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Abstract 

A quantitative structure–retention relation (QSRR) study was conducted on the retention times of organic 

pollutants in textile wastewaters and landfill leachate which obtained by liquid chromatography-reversed 

phase-atmospheric pressure chemical ionisation-mass spectrometry (LC-APCI-MS). The genetic algorithm 

was used as descriptor selection and model development method. Modeling of the relationship between 

selected molecular descriptors and retention time was achieved by linear (partial least square; PLS) and 

nonlinear (Levenberg-Marquardt artificial neural network; L-M ANN) methods. Linear and nonlinear methods 

resulted in accurate prediction whereas more accurate results were obtained by L-M ANN model. This is the 

first research on the QSRR of the organic pollutants in textile wastewaters and landfill leachate against the 

retention time.   

  

Keywords organic pollutants; textile wastewaters; landfill leachate; LC-APCI-MS; QSRR; Levenberg-

Marquardt artificial neural network. 

 

 

 

 

 

 

 

 

1 Introduction 

Water pollution may be defined as the addition of any substance (pollutant) to water resource which may 

change the physical and chemical characteristics in any way which may interfere with its use for legitimate 

purposes. A great number of synthetic organic chemicals have been released to the environment due to 

industrial activities. Textile wastewaters contain a wide range of non-polar and polar compounds, but polar 

ones are predominant. They comprise substances which are used as auxiliary products in textile production and 

treatment and are washed out of the textiles having run off with the wastewater. These polar organic pollutants 

in textile wastewater may give rise to problems due to the fact that they are non-biodegradable and their 

elimination is incomplete. Moreover, some of the contaminants have a toxic effect on the bacteria applied for 

wastewater purification (Covarrubias et al., 2008). As a consequence strict characterization of contaminated 

effluents needs to be done. In this respect the European Union (EU) has promulgated a Directive on Integrated 
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Pollution Prevention Control (IPPC) expanding the range of pollutants that should be monitored in industrial 

effluents discharges (García-Pérez et al., 2010). This Directive covers many industrial sectors and it is 

indicated in the Directive that all the substances discharged should be monitored and the former European 

Union black list expanded by adding new compounds. It is of interest to the EU to develop monitoring 

strategies for the characterization of a variety of pollutants. From this perspective, research strategies applied 

to the characterization of new pollutants in contaminated industrial effluents will be encouraged and will be 

expanded during the next coming years. 

Another area of interest is the landfill leachates. In the EU and related European countries a total number 

of 250 000 abandoned and closed landfills can be estimated. From a number of investigations all over Europe, 

it can be estimated 50 000 landfills as hazard to the environment which already due or will pollute the 

groundwater and surface water in the near future. For this reason, the recently adopted Landfill directive by the 

EU on 26th April 1999 requires a general improvement in the standards of landfill construction and operation 

with the objective of preventing any negative effect on the environment caused by landfilling. One of the key 

issues in this new Directive is that monitoring of landfill leachates and surface waters affected by the landfill 

should be carried out (Wang et al., 2006). 

Common methods for identifying organic pollutants in contaminated industrial effluents generally involve 

the use of either dichloromethane liquid–liquid extraction (LLE) or solid phase extraction (SPE), followed by 

gas chromatography-mass spectrometry (GC-MS) techniques with electron impact (EI) ionisation (Petitgirard 

et al., 2009; Mothes et al., 2010; Burkhard et al., 1991; Biache et al., 2011), although few works have also 

been reported using chemical ionisation (Nash et al., 2005; Covaci et al., 2005). By this approach a variety of 

non-polar compounds are generally determined in waste waters and effluents like phthalates, phosphates, 

benzenes, PAHs. However, many polar, ionic, heavy and thermally unstable compounds cannot be analysed by 

GC techniques. A different approach should be used for these pollutants which usually comprise more than 

95% of the organic content (Mothes et al., 2010; Biache et al., 2011). 

