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Abstract 

A set of methodology for constructing ecological interaction networks by correlation analysis of community 

sampling data was presented in this study. Nearly 30 data sets at different levels of taxa for different sampling 

seasons and locations were used to construct networks and find network properties.  

I defined the network constructed by Pearson linear correlation is the linear network, and the network 

constructed by quasi-linear correlation measure (e.g., Spearman correlation) is the quasi-linear network. Two 

taxa with statistically significant linear or quasi-linear correlation are determined to interact. The quasi-linear 

network is more general than linear network.  

The results reveled that correlation distributions of Pearson linear correlation and partial linear correlation 

constructed networks are unimodal functions and most of them are short-head (mostly negative correlations) 

and long-tailed (mostly positive correlations). Spearman correlation distributions are either long-head and 

short-tailed unimodal functions or monotonically increasing functions. It was found that both mean partial 

linear correlation and mean Pearson linear correlation were approximately 0. The proportion of positive 

(partial) linear correlations declined significantly with the increase in taxa. The mean (partial) linear 

correlation declined significantly with the increase of taxa. More than 90% of network interactions are 

positive interactions. The average connectance was 9.8% (9.3%) for (partial) linear correlation constructed 

network. The parameter λ in power low distribution (L(x)=x-λ) increased as the decline of taxon level (from 

functional group to species) for the partial linear correlation constructed network. λ is in average 0.8 to 0.9. 

The number of (positive) interactions increased with the number of taxa for both linear and partial linear 

correlations constructed networks. The addition of a taxon would result in an increase of 0.4 (0.3) interactions 

(positive interactions) in the partial linear correlation constructed network. And the addition of a taxon would 

result in an increase of 3 interactions (positive interactions) in the linear correlation constructed network. For 

partial linear correlation constructed network, the network connectance decreased as the number of taxa. The 

constant connectance hypothesis did not hold for our networks. It was found that network structure changed 

with season and location. The same taxon in the network would connect to different taxa as the change of 

season and location. A higher level of species aggregation may used to find a more stable network structure. 

Positive interactions were considered to be caused mainly by mutualism, predation/parasitism, etc. the 

number and portion of positive interactions may be the most important indices for community stability and 

functionality. Mutualism is the most significant trophic relationship, seconded by predation/parasitism, and 

competition is the worst for community stability. 
 
Keywords linear network; quasi-linear network; network construction; community sampling; correlation 

analysis; degree distribution; link; interaction.  
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1 Introduction 

So far a lot of studies have been done for simple networks. Many results and methods were obtained from 

those studies. However, the networks met in last decade become more and more complex. There are always 

large numbers of vertices and links in a complex network. It will be impossible to approach such networks by 

using classical methods or algorithms. Graph theory, combinatorial optimization, statistics, and stochastic 

processes, etc., are thus becoming the scientific basis and effective tools for studying complex networks 

(Ferrarini, 2011; Zhang, 2011a; Zhang, 2012). It has been found that in the random network, degree 

distribution is binomial distribution, and its limit model is Poisson distribution. In a random network, the 

majority of vertices have the same degree with the average. In the complex network, degree distribution is a 

power law distribution, and the network is called a scale-free network (Barabasi and Albert, 1999; Barabasi, 

2009). Many complex networks, such as Internet, metabolic networks, communication networks, etc., are 

scale-free networks. A property of the scale-free networks is that the structure and the evolution of networks 

are inseparable. Scale-free networks constantly change because of the arrival of nodes and links (Barabasi 

and Albert, 1999). 

A food web usually contains a large number of species, in which they interact with each other by direct or  

indirect interactions (Schoener, 1993; May, 1983). Interactions always occur at different levels of taxa and 

spatial scales (Schmitz and Booth, 1997). 

The definition and classification of entities (taxa) and environment are important. We may sample some  

designated area and document all such interactions to construct a network within the area and the sites 

sampled (Butts, 2009; Schoenly and Zhang, 1999a,b). The approaches used will completely affect the 

resultant network structure, and the robustness of the network. Simultaneous analysis of the same system at 

multiple levels of aggregation is suggested (Butts, 2009). 

Most studies on food webs so far are based on species. Species aggregation, such as family and functional  

group, are seldom treated in food web studies. In a sense, hierarchical species aggregation would better 

represent biodiversity and environmental stability. If the environment for a higher hierarchical taxon are not 

suitable for survive this taxon, then its members at the lower hierarchical taxon may not survive in this 

environment. Ecological networks based on diverse hierarchies of taxa are thus necessary. There are more 

than two species at the higher hierarchical taxon and various species in the taxon may play different roles. 

