease of access the health care facilities 

Health Care Facilities Distance HF distance to the nearest health care facility 

Immediate Environment Pond presence of a pond near the home 

Immediate Environment Rice Field presence of a rice field near the home 

Immediate Environment Breeding Place presence of a potential mosquito breeding place  near 
the home 

Immediate Environment Paddock presence of a paddock near the home 

Immediate Environment Garden presence of a garden near the home 

Immediate Environment Bushes presence of bushes near the home 

House-Hold Toilet indoor or outdoor 

House-Hold Lighting electric or non-electric 

House-Hold Cooking Fuel cooking fuel 

House-Hold Wall type of walls in home 

House-Hold HH Members number of people in the house-hold 

SES SES socio-economic status 

Perception Perception Accuracy of respondent’s perception of malaria and its 
causes 

 

 

2.3 Description of the model  

2.3.1 Two Bayesian network models 

We use customised Bayesian network models (also known as directed graphical models) for the analysis. The 

idea of using MML for hybrid Bayesian network models with both discrete (categorical) and continuous-
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valued attributes was discussed in Dowe and Wallace (1998) before then being first implemented in Comley 

and Dowe, (2003 and 2005), with discussions in Tan and Dowe (2004, sec. 5), Wallace (2005, sec. 7.4), Dowe 

(2008, sec. 0.2.5) and Dowe (2011). 

The minimum message length (MML) principle is used to encode the discrete structure of the Bayesian 

network and point estimates of the weights of parameters on network arcs - all of which is encoded in the first 

part of the two-part MML message, with the second part encoding the data given this Bayesian network 

model.  The total two-part message length gives a measure of goodness of the suitability of the model, trading 

off the length of the first part of the message (model complexity) with the length of the second part of the 

message (goodness of fit to the observed data). 

The nodes of our Bayesian networks fall into three categories. 

I. Target: These nodes each represent a vector of observed values for one attribute, which is to be 

explained (Av. Malaria and Recent Ratio). 

II. Input: These nodes each represent a vector of observed values for one attribute which is not to be 

explained but is used to explain the target variables (e.g., causes of malaria). 

III. Hidden: These nodes each represent a vector of unobserved values, which are inferred. 

The arrows in Figs. 2 and 3 (below) represent conditional independences and are examples of two models.  

Red nodes (at the top of level) are used to represent targets, black nodes (at the base) for inputs and blue nodes 

(in the middle level) for hidden.  Below is an example of what we are calling a Type C network diagram 

(Figure 2).  In Fig. 2 there are 4 input attributes (x1, x2, x3, x4) and 2 targets (y1, y2).  A single parameter is 

associated with each arrow.  All parameters take values between -1 and 1.  Similarly the observed input 

attributes and target variables have been mapped onto a discrete set of values between -1 and 1.   A positive 

value for p1 in this example would mean that x1 tends to increase y1 while a negative value for p1 would have 

the reverse effect.  The strength of this influence depends on |p1|.  The influences of separate arrows to a 

single node are combined. The inferred parameter vector p would show how the 4 inputs combined influence 

the target y1.   We will refer to this type of network as Type-C. 

 

 

 

Fig. 2  A Type C network 

 

Observed 

Inputs 

Example Type-C Network 

Observed 

Target 

y1

x1 x2 x3 x4

p4 p1 p2 p3 

y2
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By creating intermediate (hidden) nodes our models can express more complex relations.  We will refer to 

this type of network as Type-A. We will use names such as A1, A2 and A3 to refer to such networks with 1, 2 

and 3 hidden nodes or features respectively. The name A0 will be used for the case where there is assumed no 

link between inputs and target.  A0 can be thought of as a null hypothesis. Model A2 is illustrated in Fig. 3.  

As with the C model all parameters take values between -1 and 1. The influence of the input variable x on the 

target variable y via the hidden feature h is such that negatives between both x and h and between h and y lead 

to a positive influence on y and a negative in one with a positive in the other has a negative influence on y. 

This is demonstrated later in the results.  

 

      

 
Fig. 3 A type A-2 network 

 

2.3.2 Parameters and prior probabilities (priors) 

Bayesian prior probabilities are assigned to all parameters to be inferred.  In Figs. 2 and 3 we have mentioned 

that there is a parameter associated with each link depicted.  Aside from these link parameters there is also 1 

parameter associated with each input node, 2 parameters associated with each target node and 1 for each 

hidden node.  These additional parameters are necessary to make the networks flexible enough to represent the 

types of relations expected. Here it is sufficient to look at only the link parameters to interpret our results. 