The use of LC has been rarely reported in the characterization of polar analytes detected in industrial 

effluents. In this respect, few papers were published determining a variety of non-ionic and anionic surfactants 

in waste waters (Gutiérrez et al., 2007; Gomez et al., 2001). The US EPA has published two methods for the 

analysis of solid waste (SW-846), involving either particle beam (method 8325) (Huang et al., 2005) or 

thermospray (method 8321) (US EPA, 1995). These methods involve the determination of different kinds of 

pollutants including disperse azo dyes, phosphates, pesticides and benzidines in waste waters. Both methods 

were recently applied to the characterisation of many organic acids found in Superfund sites (Mothes et al., 

2010) 

   LC-TSP-MS was used to confirm that approximately half of the unidentified total organic halocarbon (TOX) 

content in leachates from a hazardous waste site is 4-chlorobenzene sulfonic acid. However, the main obstacle 

to routine analytical applications of LC-MS has been the unavailability of rugged and reliable LC-MS 

interfaces. The development of atmospheric pressure ionization (API) LC-MS interfaces provides structural 

information similar to that obtained by chemical ionization techniques, overcoming the limitations of other 

LC-MS interfacing devices such as poor structural information or sensitivity related to TSP and PB, 

respectively. Recently, reported the use of LC-APCI-MS combined with toxicity-based fractionation using 

Vibrio fsicheri for the characterisation of organic pollutants in waste water treatment works (Castillo and 

Barceló, 1999). In addition to the toxicity-based fractionation, a sequential solid phase extraction (SSPE) 

protocol was also applied to the raw samples to identify the major organic pollutants present. The final 

objective was to achieve a high level of knowledge about the composition and the concentration of pollutants 

present in wastewaters and as final goal to correlate chemical analysis with toxicity data.  
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   In addition to that chromatographic retention prediction methodologies can be valuable starting points for 

GC method development. A promising approach is the use of quantitative structure–retention relationship 

(QSRR) (Put and Heyden, 2007; Kaliszan, 1997). QSRR are statistically derived relationships between 

chromatographic parameters and descriptors related to the molecular structure of the analytes. In QSRR these 

descriptors are used to model the molecular interaction of the analytes with a given stationary phase and eluent 

(Baczek and Kaliszan, 2002). In chromatography, QSRR have been applied to: (i) gain a better understanding 

of the molecular mechanism of the chromatographic separation process; (ii) identify the most informative 

structure related properties of analytes; (iii) characterize stationary phases, and (iv) predict retention for new 

analytes (Put and Heyden, 2007).  

There is a trend to develop QSRR from a variety of methods. In particular, genetic algorithm (GA) is 

frequently used as search algorithms for variable selection in chemometrics and QSRR. The GA provides a 

“population” of models, from which it could be difficult to identify the most significant or relevant models 

(which may be preferred in certain uses, e.g. regulatory toxicology prediction) (Hewitt et al., 2007).  

   Partial least square (PLS) is the most commonly used multivariate calibration method. Moreover, non-

linear statistical treatment of QSRR data is expected to provide models with better predictive quality as 

compared with related PLS models.  

Moreover, non-linear statistical treatment of QSRR data is expected to provide models with better predictive 

quality as compared with linear models. In this perspective, artificial neural network (ANN) modelling has become 

quite common in the QSRR field (Noorizadeh and Farmany, 2010). Extensive use of ANN, which does not 

require the “a priori” knowledge of the mathematical form of the relationship between the variables, largely 

rests on its flexibility functions of any complexity can be apply. In the present work, a QSRR study has been 

carried out on the liquid chromatography-reversed phase-atmospheric pressure chemical ionisation- mass 

spectrometry (LC-APCI-MS) system retention times (tR) for organic pollutants in textile wastewaters and 

landfill leachate by using structural molecular descriptors. The present study is a first research on QSRR of the 

organic pollutants in textile wastewaters and landfill leachate against the tR, using GA-PLS and L-M ANN. 

 

2 Materials and Methods  

2.1 Data set 

Retention time (tR) of 35 organic pollutants in textile wastewaters and landfill leachate which obtained by LC-

APCI-MS were taken from the literature (Castillo and Barceló, 2001) is shown in Table 1. The retention time 

of these compounds were increased in the range of 5.07 and 33.47 for both Phenol and Dotriacontane, 

respectively. 

2.2. LC-APCI-MS conditions 

Samples were collected in Pyrex borosilicate glass containers. Each bottle was rinsed with tap water and with 

high-purity water prior to sample addition. For LC-APCI-MS experiments a VG Platform from Micromass 

(Manchester, UK) equipped with a standard atmospheric pressure ionisation (API) source, which can be 

configurated for APCI or ESI, was used. Mobile phase of water and acetonitrile both acidified with 0.5% of 

acetic acid was used to accomplish separation on an Hypersil Green ENV column (150mm  4.6mm i.d., 
5 m particle size) equipped with a guard column both from Shandon HPLC (Cheshire, UK). 