Some of them are predators and others may be preys. So it is hard to determine the orientation of a link, 

which will result in an un-oriented graph (network). For these networks, correlation analysis above is an 

effective method to determine between-taxon interactions. 

It was found that scale and resolution affect food web structure (Martinez,1993a,b). Co-extinction tends  

to involve taxonomically related species (phylogenetic species, e.g, species belonging to the same genera) 

(Rezende et al., 2007). Trophic taxa extinct more rapidly (Petchey et al., 2008). Phylogenetic relatedness can 

partly explain the patterns of interactions between species (Rezende et al., 2007).  

Food webs are found to be robust to the random extinction of species but rely on a few well-connected  

species that act as glue keeping the whole network together. If these key species disappear, it is expected that 

the entire network will collapse very rapidly (Memmott et al., 2004; Montoya et al., 2006; Dunne et al., 

2002). 

A key challenge in quantifying interspecific variation within diverse plant communities is that many 

species occur at extremely low densities, making it infeasible to collect sufficient data for meaningful 

statistical analyses at the species level for most species (Comita et al., 2010). Previous studies of density 

dependence have dealt with this by limiting analyses to the most abundant species in the community or 

lumping species into broad functional groups or abundance classes. However, different patterns of species 
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aggregation that generate taxa can produce networks of different structural features. They influence the 

number of links per taxon, average length of food chain, etc. (Sugihara et al., 1997; Solow and Beet, 1998). 

To avoid misleading conclusions, the set of nodes should be defined so as to include all distinct entities that 

are capable of participating in the relationship under study (Butts, 2009). Although there are some 

shortcomings with species aggregation, however these approaches can reduce various deviations (Williams 

and Martinez, 2000) and are thus widely accepted in the network studies (Arii et al., 2007). So far potential 

influences of species aggregation on degree distribution of food web have not been approached (Arii et al., 

2007). 

Past ecological network studies always omitted the interaction strength (Paine, 1980, 1988, 1992). 

However, many forms of interaction are inherently episodic and occur at variable rates (Whitehead and 

Dufault, 1999). Just imagine two arthropod networks with the same species and known links, theoretically 

their food webs are the same. However we find that there are huge differences between two networks, such as 

distribution of interaction strength, community functionality, etc. Thus static food webs are not able to 

represent actual ecological networks. Dichotomization of such data not only obscures such variation but also 

requires selecting a threshold level, the choice of which can substantially alter the properties of the resulting 

network, both directly through selective tie removal (Onnela et al., 2007) and indirectly through changes in 

network density (Faust, 2007).  

Network structures with different connection strengths can vary greatly. It is necessary to determine 

whether the relationship under study is sufficiently stable over the period of interest (Butts, 2006, 2009). For 

relations known to be highly heterogeneous, no single threshold may suffice and a weighted graph 

representation will frequently be more appropriate. To assess the effectiveness of such approximations and 

provide concrete, empirically validated guidelines for practice within particular problem domains would be a 

welcome addition to the literature (Butts, 2006, 2009). The identification of common architectures, robust in 

the face of perturbations regardless of specific details may emerge form such studies (Matsuda and Namba, 

1991; Bascompte, 2009). 

Methodology for constructing ecological networks by correlation analysis of community sampling data 

were presented in this study. Nearly 30 data sets at different levels of taxa (species, family, functional group, 

etc.) for different sampling years and seasons and different countries were used to construct ecological 

networks and find network properties. 

 

2 Materials and Methods 

2.1 Sampling data  

Totally 60 plots, each with 1 m2 of rice field, were randomly sampled for arthropods using a machine sucker in 

Guangzhou, China, at September 16 and 30, and October 14 and 28 of 2006, respectively. Arthropods were 

taken to laboratory and identified to families and functional groups (herbivores, neutral arthropods, predators 

and parasitoids/parasites). Data were stored as 4 sample-by-family matrices and 4 sample-by-functional groups 

matrices. 

In total of 80 plots, each with 1 m2 of rice field, were sampled for arthropods using a machine sucker in 

Guangzhou, Zhuhai, Zhongshan and Dongguan cities of China at earlier September 2008. Arthropods were 

taken to laboratory and identified to species and families. Data were stored as a sample-by-species matrix and 

a sample-by-family matrix. 