For the type-C network (with 26 input nodes and 2 target nodes) there are 82 = (26 + 4 + (26*2)) 

parameters.   For the type-A1 network there are 59 = (26 + 1 + 4 + (26 + 2)).   For the type-A2 network there 

are 87 = (26 + 1 + 4 + (26+2)*2).   For the type-A3 network there are 117 = (26 + 3 + 4 + (26+2)*3).  Clearly 

estimating this many parameters reliably (without over-fitting) is quite difficult considering that we only have 

529 respondents and also because the relation between input nodes and target nodes is, in our data, relatively 

weak.   

We do not want to look at the relations between malaria incidence and each attribute separately. We are 

instead interested in complete models that show how all attributes work together to contribute to malaria 

incidence. The problem with this is that there are a huge number of distinct and very different solutions 

(instantiations of all parameters).  Given enough data it is, in theory, possible to narrow the solution down to a 

single best network structure and accompanying point estimates.  However we do not have that much data. 

Our solution here is to infer a large set of typical solutions.  While each solution by itself is hard to 

interpret due to the nature of the models used, by looking at commonalities between members of the inferred 

hh
Hidden 

features 

Example Type-A2 

Observed 

Target 

y1 

x1 x2 x3 x4

Observed 

Inputs 

y2
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set of solutions, one can come to some solid conclusions.  For each link parameter we calculate a mean and 

standard deviation over all the values it takes in the solution set.  A high standard deviation indicates that the 

value of a link parameter depends a lot on the values of other parameters.  A low standard deviation means the 

influence of that parameter depends little on the effects of other parameters.  This allows us to isolate those 

input attributes that have a consistent relation with malaria incidence even when the effects of all other 

attributes are taken into account. 

The problem of having many parameters can be further alleviated by assigning strong priors to all 

parameters.  Our prior over the parameters gives a strong preference to solutions which set most of the 

parameters to zero (so that those links have no effect) and some preference to values with low magnitude (so 

that those links have little effect).  This prior reduces the uncertainty about the solution, allowing more to be 

accomplished with less data.  It also has the added bonus of giving preference to solutions that are simpler and 

easier to interpret. 

The reader may have noticed that these models have a lot in common with artificial neural-networks.  

While they function in a similar way, our models are strictly Bayesian networks with complete priors defined.  

This design is intended to be correct in terms of Bayesian modeling and to make solutions (point-estimates) 

less sensitive to small changes in parameter values. 

2.3.3 Analysis setup 

Table 2 shows the 26 input attributes and the values they take. The two target variables are shown at the end of 

the table.  All values have been mapped to real values between -1 and 1 to be used by the program. 

We have used models A0, A1, C, A2 and A3 on the data for Central Java and West Timor to infer point 

estimates of all parameters.  Message lengths were used to select the best models: that is, those models with 

the minimum lengths.  This was applied to responses from both provinces (West Timor, Central Java) 

separately.  That was done because we expect each area to be distinct enough to have different characteristics 

where cause of malaria is concerned. West Timor has a greater malaria problem, with year-long transmission, 

whereas the problem is less in Central Java (Ndoen et al., 2011), although malaria is endemic in both areas. 

 

3 Results 

3.1 Results of modeling 

The results generally found that an A type model had the shortest message length and hence is the preferred 

one. The results presented below show both the A and C model only where there were useful predictors. That 

is where connecting link parameters had means of absolute value greater than 0.10 and standard deviations less 

than 0.3. The most consistent predictors were determined by having a small standard deviation compared to the 

mean (a mean of absolute value greater than 0.10 and a standard deviation (SD) of less than half the mean). 

The message length is measured in nits, where 1 nit (of information) = log2 (e) bits approx. 1.4427 bits. 

3.2 Results for Central Java   

The analysis of 190 respondents from Central Java found that model A1 provided the best explanation of the 

target variables (Table 3). Model C provided no consistent predictors of malaria and will not be considered 

further here. 
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Table 2 Attributes and values 

Attribute Name Possible Values Transformed  
Values Used 

Stratum (village malaria) 
t t )