Source and probe temperatures were set at 150 and 400oC, respectively, corona discharge voltage was 

maintained at 3 kV and the cone voltage was set at 30V. The HV lens voltage was set at 0.20 kV. Nitrogen was 

used as nebulizing and drying gas at a flow rate of 10 and 300 l/h, respectively. In full scan mode the m/z range 

was from 100 to 400 in negative ion (NI) mode and from 100 to 1000 in positive ion (PI) mode of ionisation. 

Characteristic peaks in PI mode at 133 and 177 m/z units for polyethoxylated non-ionic surfactants were 
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checked. In order to distinguish between the different functionalities, the presence of peaks at m/z 151 and 195 

were checked for aliphatic alcohol polyethoxylate, AEOn,x ; at m/z 271 and 291 for nonylphenol polyethoxylate 

NPEOx and at m/z 101 and 145 for PEGx . In addition to this comparison, non-ionic polyethoxylated 

surfactants were identified by checking correspondence 

 

 

Table 1 The data set, structure and the corresponding observed retention time values. 

No Name Retention time 

 Calibration Set  

1 Phenol 5.07 
2 Hexamine 8.7 
3 Ethyl-tetramethyl-heptane 10.35 
4 Ionol (2,6-di-tert-butyl-4 methyl-phenol) 12.1 
5 Diethylphtalate 13.37 
6 3,5-Di-tert-butyl-4-hydroxibenzoic 14.5 
7 2,6-Di-tert-butyl-4- methoxymethyl-phenol 14.79 
8 Tetramethyl-butyl-phenol isomer 15.02 
9 Nonylphenol isomer 15.27 
10 Nonylphenol isomer 15.52 
11 Octadecane 16.24 
12 Butyl-2-ethylhexyl-phtalate 17.12 
13 2,2-dimethyl-2-phenyl-acetophenone 17.3 
14 4,40-Methylenebis-phenol 19.77 
15 Benzil-quinoline 20.2 
16 Tributyl-O-acetylcitrate 21.89 
17 Tricosane 22.2 
18 Benzyl-butyl-phtalate 22.65 
19 Diisooctylphtalate 24.74 
20 Hexacosane 27.1 
21 Dotriacontane 33.47 

 Prediction Set  

22 Tetramethyl-dodecane 11.94 
23 2,6-Di-tert-butyl-4-ethyl-phenol 14.58 
24 Tetramethyl-butyl-phenol isomer 15.4 
25 Nonylphenol isomer 15.75 
26 Butyl-octyl-phtalate 18.3 
27 7-(Diethylamino)-4-methyl- 2H-1-benzopyran-2-one 22.42 
28 Triacontane 30.47 

 Test Set  

29 2,6-Tert-butyl-quinone 11.34 
30 Nonylphenol Isomer 14.44 
31 Nonylphenol isomer 15.15 
32 Tetramethyl-butyl-phenol isomer 15.65 
33 Benzoic acid phenyl ester 17.2 
34 Docosane 20.87 
35 Triphenyl-phosphonic acid 23.19 

 
 

2.3 GC-MS characterisation of toxicity fractionated extracts 

The inherent low volatility of several pollutants such as the non-ionic surfactants, hampered the application of 

HRGC for their analysis. This fact was overcome by the use of high temperature capillary columns and a cold 

on-column injector as an inlet that allows direct deposition of the sample into the column (Castillo et al., 1999). 

The HT-HRGC-MS results for the analysis of the less polar fractions (obtained by toxicity fractionation of the 
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textile effluents) are shown in Table 1. Fast characterization of a great number of different classes of pollutants, 

including highly functionalised compounds, such as tetraethoxyphenol was possible. This revealed the 

presence of various groups of chemical components in industrial effluents such as phenolic compounds, 

phthalates, aliphatic carboxylic acids, aromatic carboxylic acids, amines, alkanes and linear aliphatic alcohols 

among them.  