In Luzon of Philippines, arthropod samples for invertebrates were collected in the rice field on March, April, 

September and October, mid-1990s, respectively. In total of 60 samples were collected for each of four 

sampling dates. Invertebrates were sorted to stage (immatures, adults) and then identified to lowest possible 
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taxon. Data from the records were stored as 4 sample-by-species matrices (immatures and adults were listed 

separately, and defined as different (trophic) species in present study), and then lumped into 4 

sample-by-family matrices, 4 functional group (in different seasons there were 20-21 functional groups 

respectively) matrices, and 4 macro-functional group (there are 7 macro-functional groups) matrices using 

LUMP method (Schoenly and Zhang, 1999a; Zhang, 2007a).  

Following Schoenly and Zhang (1999), for data recorded in Luzon, a functional group was assigned to each 

taxon (adult and immature) based on what it was doing the majority of the time in the rice ecosystem, in which 

there were 7 macro functional groups and 35 functional groups:  

(1) Herbivores: pollen feeder; external plant feeder; leaf roller/webber; case bearer and caseworm; leaf 

miner; gall former; borer; root feeder; shredder (aquatic); mixed (combination of two or more of above);  

(2) Predators: terrestrial flyer; terrestrial crawler, walker, jumper, or hunter; neustonic (water surface) 

swimmer (semiaquatic); planktonic (water column) swimmer and diver; terrestrial web-builder; mixed 

(combination of two or more of above); 

(3) Parasitoids/parasites: idiobiont (neuropteran ectoparasitoid); idiobiont (hymenopteran ectoparasitoid); 

koinobiont (hymenopteran endoparasitoid); koinobiont (dipteran endoparasitoid); parasite (aquatic or 

terrestrial); terrestrial blood sucker; koinobiont (strepsipteran endoparasitoid); flying adult that is searching, 

ovipositing, or larvipositing; idiobiont (acarine ectoparasitoid); koinobiont (nematode endoparasitoid);  

idiobiont (dipteran ectoparasitoid); 

(4) Detritivores: collector (filterer, suspension feeder); collector (gatherer, deposit feeder); shredder, 

chewer of coarse particulate Matter; 

(5) Tourists: tourist (nonpredatory species with no known functional role other than as prey in ecosystem); 

(6) Omnivores: herbivore and predator; herbivore and detritivore; herbivore, predator, and detritivore;  

(7) Dual insectivores: predator and parasitoid. 

All data sets were tested for sample homogeneity (Zhang, 2011b) and used for further analysis. 

2.2 Correlation analysis 

2.2.1 Pearson linear correlation 

2.2.2 Partial linear correlation 

Partial linear correlation (Rij) is based on Pearson linear correlation, which reflects between-taxon direct (pure, 

or net) correlation (Zhang, 2007b; Zhang, 2012).  

2.2.3 Spearman correlation 

See Schoenly and Zhang (1999b), and Zhang (2012) for Spearman correlation. Follow the calculation of 

partial linear correlation, I used Spearman partial correlation in the same way. 

Between-taxon correlation can be used to find a network. If the taxon is not a species but family or 

functional group, etc, the relationship between two taxa will be complex because between-species 

interactions may be diverse. In this case the correlation measure is an alternative method to detect a network. 

I define that the networks derived from linear correlation are linear networks, and the networks derived  

from Spearman correlation, which is a quasi-linear correlation measure, are a kind of quasi-linear networks. 

Statistically significant correlations, i.e., taxa pairs with significant linear or quasi-linear dependency are 

included in two kinds of networks respectively. 

In a linear network, the states of two linked taxa will show a linear dependent relationship whereas for a 

quasi-linear network (created by partial Spearman correlation), the states of two linked taxa will show a 

quasi-linear dependent relationship. Taxa that never follow linear and quasi-linear relationships are excluded 

from the two networks respectively. In a sense, taxa in the network are easily predictable and taxa excluded 

from the network are hard to be predicted.  
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Using partial correlation will result in a network with all links as direct interactions. Pearson linear 

correlation and Spearman correlation can be used to create a network with links as indirect interactions. In 

later case an interaction is indirect.  

  Here I define an index, network compactness, to measure the interaction intensity in a network: network 

compactness =the sum of between-taxon correlation coefficients of interactions/the number of taxa. Two 

networks or ecosystems with the same type can be compared for their stability and maturity. 

2.3 Degree and links 

In present study, the number of links of a taxon is the degree of the taxon, and 

degree=(incoming-degree)+(outgoing-degree). Connectance of a network represents the connection intensity 

of the network. Connectance=actual interactions/potential interactions. 

We avoid the assumption of dichotomous relationships by allowing between-taxon links (edges) to carry 

different weights (connection strength) (Butts, 2009). Abstractly all taxa in a system link each other with 

different link weights. The links with zero weight are deleted. Moreover, links with weights lower than 

desired can also be deleted. So the threshold of link weights may be defined to finally create a network.  