Medium, High -1, 1 

Highland (ecology) False, True -1, 1 

Hilly (ecology) False, True -1, 1 

Coastal (ecology) False, True -1, 1 

Other (occupation) False, True -1, 1 

Farmer (occupation) False, True -1, 1 

Fisher (occupation) False, True -1, 1 

Clean Backyard 1,2,3,4,5 (ordinal categories, 1 = never) -1, -.5, 0, -.5, 1 

IRS 1,2,3,4,5 (ordinal categories, 1 = never) -1, -.5, 0, -.5, 1 

Long Sleeve Use 1,2,3,4,5 (ordinal categories, 1 = never) -1, -.5, 0, -.5, 1 

Bednet Ratio 1,2 (ratio, 1 means more nets) -1, 1 

HF Access 1,2 (walking, motorbike) -1, 1 

Distance HF 1,2,3 (<1km,1-2km,>2km) -1, 0, 1 

Pond False, True -1, 1 

Rice Field False, True -1, 1 

Breeding Place False, True -1, 1 

Paddock False, True -1, 1 

Garden False, True -1, 1 

Bushes False, True -1, 1 

Toilet 1, 2 (1 separate, 2 own) -1, 1 

Lighting 1, 2 (1 kerosene, 2 electric) -1, 1 

Cooking Fuel 1, 2 (1 wood, 2 stove) -1, 1 

Wall 1, 3 (1 brick, 3 bamboo) -1, 1 

HH Members 0-1, 1-2, 3-4, 5-7, >7 -1, -.5, 0, .5, 1 

SES Low, Med, High -1, 0, 1 

Perception (of malaria) Wrong, Right -1, 1 

Ratio Recent (is a Target) 0-.1, .1-.4, .4-.6, .6-.8, >.8 -1, -.5, 0, .5, 1 

Average Malaria (Av Mal- is 
a Target) 

1,2,3,4,5 (ordinal categories) -1, -.5, 0, .5, 1 

 

 

Table 3 Models for Central Java (best model is in bold) 

Model Best Message Length (nits) 

A0 247
A1 230* 

C 238 

A2 234 
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3.3 Model Type-A1 for Central Java 

Fig. 4 shows the means and standard deviations of the inferred link parameters for nodes that had predictor 

value (where connecting link parameters have means of absolute value greater than 0.1 and standard deviations 

less than 0.3 (or less than half the mean for most consistent predictors). 

 

 

 
Fig. 4 Results of the Model A1 Central Java showing mean (SD) 

 

3.4 Consistent predictor attributes  

The most consistent predictor was the presence of a garden with a positive relationship. That is, both recent 

malaria and average malaria were positively related to a household having a garden.  Having a clean backyard 

and being near rice fields were useful predictors and were also related to increased malaria incidence. 

3.5 Results for West Timor 

The analysis of the 330 respondents in West Timor also resulted in the A1 model providing the best 

explanation. The best message lengths are shown in Table 4. Model C, although not the best model, did 

contain some consistent predictors and will be included here. 

 

Table 4 Models for West Timor (best model is in bold) 

Model Best Message Length (nits)  

A0 727 

A1 640* 

C 664 

A2 653 

 

 

3.6 Model Type-A1 for West Timor 

Fig. 5 shows the means and standard deviations of the inferred link parameters for nodes that were valuable 

predictors. 
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Fig. 5 Results of the Model A1 model for West Timor 

 

3.7 Consistent predictor attributes  

There are four attributes that met the most consistent predictors criteria, for both recent and longer-term 

average malaria. These all had a positive influence on malaria incidence. They are Stratum in the high category, 

a coastal location, having a clean backyard and the presence of mosquito breeding place. 

3.8 Model Type-C for West Timor 

Fig. 6 shows the means and standard deviations of the inferred link parameters for nodes that had predictor 

value.  

 
 

Fig. 6 Results of the C model for West Timor 
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3.9 Consistent predictor attributes  

The most consistent predictors are Stratum, clean backyard, a coastal location (for Av malaria) presence of 

mosquito breeding place and highland location (the latter only for recent malaria and with a negative 

relationship). The relationship to the two target variables is not completely consistent and is summarised in 

Table 5. For recent malaria the only strong positive predictor is the presence of a mosquito-breeding place; a 

highland location is strongly negatively related to recent malaria. For the longer-term average malaria the 

relationships are clearer with strong positive relationships with high stratum, clean backyard, coastal location 

and mosquito breeding place.  

 

Table 5 Consistent predictors of the C model for West Timor 

Attribute Names Influence on  
Recent Malaria Ratio

Influence on  
Av Malaria 

Stratum (is high) none positive 

Clean Backyard (more often) none positive 

Coastal (is coastal) none positive 

Breeding Place (is present) positive positive 

Highland (is highland) negative none 

 

 

3.10 Summary of predictors 

Table 6 summarises the important predictors and those that were discarded because they did not meet the 

criteria described above. 