Aliphatic carboxylic acids were detected from C8 to C18 with two different origins: the short chain 

carboxylic acids of metabolic origin and the long chain fatty acids of the hides, fatting agents and microbial 

biomass. Aromatic carboxylic acids were also present in the studied wastewaters as constituents of natural 

tanning agents. Amines and linear aliphatic alcohols are regularly determined in industrial effluents due to 

their use in the production of dyes and textiles and as solvents and antifoaming agents, respectively. 

2.4 Molecular modeling and theoretical molecular descriptors 

The derivation of theoretical molecular descriptors proceeds from the chemical structure of the compounds. In 

order to calculate the theoretical descriptors, molecular structures were constructed with the aid of HyperChem 

version 7.0. The final geometries were obtained with the semi-empirical AM1 method in HyperChem program. 

The molecular structures were optimized using Fletcher- Reeves algorithm until the root mean square gradient 

was 0.01 kcal mol-1. Some quantum descriptor such as orbital energy of LUMO was calculated by using the 

HyperChem software. The resulted geometry was transferred into Dragon program, to calculate 1497 

descriptors, which was developed by Todeschini et al (Todeschini et al., 2003). To reduce the original pool of 

descriptors to an appropriate size, the objective descriptor reduction was performed using various criteria. 

Reducing the pool of descriptors eliminates those descriptors which contribute either no information or whose 

information content is redundant with other descriptors present in the pool.  

2.5 Genetic algorithm for descriptor selection 

To select the most relevant descriptors with GA, the evolution of the population was simulated (Ferrand et al., 

2011). Each individual of the population, defined by a chromosome of binary values, represented a subset of 

descriptors. The number of the genes at each chromosome was equal to the number of the descriptors. The 

population of the first generation was selected randomly. A gene was given the value of one, if its 

corresponding descriptor was included in the subset; otherwise, it was given the value of zero. The number of 

the genes with the value of one was kept relatively low to have a small subset of descriptors (Aires-de-Sousa et 

al., 2002) that is the probability of generating zero for a gene was set greater. The operators used here were 

crossover and mutation. The application probability of these operators was varied linearly with a generation 

renewal. For a typical run, the evolution of the generation was stopped, when 90% of the generations had taken 

the same fitness. The molecules of the training and the test sets, on which the GA technique was performed, 

are shown in Table 1. In this paper, size of the population is 30 chromosomes, the probability of initial variable 

selection is 5:V (V is the number of independent variables), crossover is multi Point, the probability of 

crossover is 0.5, mutation is multi Point, the probability of mutation is 0.01 and the number of evolution 

generations is 1000. For each set of data, 3000 runs were performed. 

2.6 Nonlinear model: Artificial neural network 

An artificial neural network (ANN) with a layered structure is a mathematical system that stimulates biological 

neural network, consisting of computing units named neurons and connections between neurons named 

synapses (Kara et al., 2006; Zhang and Barrion, 2006; Kara and Okandan, 2007; Zhang, 2007; Zhang et al., 

2007; Zhang et al., 2008a, b; Zhang and Zhang, 2008; Zhang and Wei, 2009; Noorizadeh et al., 2011; Watts, 

2011; Watts and Worner, 2011; Zhang, 2010, 2011). All feed-forward ANN used in this paper are three-layer 

networks. Each neuron in any layer is fully connected with the neurons of a succeeding layer. Fig. 1 shows an 

example of the architecture of such ANN. The Levenberg–Marquardt back propagation algorithm was used for 
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Input layer

Hidden layer 

Output layer 

ANN training and the linear functions were used as the transformation functions in hidden and output layers. 

 

3 Results and Discussion 

3.1 Linear model  

To reduce the original pool of descriptors to an appropriate size, the objective descriptor reduction was 

performed using various criteria. Reducing the pool of descriptors eliminates those descriptors which 

contribute either no information or whose information content is redundant with other descriptors present in 

the pool. The remained descriptors were employed to generate the models with the GA-PLS program. The best 

model is selected on the basis of the highest square correlation coefficient leave-group-out cross validation 

(R2), the least root mean squares error (RMSE) and relative error (RE) of prediction. These parameters are 

probably the most popular measure of how well a model fits the data. The best GA-PLS model contains eleven 

selected descriptors in three latent variables space. These descriptors were obtained constitutional descriptors 