Between-taxon correlation is a kind of link weight. A between-taxon correlation was treated as a link, or a 

directed or indirected interaction if the correlation is statistically significant. If the environment conditions for 

sampling arthropods are the same, spatial sampling may be used to substitute for temporal sampling and 

dynamic interactions can be represented by spatial changes of interactions. The statistically significant 

correlations should thus represent the true interactions (directed interactions for partial linear correlations) 

and the corresponding taxa pairs may be considered to have interactions or links. Moreover, the general 

principles of ecological interaction networks can be drawn by correlation analysis of community sampling 

data across various seasons and locations and taxon hierarchies. 

 

3 Distribution of Between-taxon Correlations 

Distributions of between-taxon correlation coefficients were calculated based on three correlation measures, 

Pearson linear correlation, partial linear correlation and Spearman correlation (Fig.1).  

  Fig.1 demonstrates that all of Pearson linear correlation and partial linear correlation based distributions 

are unimodal functions. Most of them are short-head (mostly negative correlations) and long-tailed (mostly 

positive correlations) unimodal curves (Fig.1). However, Spearman correlation based distributions show 

different patterns. They are either long-head and short-tailed unimodal functions or monotonically increasing 

functions (Fig.1). Most between-taxon Spearman correlations are positive correlations. 

To describe Spearman correlation and Pearson linear (partial linear) correlation based distributions, I 

present here a distribution function as the following:  

 
                                  f(r)=α(r-a)

β
(b-r)γ, a≤r≤b; 

                                  f(r)=0, r>a or r<b;  

                                      α>0, β≥0, γ≥0. 

 
where f(r): probability density (or frequency) function; α: scale parameter; β, γ: shape parameters; a, b: 

position parameters. The probability density function is illustrated in Fig.3. Theoretically it may soundly 

describe all distributions indicated in Fig.3. 
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Fig. 1 Distributions of between-taxon correlation coefficients. A: distributions of between-family correlation coefficients for 
four seasons, China, 2006; B: distributions of between-family correlation coefficients for April and September and 
between-species correlation coefficients for September, China, 2008; C, D and E: distributions of between-species, 
between-family and between-functional group correlation coefficients for four seasons, Philippines (Fig. 2). 
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Fig. 2 Between-family (A) and between-species (B) Pearson linear correlations (PH-Apr) 

 

 

Fig. 3 A distribution model developed by author 

 

 

The general statistics of ecological networks of arthropods based on Pearson linear correlation and partial  

linear correlation are listed in Table 1. From Table 1 we may find that both mean partial linear correlation and 

mean Pearson linear correlation for all levels of taxa and all sampling dates and sites are nearly 0.  
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The result, obtained from the data in Table 1, showed that the proportion of positive linear (partial linear)  

correlations declined significantly with the increase in taxa (species, family, (macro) functional group) in the 

ecosystem (Fig. 4): 

 

                  y=0.6667-0.0033S, r2=0.467, F=21.921, n=27, p=0.0001  (linear) 

                  y=0.6916-0.0091S, r2=0.505, F=13.179, n=15, p=0.003   (partial linear) 

 

where y: proportion of positive linear (partial linear) correlations; S: number of taxa. The addition of a taxon 

will result in a decrease of proportion of positive (partial linear) correlations in the system by 0.33% (0.91%). 

This result shows that pure linear correlation is stricter than Pearson linear correlation, and thus declined 

more quickly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The relationship between the proportion of positive linear (partial linear) correlations and number of taxa. 

 

 

The mean linear (partial linear) correlation declined significantly with the increase in taxa (species, 

family, (macro) functional group) in the ecosystem: 

 

                   y=0.124-0.001S, r2=0.331, F=11.869, n=27, p=0.0021   (linear) 

                   y=0.146-0.006S, r2=0.597, F=19.247, n=15, p=0.0007   (partial linear) 

 

where y: mean linear (partial linear) correlation; S: number of taxa. This means that network compactness 

decreases with the increase of taxa.  

 

4 Degree Distribution and Degree-Taxon Relationships 

4.1 Degree distribution 

From Table 1 we may find that more than 90% of interactions are positive interactions. The average 

connectance is 9.8% (9.3%) for (partial) linear correlation generated network. The lower connectance proves 

that many taxa in the linear network are isolated taxa. 