 

 

Table 6 Summary of the variables as predictors in the analyses (by category). 

Consistent predictors Variables with little predictive value 
Stratum  
Ecology: Highland (negative), Coastal  Ecology: Hilly 
Preventative measures: Clean backyard Preventative measures: IRS, Long Sleeve Use, 

Bed-net Ratio 
Environment: Breeding place, Garden, Rice 
field 

Environment: Pond, Paddock, Bushes, 

 Occupation: Farmer, Fisher, Other  
 Health care facilities (HF): HF Access, 

Distance HF 
 Household (HH): Toilet (indoor or outdoor), 

Lighting, Cooking Fuel, Wall, HH Members 
 Socio-economic status 
 Perception 

 

 

4 Discussion 

The discussion focuses first on the methodological issues and then on the substantive results. 
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4.1 Methodological 

4.1.1 Strengths 

The data, with the exception of Stratum, was all collected at the same level of resolution (household) and 

hence there should be no discrepancies related to disparate scale.   

The method has modeled malaria based on a wide range of variables, selected as important based on the 

literature, and representing a diverse range of attribute categories. It used a modeling process that identifies the 

best and simplest model to account for the data. This results in a relatively few variables being selected as 

combined strong predictors and hence relatively simple to interpret.  

In practice, MML's quantitative Ockham's razor trade-off between model complexity and goodness of fit 

means that MML models tend to be less complicated than rival statistical and machine learning methods - with 

MML models tending to involve less explanatory variables and attributing them slightly less influence than 

rival methods, yet with MML tending to predict better (Dowe, 2008, sec. 0.2.5, p539, col. 1). 

In cases where the amount of data is relatively limited compared to the number of parameters which have 

to be estimated (as happens with, e.g., single and especially multiple latent factor analysis, the classical 

Neyman-Scott problem and more recent panel data versions of Neyman-Scott), it appears that MML is the 

only method known so far which will in general be statistically consistent - i.e., for which the parameter 

estimates ultimately become correct as the amount of data increases (Dowe and Wallace, 1997; Wallace 2005, 

chap. 4; Dowe, 2008, sec. 0.2.5; Dowe, 2011, secs. 5.2, 6.4 and 6.5). 

4.1.2 Weaknesses 

The data used may not be completely reliable. The reporting of recent malaria (last three months) is likely to 

be more reliable than recollections over a longer period (average malaria). An even shorter period for 

recollection (of two months) was used by Dye et al (2010) for their qualitative African study. That the Stratum 

is not always a consistent predictor may also indicate that there may be discrepancies between local knowledge 

and the official data. 

4.2 Substantive results 

The results of the predictor attributes were expected; however some of the ones that did not predict well were 

surprising. At a general level this would mean that, although they may appear to be important when taken 

singly, when included in a complex model the combined effects of others may have greater predictive value. 

From a practical perspective dealing with several variables may be a better management option rather than 

focussing on one, which may, or may not be reliable (see for example bednets and references to these below). 

The following discusses both the expected predictors and the occasionally surprising evictions/omissions. 

4.2.1 The expected predictors 

Stratum: this was to be expected and, in a sense, acts to validate the data, though does not do so completely. 

This may be explained by self-reported data (albeit based on professional diagnosis) with possibly some cases 

of memory lapse. 

Ecology: Highland (negative). It was not surprising that a highland location had a negative relationship 

with malaria: highland areas may not contain wetlands and temperatures may be cool, thus slowing the 

incubation and transmission times for the pathogen. However this may change as global temperatures increase. 

With climate change anopheline malaria vectors may be able to move to higher elevations and increase 

transmission, as has already been observed in east Africa (Pascual et al., 2006). Ndoen et al. (2010) also 

showed that some malaria vectors were already common in the highlands in Indonesia (e.g., Anopheles 

barbirostris) and thus might contribute to highland malaria increasing as climate changes (and land use also 

may play a role). 
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A coastal location had a positive relationship with malaria and this is likely because coastal areas include 

wetlands and rice fields. This is likely to be related to the significant relationship between malaria vectors and 

coastal locations in West Timor (Ndoen et al., 2010). 

Preventative measures: Clean backyard. Clean backyard is not usually associated with mosquito risk as 

backyard rubbish (i.e., not a clean backyard) can provide refuge for mosquitoes and hence be associated with a 

higher incidence of malaria; it may be that maintaining a clean backyard exposes people to mosquito activity, 

especially to day-biting mosquitoes, of which there are several species in Central Java and West Timor (Ndoen 

et al., 2011). In the present study there are five categories of cleaning the backyard ranging from rarely to daily 

and the latter behavior may be putting people at extra risk. 