(sum of atomic polarizabilities (scaled on Carbon atom) (Sp) and (number of bonds (nBT)), topological 

descriptors (quasi-Wiener index (Kirchhoff number) (QW), Wiener-type index from mass weighted distance 

matrix (Whetm) and mean distance degree deviation (MDDD)), 2D autocorrelations (Moran autocorrelation - 

lag 4 / weighted by atomic masses (MATS4m)), geometrical descriptors (3D-Wiener index (W3D), absolute 

eigenvalue sum on geometry matrix (SEig)), functional group counts (number of total tertiary C(sp3) (nCt)), 

charge descriptors (total positive charge (Qpos)) and quantum chemical descriptors (lowest unoccupied 

molecular orbital (LUMO)). The R2 and mean RE for training and test sets were (0.827, 0.709) and (15.44, 

22.91), respectively. The predicted values of tR are plotted against the experimental values for training and test 

sets in Fig 2. For this in general, the number of components (latent variables) is less than the number of 

independent variables in PLS analysis. The PLS model uses higher number of descriptors that allow the model 

to extract better structural information from descriptors to result in a lower prediction error.  

 

 

 

 

 

 

 

 

 

 

     Fig. 1 Used three layer ANN. 

 

3.2 Nonlinear model 

With the aim of improving the predictive performance of nonlinear QSRR model, L-M ANN modeling was 

performed. The networks were generated using the twelve descriptors appearing in the GA-PLS models as 

their inputs and tR as their output. For ANN generation, data set was separated into three groups: calibration 
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and prediction (training) and test sets. All molecules were randomly placed in these sets. A three-layer network 

with a sigmoid transfer function was designed for each ANN. Before training the networks the input and 

output values were normalized between -1 and 1. The network was then trained using the training set by the 

back propagation strategy for optimization of the weights and bias values. The procedure for optimization of 

the required parameters is given elsewhere (Jalali-Heravi et al., 2004). The proper number of nodes in the 

hidden layer was determined by training the network with different number of nodes in the hidden layer. The 

root-mean-square error (RMSE) value measures how good the outputs are in comparison with the target values. 

It should be noted that for evaluating the overfitting, the training of the network for the prediction of tR must 

stop when the RMSE of the prediction set begins to increase while RMSE of calibration set continues to 

decrease. Therefore, training of the network was stopped when overtraining began. All of the above mentioned 

steps were carried out using basic back propagation, conjugate gradient and Levenberge-Marquardt weight 

update functions. It was realized that the RMSE for the training and test sets are minimum when four neurons 

were selected in the hidden layer and the learning rate and the momentum values were 0.8 and 0.4, 

respectively. Finally, the number of iterations was optimized with the optimum values for the variables. It was 

realized that after 18 iterations, the RMSE for prediction set were minimum. 
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Fig. 2 Plots of predicted retention time against the experimental values by GA-PLS model.  

 

 

The R2 and RE for calibration, prediction and test sets were (0.931, 0.924, 0.906) and (8.50, 10.27, 13.19), 

respectively. Inspection of the results reveals a higher R2 and lowers other values parameter for the test set 

compared with their counterparts for other models. Plots of predicted tR versus experimental tR values by L-M 

ANN for calibration, prediction and test sets are shown in Fig. 3a, 3b, respectively. The relative error and R2 of 

test set for the GA-PLS model are 22.91 and 0.709 respectively which would be compared with the values of 

13.19 and 0.906, respectively, for the L-M ANN model. Comparison between these values and other statistical 

parameters reveals the superiority of the L-M ANN model over other model. The key strength of neural 

networks, unlike regression analysis, is their ability to flexible mapping of the selected features by 

manipulating their functional dependence implicitly. The statistical parameters reveal the high predictive 

ability of L-M ANN model. The whole of these data clearly displays a significant improvement of the QSRR 

model consequent to nonlinear statistical treatment. Obviously, there is a close agreement between the 

experimental and predicted tR and the data represent a very low scattering around a straight line with 
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respective slope and intercept close to one and zero. As can be seen in this section, the L-M ANN is more 

reproducible than GA-PLS for modeling the LC-APCI-MS retention time of organic pollutants in textile 

wastewaters and landfill leachate.   
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Fig. 3 Plot of predicted tR obtained by L-M ANN against the experimental values (a) calibration and prediction sets of molecules 
and (b) for test set. 