The degree distribution of taxon (species, family, functional group) constructed by between-taxon Pearson 
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linear and partial linear correlations are overall power law distribution: L(x)=x-λ , where L(x) is frequency, x is 

degree, i.e., the number of links of a taxon, as illustrated in Fig. 5. 

 

 

Table 1 Network information based on Pearson linear correlation and partial linear correlation 

Data set Taxon 
Pearson 

linear corr. 
(PLC) 

Sample 
size 

No. 
taxa
(S) 

Total correlations 
Number of statistically significant 

interactions (p<=0.01) 

Total 
No. 
(N) 

Posi. 
(s) 

s/N 
(%) 

Mean of  
PLC 

Total 
(L) 

L/N 
(%) 

Posi. 
interact. 

(w) 

w/n 
(%) 

CN-06sep Func. group  PLC 35 4 6 6 100 0.2791 2 33.3 2 100 

CN-06sep Func. group Partial PLC 35 4 6 4 66.7 0.2032 1 16.7 1 100 

CN-06sep Func. group  PLC 54 4 6 6 100 0.2663 1 16.7 1 100 

CN-06sep Func. group Partial PLC 54 4 6 5 83.3 0.1804 2 33.3 2 100 

CN-06Oct Func. group  PLC 60 4 6 4 66.7 0.1698 2 33.3 2 100 

CN-06Oct Func. group Partial PLC 60 4 6 4 66.7 0.1285 2 33.3 2 100 

CN-06Oct Func. group  PLC 60 4 6 6 100 0.1791 0  0  0  - 

CN-06Oct Func. group Partial PLC 60 4 6 4 66.7 0.1364 0 0 0 - 

PH-Mar Func. group  PLC 60 21 210 84 40.0 -0.0003 9 4.3 5 55.6

PH-Mar Func. group Partial PLC 60 21 210 100 47.6 0.0029 3 1.4 2 66.7

PH-Apr Func. group  PLC 60 20 190 115 60.5 0.0977 22 11.6 22 100 

PH-Apr Func. group Partial PLC 60 20 190 91 47.9 0.0151 12 6.3 10 83.3

PH-Sep Func. group  PLC 60 21 210 130 61.9 0.0766 13 6.2 13 100 

PH-Sep Func. group Partial PLC 60 21 210 107 51.0 0.0259 4 1.9 4 100 

PH-Oct Func. group  PLC 60 21 210 108 51.4 0.0416 11 5.2 11 100 

PH-Oct Func. group Partial PLC 60 21 210 102 48.6 0.0178 3 1.4 3 100 

PH-Mar Macro func. group  PLC 60 7 21 9 42.9 -0.0045 1 4.8 1 100 

PH-Mar Macro func. group Partial PLC 60 7 21 9 42.9 -0.0012 2 9.5 1 50.0

PH-Apr Macro func. group  PLC 60 7 21 17 81.0 0.2427 7 33.3 7 100 

PH-Apr Macro func. group Partial PLC 60 7 21 13 61.9 0.0952 2 9.5 2 100 

PH-Sep Macro func. group  PLC 60 7 21 15 71.4 0.169 6 28.6 6 100 

PH-Sep Macro func. group Partial PLC 60 7 21 14 66.7 0.0963 1 4.8 1 100 

PH-Oct Macro func. group  PLC 60 7 21 13 61.9 0.0757 2 9.5 2 100 

PH-Oct Macro func. group Partial PLC 60 7 21 12 57.1 0.0508 2 9.5 2 100 

CN-06Sep Family  PLC 35 19 171 78 45.6 0.0557 10 5.9 10 100 

CN-06Sep Family  PLC 54 23 253 127 50.2 0.0529 19 7.5 19 100 

CN-06Sep Family Partial PLC 54 23 253 138 54.6 0.0276 12 4.7 10 83.3

CN-06Oct Family  PLC 60 23 253 104 41.1 0.0374 16 6.3 16 100 

CN-06Oct Family Partial PLC 60 23 253 110 43.5 0.0082 7 2.8 7 100 

CN-06Oct Family  PLC 60 27 351 132 37.6 0.032 24 6.8 23 95.8

CN-06Oct Family Partial PLC 60 27 351 179 51.0 0.0171 15 4.3 12 80.0

CN-08Apr Family  PLC 55 44 946 275 29.1 0.0339 66 7.0 66 100 

CN-08Sep Family  PLC 80 58 1653 582 35.2 - 61 3.7 61 100 
PH-Mar Family  PLC 60 66 2145 742 34.6 -0.001 65 3.0 62 95.4
PH-Apr Family  PLC 60 71 2485 1107 44.6 0.0376 160 6.4 159 99.4
PH-Sep Family  PLC 60 75 2775 1161 41.8 0.0359 144 5.2 144 100 
PH-Oct Family  PLC 60 75 2775 1140 41.1 0.0258 117 4.2 116 99.2
PH-Mar Species  PLC 60 126 7875 2252 28.6 0.0014 272 3.5 264 97.1
PH-Apr Species  PLC 60 141 9870 3264 33.1 0.0146 572 5.8 559 97.7
PH-Sep Species  PLC 60 131 8515 2584 30.4 0.0197 411 4.8 410 99.8
PH-Oct Species  PLC 60 140 9730 2766 28.4 0.012 397 4.1 396 99.8

