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Abstract 

Species-area relationship (SAR) is a tenet in ecology. Unfortunately, even in very recent works researchers 

take for granted what they shouldn’t take for granted, that is to say the fractality of such relationship. This is a 

serious mistake, both from a theoretical and methodological viewpoint. Unvealing non-fractality or multi-

fractality of species-area relationship could mean a lot for conservation purposes of rare and not rare species. 

Detection of discontinuities in SAR may indicate significant changes in the processes that generate and 

maintain biodiversity, in particular with regard to different degrees of density-dependent events or inter-

specific interactions. Methodological tools are already at hand, so I invite scientists to employ them as soon as 

possible. 
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1 Introduction 

Species-area relationship (SAR) is quite like a dogma in ecology, and is widely regarded as one of ecology’s 

few laws (Dodds, 2009). SAR postulates that as sampling area increases so does the number of species 

recorded as well. Quantification of this relationship dates back to the 19th century (Watson, 1835, 1859), and 

now embraces thousands of studies about a wide variety of taxa and scales (e.g., Connor and McCoy, 1979; 

Rosenzweig, 1995; Lomolino and Weiser, 2001; Drakare et al., 2006).  

The shape taken by SAR can be estimated by numerous functions. The most commonly used models are 

the power model (Arrhenius, 1920, 1921) 

 

S= cAz        (1) 

 

and the exponential one (Gleason, 1922) 

 

S= c+zlogA                        (2) 

 

with c and z acting as parameters. Further three-parameters SAR models are the sigmoid extended power  

 

S= cAz-(d/A)       (3) 
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and the sigmoid Gompertz model  

 

S=d exp[-exp(-z(A-c))]     (4) 

 

The power model remains the most frequently used model, both for fitting curves to species–area data, and 

as a basis for explanatory theories of species diversity (MacArthur and Wilson, 1967; Hubbell, 2001). 

Using recent papers on important journals as a scientific benchmark, in this paper I emphasize that SAR is 

always, and sometimes mistakenly, a priori supposed to be fractal, i.e. all equal along the interval of areal 

values, even when evidences suggest that at a certain point of the areal domain “something happens” that 

changes such relationship. In addition, I suggest which methodologies researchers should apply in order to test 

whether SAR is fractal or not. Above all, I suggest to a priori doubt about SAR fractality in order to derive a 

posteriori correct implications. Unvealing non-fractality of SAR could mean a lot for conservation purposes of 

rare and not rare species. 

 

2 Misuse of SAR 

Researchers take for granted that SAR is a fractal relationship; in other words, they grantedly accept that it’s a 

scale-invariant relationship. As a consequence, when SAR is log-log transformed 

 

logS=logc+zlogA     (5) 

 

just a straight line should be enough to determine the expected log number of species once given the log areal 

coverage. Even very recent scientific papers use this a priori supposition. 

Triantis et al. (2012) conducted an extensive quantitative analysis of the form taken by SAR among 20 

models to determine the best-fit model. They concluded that over most scales of space, SAR is best 

represented by the power model, logS=logc+zlogA, and that more complex, sigmoid models may be applicable 

when the spatial range exceeds three orders of magnitude. They neither consider the chance to use piecewise 

SAR models in their analyses nor that, when the spatial range exceeds three orders of magnitude, the solution 

is not a change of the SAR model but just a piecewise version of the same power model. Why, in fact, sigmoid 

models should be fitter for wide areal domains, while power models for narrow intervals? Which ecological 

explanation for this outcome? Is not more reasonable that the same SAR model holds for the whole areal 

interval, despite with different values of the z parameter due to density-dependent events or different inter-

specific interactions? Even from an interpretative viewpoint, shifting from power to sigmoid models means 

quite nothing, while detecting statistically-proven breakpoints in SAR means a lot. 

Guilhaumon et al. (2010) presented the application of 8 pre-built SAR models (power, exponential, logistic 

etc.) to the well-known dataset by Preston (1962) describing plants of the Galapagos Islands. Again, they 

missed to consider a non-fractal or multi-fractal relationship, and the fitting of such models (figure 2 of their 

article) is very weak in the central areal domain between 100 and 500 squared miles. Their models just hold 

when area is very limited, but it’s clear by inspecting their figure that a new species-area rule happens at about 

100 sq. mi., something that would require SAR model to bend. 

Eckstut et al. (2010) analysed SAR and relative contribution of biotic expansion and in situ diversification 

events using power-law and linear regression analyses. In figure 2 of their paper, they find that power-law 

SAR doesn’t fit well for the most important and widest island (Hawai’i) of their dataset (central part of figure 

2) so they decide to leave out Hawai’i from their SAR model (figure 2 on the right). Instead, it’s clear that their 

log-log SAR model would need a multi-fractal version with a sloping upward linear model up to about 3 on the 
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X-axis, and then a decreasing linear model up to 4. The same happens for figure 3, where the authors do the 

same for in situ species and biotic expansion species. Again, Hawai’i island does not obey a simple power-law 

SAR, hence the authors leave it out. In the discusion section, the authors declare that Hawai’i distorts the SAR 

because it is both the largest and youngest Hawaiian island, indicating that it may not have yet reached species 

equilibrium. I simply suggest that Hawai’i island distorts a simple fractal SAR, but not a piecewise one. 