 

 

3.3 Model validation and statistical parameters 

The applied internal (leave-group-out cross validation (LGO-CV)) and external (test set) validation methods 

were used for the predictive power of models. In the leave-group-out procedure one compound was removed 

from the data set, the model was trained with the remaining compounds and used to predict the discarded 

compound. The process was repeated for each compound in the data set. The predictive power of the models 

developed on the selected training set is estimated on the predicted values of test set chemicals. The data set 

should be divided into three new sub-data sets, one for calibration and prediction (training), and the other one 

for testing. The calibration set was used for model generation. The prediction set was applied deal with 

overfitting of the network, whereas test set which its molecules have no role in model building was used for 

the evaluation of the predictive ability of the models for external set.  

In the other hand by means of training set, the best model is found and then, the prediction power of it is 

checked by test set, as an external data set. In this work, 60% of the database was used for calibration set, 20% 

for prediction set and 20% for test set, randomly (in each running program, from all 35 components, 7 
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components are in calibration set, 7 components are in prediction set and 21 components are in test set). 

The result clearly displays a significant improvement of the QSRR model consequent to non-linear 

statistical treatment and a substantial independence of model prediction from the structure of the test molecule. 

In the above analysis, the descriptive power of a given model has been measured by its ability to predict 

partition of unknown organic pollutants in textile wastewaters and landfill leachate.   

 For the constructed models, some general statistical parameters were selected to evaluate the predictive 

ability of the models for tR values. In this case, the predicted tR of each sample in prediction step was 

compared with the experimental acidity constant. Root mean square error (RMSE) is a measurement of the 

average difference between predicted and experimental values, at the prediction step. RMSE can be interpreted 

as the average prediction error, expressed in the same units as the original response values. Its small value 

indicates that the model predicts better than chance and can be considered statistically significant. The RMSE 

was obtained by the following formula: 
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   The other statistical parameter was relative error (RE) that shows the predictive ability of each component, 

and is calculated as: 
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   The predictive ability was evaluated by the square of the correlation coefficient (R2) which is based on the 

prediction error sum of squares and was calculated by following equation: 
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where yi is the experimental tR in the sample i, 
iy


 represented the predicted tR in the sample i,

_

y  is the mean 

of experimental tR in the prediction set and n is the total number of samples used in the test set.  

The main aim of the present work was to assess the performances of GA-PLS and L-M ANN for modeling 

the retention time of compounds. The procedures of modeling including descriptor generation, splitting of the 

data, variable selection and validation were the same as those performed for modeling of the retention time of 

organic pollutants in textile wastewaters and landfill leachate. 

 

4 Conclusion 

In this research, an accurate QSRR model for the retention time values of 35 organic pollutants in textile 

wastewaters and landfill leachate was developed by employing the GA-PLS and L-M ANN modeling. Both 
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methods seemed to be useful, although a comparison between these methods revealed the slight superiority of 

the L-M ANN over the model. High correlation coefficients and low prediction errors confirmed the good 

predictability of two models. Application of the developed model to a testing set of 30 compounds 

demonstrates that the new model is reliable with good predictive accuracy and simple formulation. The QSRR 

procedure allowed us to achieve a precise and relatively fast method for determination of tR of different series 

of organic pollutants to predict with sufficient accuracy the tR of new compound derivatives. To the best of our 

knowledge this is the first study for the prediction of retention time of organic pollutants in textile wastewaters 

and landfill leachate using GA-PLS and L-M ANN. 

 

 

References  

Aires-de-Sousa J, Hemmer MC, Casteiger J. 2002. Prediction of H-1 NMR chemical shifts using neural 

networks. Analytical Chemistry 74: 80-90 

Aschi M, D’Archivio AA, Maggi MA, et al. 2007. Quantitative structure-retention relationships of pesticides 

in reversed-phase high-performance liquid chromatography. Analytica Chimica Acta, 582(2): 235-242 

Baczek T, Kaliszan R. 2002. Combination of linear solvent strength model and quantitative structure-retention 

relationships as a comprehensive procedure of approximate prediction of retention in gradient liquid 

chromatography. Journal of Chromatography A, 962: 41-45 

Biache C, Ghislain T, Faure P, et al. 2011. Low temperature oxidation of a coking plant soil organic matter 

and its major constituents: An experimental approach to simulate a long term evolution. Journal of 