Environment: Breeding place, Garden, Rice field. Rice fields may be associated with temporary water 

bodies. In the data set breeding place included a range of wetlands including brackish and fresh water wetlands. 

In the case of garden (cultivated for food crops) and rice fields it is likely that some form of irrigation would 

be used, creating ideal mosquito larval conditions with humans working in these environments providing a 

local blood meal (Van den Berg and Knols, 2006; Afrane et al.,, 2004). Increased malaria may also be related 

to sleeping outdoors as reported by (Mueller et al., 2006) for their research in Papua New Guinea.  

4.2.2 Unexpected non-predictors /surprise evictions from the models 

Ecology: A hilly topography may not have many wetland areas suitable for anopheline mosquito habitats. 

However (Ndoen et al., 2010; Ndoen, 2008) found that hilly areas, if they also had rice fields, were associated 

with increased malaria and this was related to the mosquito species associated with that topography and land 

use. Here we found an association with rice fields, but only as part of the model (see above). 

Occupation: Farming and fishing have been associated with increased risk of malaria in the larger study 

(Ndoen, 2008) and in other studies with increased risk of malaria related to both occupations (Barcus et al., 

2002; Nalim et al., 2002; Worrall et al.,  2003). However when included in a whole model as we have done 

here the effect does not appear to be important. The association between fishing and malaria incidence is 

variable, depending on the type of fishing. For example fish farms, if properly maintained, would not usually 

support mosquito production but, if abandoned, then mosquito problems and malaria have been shown to 

increase (Howard et al., 2007).  

Preventative measures: these included Indoor Residual Spraying, wearing Long Sleeves and having Bed-

nets. In the models developed here bed nets, often cited as effective prevention tools, were never selected as 

good predictors. Bednets (and IRS) can reduce the incidence of malaria (Clarke et al.,, 2001; Mnzava et al.,, 

2001; Alten et al., 2003; Dye et al., 2010) but this is not always the case (Al-Taiar et al., 2008). Another factor 

that may explain the lack of relationship in our models may be related to the distribution or usage practices: 

distribution after an epidemic and misuse for fishing or other activities (Ndoen, 2008).  

Indoor Residual Spraying (IRS) was never selected as a consistent predictor but is often cited as an 

effective control measure (for example: Singh et al., 2006). In Indonesia research in a hilly area of Central Java 

at District level showed an increase in malaria incidence as IRS was reduced between 1986 and 1995 (Barcus 

et al., 2002). To ensure effective indoor residual spraying against malaria vectors, knowledge of factors such as 

mosquitoes’ resting places is essential (Takken et al.,, 1990; Pates et al.,  2002; Warrell and Gilles, 2002). It is 

only effective against mosquitoes seeking hosts indoors and mostly at night. In the study areas there was no 

clear pattern of mosquitoes preferring indoors and night biting, though for example An. barbirostris in West 

Timor showed some preference for indoors, but not in Central Java (Ndoen et al., 2011). Mosquitoes were 

generally more active outdoors and IRS would not be recommended, at least as a priority action or if resources 

are scarce (Ndoen et al., 2010). Another study in Central Java also reported no relationship between IRS and 
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malaria incidence (Dale et al., 2005). There appears to be a large variability and hence IRS may not be a 

generally reliable predictor for all areas. 

Health care facilities (HF): HF Access, Distance HF.  Noor et al., (2003) showed that distance was an 

important factor important in accessing health services for malaria in Kenya. However Ndoen (2008) showed 

that living within 1 km of a health care facility was associated with increased malaria incidence. This may be 

related to ease of diagnosis and subsequent reporting. The average distance to health care facilities from 

villages in the Central Java and West Timor village study were 5.74 and 7.17 km respectively (Ndoen, 2008). 

On the other hand there is some evidence in Indonesia that, as distance to health care facilities increases, so 

does malaria incidence (Sipe et al., 2005, unpublished data). This is consistent with the findings of Al-Taiar et 

al., (2008) who found increased incidence of severe malaria if distance to a health centre was > 2 km. Both 

these points may account for the apparent lack of a clear relationship with reported malaria incidence. In other 

research access to health care has been shown to be important. For example Unger et al., (2006) showed that 

health service access resulted in increased malaria cure rates in Mali. Bell et al., (2005), in their Philippines 

study, found that malaria parasite prevalence was significantly higher in villages without a resident village 

health worker.  