 

3 Fixing the Problem 

From a theoretical viewpoint, we scientists should never take anything for granted. I understand that SAR in its 

fractal form is concise, elegant and operative, but is it true-to-life? Sometimes yes, sometimes no, thus we 

should test the hypothesis of fractality before employing it as a dogma. I suggest that fractality in SAR is the 

exception, not the rule.  

From a methodological viewpoint, when modeling SAR relationship, we should test multi-fractality 

through the use of a piecewise regression model in distinct intervals of the predictor variable domain. In other 

words, instead of fitting a single straight line logS=logc+zlogA to the data, we should allow SAR to bend. 

Methodological models to do this are already at hand. Krummel et al. (1987) first proposed a piecewise 

regression which restricts the regression to subsets of the data and performs regression over a window 

containing a fixed number of data points, with the window ranging over the entire set. Ferrarini (2011) shared 

a software that implements Krummel’s approach. 

Friedman (1991) proposed another regression algorithm, called MARS, that approximates the nonlinearity 

of a model by searching over all possible shifts in the relationship between X and Y. MARS is a non-

parametric tool that fits piecewise linear regression approximating the non-linearity of a model through the use 

of separate slopes in distinct intervals of the predictor variable range (Friedman, 1991; Steinberg et al., 1999). 

The idea behind local non-parametric modelling is to allow for a potentially non-linear relationship over 

different ranges of the predictor variable by searching over all possible shifts (called knots) in the relation 

between a dependant variable and a predictor one.  When modelling such relationship, a MARS model takes 

the form 

     

Y = a0 + Σ ai Fi(X) + ε     (6) 

 

where Fi(X) is called the i-th basis function of X.  Fi(X) is expressed by 

 

Fi(X) = max (0, X-k)       (7) 

 

where k is called knot, Fi(X) is equal to 0 for all values of X up to k and Fi(X) is equal to X-k for all values of 

X greater than k. Fi(X) can be built for any value of  k.  

At the beginning a constant model is fitted, then MARS starts searching for a knot that improves the model 

the most. Then, a subset of the data points are chosen as knots, basis functions are built around such knots, and 

regression is performed to determine the coefficients of each basis functions. At each step the procedure finds 

which potential basis functions can be added to the model. Knots are found through a very intensive search 

procedure that proceeds until an user-specified maximum model size is reached. As basis functions are added 

to the model, the residual sum of squares gets smaller, but it does not penalize for overfitting. Therefore, after 

implementing the forward stepwise selection of basis functions, a backward procedure is applied in which the 

model is pruned by removing those basis functions that are associated with the smallest increase in the least 

squares goodness-of-fit, called generalized cross-validation (GCV; Craven and Wahba, 1979). GCV is a 
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measure of the goodness of fit that takes into account not only the residual error but also the model complexity. 

It is given by: 

 

 

              (8) 

 

 

 

where N is the number of observations in the data set. The numerator measures the lack of fit on the model. 

The quantity C is the penalty for adding a basis function. The optimal MARS model is the one with the lowest 

GCV value. When no shift-points are detected, MARS behaves like a simple linear regression. MARS has 

been also used by Ferrarini et al. (2005) to detect proper breakpoints in the area-perimeter relationship (APR) 

of landscape patches, showing that also APR is usually multi-fractal with deep implications for the ecological 

meaning of habitat shape.  

Grossi et al. (2001) suggested a different approach based on an iterative procedure that looks at every 

possible break of the X-Y relationship to select the best model. Despite very effective, this approach presents 

two drawbacks. When the number of observations is larger than 300, the procedure becomes prohibitive even 

for the most recent computers; in addition, this method requires a large sample size to perform the iterative 

procedure.  

 

4 Conclusions 

Species-area relationship is a tenet in ecology.  SAR is appealing because it reflects a simple law across a 

range of spatial scales. However, SAR is only meaningful if the logarithmic relation between number of 

species and area is linear over the full range of the areal domain. If it is not, then SAR should be computed 

separately for the areal range over which it is constant.  

Unfortunately, so far researchers take for granted what they shouldn’t take for granted, that is to say the 

fractality of such relationship. This is a serious mistake, both from a theoretical and methodological viewpoint. 

Omitting the discussion whether multi-fractal means non-fractal or not, I claim that unvealing non-fractality or 

multi-fractality of SAR might have deep implications for conservation purposes of rare and not rare species, 

because detection of discontinuities in SAR may indicate significant changes in the processes that generate and 

maintain biodiversity, in particular with regard to different degrees of density-dependent events or inter-

specific interactions. Methodological tools are already at hand, so I invite scientists to use them as soon as 

possible. 
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