CN-08Sep Species  PLC 80 117 6786 1913 28.2 0.0068 256 3.8 255 99.6

 

 

Table 2 demonstrates that overall the parameter λ in power law distribution, L(x)=x-λ, increases as the  

decline of taxon hierarchy for partial linear correlation based network. For macro functional group, functional 

group and family, the parameter λ is 0.32, 1.18 and 1.39 (Functional group of China is equivalent to macro 
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functional group in Philippines). This is also in accordant with the findings that degree centralization changes 

both qualitatively and quantitatively with size (Butts, 2006). We can conclude that parameter λ in power law 

distribution, L(x)=x-λ, is in average 0.8.  

 The result also means that parameter λ in power law distribution may be scale-dependent. 

 

                               Table 2 Parameter λ in power law distribution, L(x)=x-λ. 

Data set CN-06oct CN-06sept CN-06oct PH-Mar PH-Oct PH-Oct  
Taxon Family Family Family Func. group Func. group Func. group  
λ 1.6397 1.4307 1.1139 1.2041 1.2041 1.1461 Mean

Data set CN-06sep CN-06sep PH-Apr PH-Mar PH-Oct PH-Sep 0.7933

Taxon Func. group Func. group 
Macro func. 

group 
Macro func. 

group 
Macro func. 

group 
Macro func. 

group 
 

λ 0.2314 0 0.6021 0.6021 0.6021 0.5372  

           Note: Networks were created by partial linear correlation. 

 

 

4.2 Degree-taxon relationships 

Tabel 3 shows that both the number of interactions and the number of positive interactions in the network 

increase with the number of taxa (species, family, (macro) functional group) for both linear and partial linear 

correlations based networks. The addition of a taxon will result in an increase of 0.4 (0.3) interactions 

(positive interactions) in the partial linear correlation based network. And the addition of a taxon will result in 

an increase of 3 interactions (positive interactions) in the linear correlation based network. However, mean 

number of (positive) interactions per taxon will not change as the increase of taxa in the partial linear 

correlation network. 

 From Table 3, for partial linear correlation based network, the network connectance decreases with the 

number of taxa (p<0.05). The increase of 10 taxa will result in the 0.07 decrease of connectance. 

Two functional group networks, with several isolated taxa, were created by partial linear correlation and  

Pearson linear correlation respectively, as illustrated in Fig. 6. From Fig. 6, we may find that pollen feeder, 

external plant feeder, and collector (gatherer, deposit feeder), etc., are key functional groups. 

It was found that network structure changed with season and location. The same taxon in the network  

would connect to different taxa as the change of season and location. A higher level of species aggregation 

would result in a more stable network structure. Construction of the specific network for specific season and 

location is thus necessary. 

 

 

         Table 3 Degree-taxon linear regressional relationships (y=a+bS, S: number of taxa). 