Environment: Pond, Paddock, Bushes. In theory these all provide resources for mosquitoes: the pond 

provides larval habitats, paddocks may provide access to a blood meal (for zoophilic mosquitoes) and bushes 

provide shelter for adult mosquitoes during the day, reducing the risk of dehydration and increasing survival 

(mosquitoes need to survive at least 8 days for incubation of the pathogen (Bruce-Chwatt, 1980)). Paddock has 

been shown to be especially important. It tends to include association with animals in barns etc. and some 

mosquito species feed preferentially on animals (are zoophillic). Barodji et al., (1992) showed that, in Central 

Java, moving cattle shelters from inside to the outside of the house, significantly reduced the number of An. 

aconitus  (a malaria vector) indoors. In China, animals are commonly kept at the boundaries of the villages 

between mosquito breeding habitats and human dwellings, reducing the human-mosquito contact (Warrell and 

Gilles, 2002). In Ethiopia, Seyoum et al., (2002) reported that separating animal sheds from human dwellings 

reduced the human-mosquito contact. Van der Hoek et al., (1998) also noted that cattle near housing was related 

to increased malaria incidence. What the modelling in our study has shown is that these environment variables, 

although they individually may be important, when taken as a whole, other combinations of variables have 

more predictive power. 

Household (HH): Toilet (indoor or outdoor), Lighting, Cooking Fuel, Wall, HH Members. There is some 

evidence that house characteristics are important for malaria incidence, but they are also related to SES (see 

below). Thus Ghebreyesus et al., (2000), in their study in Ethiopia, found risk factors associated with malaria 

including earth roof, windows, open eaves, no separate kitchen, having one sleeping room all of which would 

facilitate entry and dispersal of mosquitoes. These variables were not important in our analyses, though they do 

also reflect SES and the lack of importance here may reflect the discussion in the previous paragraph. 

Household size was found to be important in an Indonesian study with lower malaria incidence in smaller 

households (Roosihermiatie et al., 2000) but this was not the case here. 

Socio-economic status. In our study SES was not identified as a predictor by the models.  However there 

is a relationship between housing standard, socioeconomic status and malaria. Generally lower SES and poorer 

quality housing are related to higher incidences of malaria. For example, in Sri Lanka, poorly constructed 

houses, and other factors have been shown to increase malaria incidence (Van der Hoek et al., 1998). Similarly in 

The Gambia, Koram et al., (1995) found that malaria among children was associated with poor housing and low 

socio-economic status. The general view is that SES is important, with lower SES people being less able to 

access resources and information that would reduce malaria incidence (e.g., Macintyre et al., 2002). Keating et 
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al., (2005) in a survey in Kenya with self-reported malaria (as we have here), reported that high SES was 

associated with malaria prevention (mosquito control) and reduced incidence of malaria. A useful review by 

Worrall et al., (2003) reported that, at an international level, poorer areas experience higher rates of malaria 

than richer ones, but that this did not necessarily reflect relationships at local levels.  

Perception: Dye et al., (2010) found, for their African study, that perceptions of malaria were generally 

correct, as did Sanjana et al., (2006) for Central Java and also Ndoen (2008) who found in his broader 

Indonesian study that it did not, as in our analyses, influence malaria incidence. This is consistent with other 

research in the area (Dale et al., 2005). However some research has found that better knowledge appears to 

lead to more informed protection measures and lower malaria incidence  (e.g., Nkuo Akenji et al., 2005).  

 

5 Conclusion 

The modelling method has produced simple and relatively easy to interpret results that focus on combinations 

of variables that contribute to explain malaria incidence. In the results we have unpacked these in order to 

consider each, but it is important to remember that they work in consort. Despite possible inaccuracy in the 

data from household survey, the research indicates that, there are consistent explanatory combinations of 

variables. Although some variables have been shown to affect malaria incidence in individual research projects 

as reported in the literature, they may not be consistently reliable. This would include the use of bed nets and 

indoor residual spraying, especially in areas where malaria vector mosquitoes bite during the day and outdoors.  

Caution should of course be exercised, as areas with malaria will have their own unique features, requiring 

management solutions tailored to the circumstances, including resources. If we took the consistent predictors 

from this research we would advocate personal care (repellents, covering clothing) when outdoors and 

managing mosquito larval habitats by introducing predators to wetlands (breeding place) and possibly using 

larvicides (if resources permit) in rice fields.  
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