Hazardous Materials, 188: 221-230 

Boysen RI, Milton TW. 2010. High performance liquid chromatographic separation methods. In: 

Comprehensive Natural Products II. 5-49 

Burkhard LP, Durhan EJ, Lukasewycz MT. 1991. Identification of nonpolar toxicants in effluents using 

toxicity-based fractionation with gas chromatography/mass spectrometry. Analytical Chemistry, 63: 277-

283 

Castillo M, Barceló D. 1999. Identification of polar toxicants in industrial wastewaters using toxicity-based 

fractionation with liquid chromatography/mass spectrometry. Analytical Chemistry, 71: 3769-3776 

Castillo M, Barceló D. 2001. Characterisation of organic pollutants in textile wastewaters and landfill leachate 

by using toxicity-based fractionation methods followed by liquid and gas chromatography coupled to mass 

spectrometric detection. Analytica Chimica Acta, 426: 253-264 

Castillo M, Barceló D, Pereira AS, et al. 1999. Characterization of organic pollutants in industrial effluents by 

high-temperature gas chromatography–mass spectrometry. Trends in Analytical Chemistry, 18: 26-36 

Covaci A, Gheorghe A, Voorspoels S, et al. 2005. Polybrominated diphenyl ethers, polychlorinated biphenyls 

and organochlorine pesticides in sediment cores from the Western Scheldt river (Belgium): analytical 

aspects and depth profiles. Environment International, 31: 367-375 

Covarrubias C, García R, Arriagada R, et al. 2008. Removal of trivalent chromium contaminant from aqueous 

media using FAU-type zeolite membranes. Journal of Membrane Science, 312: 163-173 

Ferrand M, Huquet B, Barbey S, et al. 2011. Determination of fatty acid profile in cow's milk using mid-

infrared spectrometry: Interest of applying a variable selection by genetic algorithms before a PLS 

regression. Chemometrics and Intelligent Laboratory Systems, 106: 183-189 

Fragkaki AG, Tsantili-Kakoulidou A, Angelis YS, et al. 2009. Gas chromatographic quantitative structure–

retention relationships of trimethylsilylated anabolic androgenic steroids by multiple linear regression and 

partial least squares. Journal of Chromatography A, 1216: 8404-8420 

55



Environmental Skeptics and Critics, 2013, 2(2): 46-57 

 IAEES                                                                                    www.iaees.org

García-Pérez J, López-Cima MF, Boldo E, et al. 2010. Leukemia-related mortality in towns lying in the 

vicinity of metal production and processing installations. Environment International, 36: 746-753 

Gomez V, Ferreres L, Pocurull E, et al. 2011. Determination of non-ionic and anionic surfactants in 

environmental water matrices. Talanta, 84: 859-866 

Gutiérrez G, Cambiella A, Benito JM, et al. 2007. The effect of additives on the treatment of oil-in-water 

emulsions by vacuum evaporation. Journal of Hazardous Materials, 144: 649-654 

Hewitt M, Cronin MTD, Madden JC, et al. 2007. Consensus QSAR models: Do the benefits outweigh the 

complexity? Journal of Chemical Information and Modeling, 47: 1460-1468 

Huang KC, Zhao ZQ, Hoag GE, et al. 2005. Degradation of volatile organic compounds with thermally 

activated persulfate oxidation. Chemosphere, 61: 551-560 

Jalali-Heravi M, Noroozian E, Mousavi E. 2004. Prediction of relative response factors of electron-capture 

detection for some polychlorinated biphenyls using chemometrics. Journal of Chromatography A, 1023(2): 

247-254 

Kara S, Güven AS, Okandan M, et al. 2006. Utilization of artificial neural networks and autoregressive 

modeling in diagnosing mitral valve stenosis. Computers in Biology and Medicine, 36: 473-483 

Kara S, Okandan M. 2007. Atrial fibrillation classification with artificial neural networks. Pattern Recognition, 

40: 2967-2973 

Karen CW, Alberico BF. 2008. A chemometric study of the 5HT 1A receptor affinities presented by 

arylpiperazine compounds. European Journal of Medicinal Chemistry, 43(2): 364-372 

Kaliszan R. 1997. Structure, Retention in Chromatography. A Chemometric Approach. Harwood Academic 