  y a b r2 F  p 

Linear 

correlation 

based 

networks 

Number of interactions -43.677 3.045 0.877  178.368  0.000 

Number of positive interactions -43.224 3.008 0.879  180.946  0.000 

Mean number of interactions per taxon 0.289 0.019 0.856  148.627  0.000 

Mean number of positive interactions per taxon 0.289 0.019 0.850  142.104  0.000 

Partial 

linear 

correlation 

based 

networks 

Number of interactions -0.957 0.412 0.604  19.830  0.001 

Network connectance 0.187 -0.007 0.346 6.873 0.021

Number of positive interactions -0.651 0.344 0.624  21.593  0.001 

Mean number of interactions per taxon 0.251 0.005 0.054  0.739  0.406 

Mean number of positive interactions per taxon 0.248 0.003 0.018  0.241  0.632 
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Fig. 5 Degree distributions of ecological networks. A: distributions of family networks for four seasons, China, 2006; B: 
distributions of family networks for April and September and species networks for September, China, 2008; C, D and E: 
distributions of species, family and functional group networks for four seasons, Philippines. 
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Fig. 6 Functional group networks (PH-Apr) generated by (A) partial linear correlation; (B) Pearson linear correlation; (C): 
Spearman partial correlation; (D) Spearman correlation. All networks were drawn by the software of Zhang (2012). Functional 
groups 1 to 20: (1) pollen feeder; (2) external plant feeder; (3) leaf roller/webber; (4) leaf miner; (5) gall former, (6) mixed 
(Schoenly and Zhang, 1999a); (7) terrestrial flyer; (8) terrestrial crawler, walker, jumper, or hunter; (9) neustonic (water surface) 
swimmer (semiaquatic); (10) planktonic (water column) swimmer and diver; (11) terrestrial web-builder; (12) terrestrial blood 
sucker; (13) flying adult that is searching, ovipositing, or larvipositing; (14) idiobiont (acarine ectoparasitoid); (15) collector 
(filterer, suspension feeder); (16) collector (gatherer, deposit feeder); (17) shredder, chewer of coarse particulate matter; (18) 
tourist (nonpredatory species with no known functional role other than as prey in ecosystem); (19) herbivore, predator, and 
detritivore; (20) predator and parasitoid. 

 

 

5 Quasi-linear Network 

General statistics of ecological networks of arthropods based on Spearman correlation are listed in Table 4. 

From Table 4 we may find that mean Spearman (partial) correlation (Spearman partial correlation was  

defined following the calculation of partial linear correlation, which is an approximation of true Spearman 

partial correlation. However, the formulae for true Spearman partial correlation should be further studied) for 

all levels of taxa and all sampling dates and sites are nearly 0.5 (0.1). About 99% (91%) between-taxon 

interactions are positive interactions. 
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Results showed that the number of positive Spearman correlations and mean Spearman correlation 

increased with the number of taxa. An ecosystem with more taxa will have a higher mean Spearman 

correlation.  

  The number of (positive) interactions and proportion of positive interactions increase with the increase in 

taxa. The addition of a taxon will result in an increase of 0.4 (0.3) interactions (positive interactions) in the 

network, which is similar to the results from linear networks. 

  The average connectance of quasi-linear networks is 15.4% for Spearman partial correlation (but 69.5% for 

Spearman correlation) based network, larger than the connectance (9.3% and 9.8%) of linear networks.  

 From Table 3, for Spearman partial correlation based network, the network connectance decreases with  

the number of taxa (p<0.05). The increase of 10 taxa will result in the 0.1 decrease of connectance.  

 

Table 4 Network information based on Spearman correlation 

Data set Taxon 

 
Spearman 
correlation 
coefficient 

(SCC) 

Sampl. 
size 

No. 
taxa 
(S) 

Total potential interactions 
Number of statistically significant 

interactions (p<=0.01) 

Total 
No. 
(N) 

Posi. 
(s) 

s/N 
(%) 

Mean 
of 

SCC 

Total 
(L) 

L/N 
(%) 

Posi. 
interact. 

(w) 

w/n 
(%) 