Publishers, Amsterdam, Netherlands 

Mothes F, Reiche N, Fiedler P, et al. 2010. Capability of headspace based sample preparation methods for the 

determination of methyl tert-butyl ether and benzene in reed (phragmites australis) from constructed 

wetlands. Chemosphere, 80: 396-403 

Nash D, Leeming R, Clemow L, et al. 2005. Quantitative determination of sterols and other alcohols in 

overland flow from grazing land and possible source materials. Water Research, 39: 2964-2978 

Noorizadeh H, Farmany A. 2010. QSRR models to predict retention indices of cyclic compounds of essential 

oils. Chromatographia, 72: 563-569 

Noorizadeh H, Farmany A, Noorizadeh M. 2011. Quantitative structure retention relationship analysis 

retention index of essential oils. Quimica Nova, 34(2): 242-249 

Petitgirard A, Djehiche M, Persello J, et al. 2009. PAH contaminated soil remediation by reusing an aqueous 

solution of cyclodextrins. Chemosphere, 75: 714-718 

Put R, Heyden YV. 2007. Review on modelling aspects in reversed-phase liquid chromatographic quantitative 

structure-retention relationships. Analytica Chimica Acta, 602: 164-172 

Ruggieri F, D’Archivio AA, Carlucci G, et al. 2005. Application of artificial neural networks for prediction of 

retention factors of triazine herbicides in reversed-phase liquid chromatography. Journal of 

Chromatography A, 1076: 163-169 

Todeschini R, Consonni V, Mauri A, et al. 2003. DRAGON-Software for the calculation of molecular 

descriptors; Version 3.0 for Windows. 

US EPA. 1995. Method 8321A, Solvent extractable nonvolatile compounds by high performance liquid 

chromatography/ particle beam/mass spectrometry (HPLC/PB/MS) or ultraviolet (UV) detection. 1-50, US 

EPA, Office of Solid Waste and Emergency response, Washington DC, USA 

Wang MS, Wang LC, Chang-Chien GP. 2006. Distribution of polychlorinated dibenzo-p-dioxins and 

dibenzofurans in the landfill site for solidified monoliths of fly ash. Journal of Hazardous Materials, 133: 

56



Environmental Skeptics and Critics, 2013, 2(2): 46-57 

 IAEES                                                                                    www.iaees.org

177-182 

Watts MJ. 2011. Using data clustering as a method of estimating the risk of establishment of bacterial crop 

diseases. Computational Ecology and Software, 1(1): 1-13 

Watts MJ, Worner SP. 2011. Improving cluster-based methods for investigating potential for insect pest 

species establishment: region-specific risk factors. Computational Ecology and Software, 1(3): 138-145 

Zhang WJ. 2007. Supervised neural network recognition of habitat zones of rice invertebrates. Stochastic 

Environmental Research and Risk Assessment, 21: 729-735  

Zhang WJ. 2010. Computational Ecology: Artificial Neural Networks and Their Applications. World 

Scientific, Singapore 

Zhang WJ. 2011. Simulation of arthropod abundance from plant composition. Computational Ecology and 

Software, 1(1): 37-48 

Zhang WJ, Bai CJ, Liu GD. 2007. Neural network modeling of ecosystems: a case study on cabbage growth 

system. Ecological Modelling, 201: 317-325  

Zhang WJ, Barrion AT. 2006. Function approximation and documentation of sampling data using artificial 

neural networks. Environmental Monitoring and Assessment, 122: 185-201  

Zhang WJ, Liu GH, Dai HQ. 2008a. Simulation of food intake dynamics of holometabolous insect using 

functional link artificial neural network. Stochastic Environmental Research and Risk Assessment, 22(1): 

123-133 

Zhang WJ, Wei W. 2009. Spatial succession modeling of biological communities: a multi-model approach. 

Environmental Monitoring and Assessment, 158: 213-230 

Zhang WJ, Zhong XQ, Liu GH. 2008b. Recognizing spatial distribution patterns of grassland insects: neural 

network approaches. Stochastic Environmental Research and Risk Assessment, 22(2): 207-216  

Zhang WJ, Zhang XY. 2008. Neural network modeling of survival dynamics of holometabolous insects: a case 

study. Ecological Modelling, 211: 433-443 

 

 

57