CN-06sep Func. group SCC 35 4 6 6 100 0.4178 3 50.0 3 100

CN-06sep Func. group Parti. SCC 35 4 6 5 83.3 0.2452 2 33.3 2 100

CN-06sep Func. group SCC 54 4 6 6 100 0.4058 5 83.3 5 100

CN-06sep Func. group Parti. SCC 54 4 6 5 83.3 0.2299 2 33.3 2 100

CN-06oct Func. group SCC 60 4 6 6 100 0.3309 2 33.3 2 100

CN-06oct Func. group Parti. SCC 60 4 6 5 83.3 0.1986 2 33.3 2 100

CN-06oct Func. group SCC 60 4 6 6 100 0.2551 1 16.7 1 100

CN-06oct Func. group Parti. SCC 60 4 6 5 83.3 0.1754 1 16.7 1 100

PH-Mar Func. group SCC 60 21 210 177 84.3 0.2747 98 46.7 95 96.9

PH-Mar Func. group Parti. SCC 60 21 210 132 62.9 0.0555 10 4.8 8 80.0

PH-Apr Func. group SCC 60 20 190 181 95.3 0.3749 111 58.4 111 100

PH-Apr Func. group Parti. SCC 60 20 190 117 61.6 0.0617 11 5.8 10 90.9

PH-Sep Func. group SCC 60 21 210 200 95.2 0.3896 126 60.0 125 99.2

PH-Sep Func. group Parti. SCC 60 21 210 131 62.4 0.0636 8 3.8 7 87.5

PH-Oct Func. group SCC 60 21 210 208 99.1 0.399 129 61.4 129 100

PH-Oct Func. group Parti. SCC 60 21 210 135 64.3 0.0597 9 4.3 7 77.8

PH-Mar Macro func. group SCC 60 7 21 15 71.4 0.1541 7 33.3 7 100

PH-Apr Macro func. group SCC 60 7 21 20 95.2 0.321 9 42.9 9 100

PH-Sep Macro Func. group SCC 60 7 21 17 81.0 0.2152 7 33.3 6 85.7

PH-Oct Macro func. group SCC 60 7 21 20 95.2 0.2688 8 38.1 8 100

CN-06sep Family SCC 35 19 171 171 100 0.5534 123 71.9 123 100

CN-06sep Family SCC 54 23 253 251 99.2 0.5732 218 86.2 218 100

CN-06oct Family SCC 60 23 253 253 100 0.5769 219 86.6 219 100

CN-06oct Family SCC 60 27 351 349 99.4 0.6035 306 87.2 306 100

CN-06oct Family Parti. SCC 60 27 351 205 58.4 0.0455 11 3.1 9 81.8

CN-08apr Family SCC 55 44 946 946 100 0.7252 914 96.6 914 100

CN-08Sep Family SCC 80 58 1653 1630 98.6 0.5625 1432 86.6 1432 100

PH-Mar Family SCC 60 66 2145 2077 96.8 0.5191 1683 78.5 1680 99.8

PH-Apr Family SCC 60 71 2485 2446 98.4 0.5311 2035 81.9 2034 100

PH-Sep Family SCC 60 75 2775 2756 99.3 0.6009 2467 88.9 2466 100

PH-Oct Family SCC 60 75 2775 2763 99.6 0.5792 2404 86.6 2404 100

PH-Mar Species SCC 60 126 7875 7785 98.9 0.6391 7067 89.7 7064 100

PH-Apr Species SCC 60 141 9870 9805 99.3 0.6341 9044 91.6 9042 100

PH-Sep Species SCC 60 131 8515 8494 99.8 0.7054 8134 95.5 8133 100

PH-Oct Species SCC 60 140 9730 9713 99.8 0.6995 9268 95.3 9268 100

CN-08sep Species SCC 80 117 6786 6769 99.8 0.703 6555 96.6 6555 100
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The degree distribution of taxon derived from between-taxon Spearman partial correlation is power law  

distribution, L(x)=x-λ, where x is degree, i.e., the number of links of a taxon, as illustrated in Fig. 4. It means 

that the link frequency of the quasi-linear network decreases as the degree. We can conclude that parameter λ 

in power law distribution, L(x)=x-λ, is in average 0.86.  

 According to parameter λ in power law distribution, L(x)=x-λ, the degree distributions of networks construc-  

ted by partial linear correlation and Spearman partial correlation are similar to each other.  

 
Table 5 Degree-taxa linear regressional relationships (y=a+bS, S: number of taxa) based on  
Spearman correlation and quasi-linear networks. 

 y a b r2 F  p 

Spearman Number of positive correlations -1042.656 67.476 0.937 372.505 0 

correlation Proportion of positive correlations 0.944 0.0005 0.101 2.796 0.107

 Mean correlation 0.356 0.0027 0.571 33.299 0 

 Number of interactions -2010.660 63.288 0.927 317.842 0 

Spearman Number of positive interactions -1020.863 63.279 0.927 317.622 0 

correlation Mean number of interactions per taxon -2.514 0.478 0.995 4684.603 0 

 Mean number of positive interactions per taxon -2.535 0.478 0.995 4592.662 0 

 Number of interactions 0.116 0.436 0.944 117.932 0 

Spearman Network connectance 0.340 -0.013 0.844 37.759 0.001

partial  Number of positive interactions 0.474 0.347 0.906 67.361 0 

correlation Proportion of positive interactions 1.034 -0.009 0.843 37.665 0.001

 Mean number of interactions per taxon 0.442 0.0001 0.0002 0.001 0.972

 Mean number of positive interactions per taxon 0.456 -0.004 0.140 1.142 0.321

 

                            Table 6 Parameter λ in power law distribution, L(x)=x-λ.  

Data set CN-06sep PH-Mar CN-06oct PH-Sep PH-Oct PH-Apr  

Taxon Family Func. group Family Func. group Func. group Func. group  

λ 3.2181 1.3652 1.3098 1.2640 1.2137 1.2091 Mean

Data set PH-Apr CN-06oct CN-06sep CN-06oct PH-Mar PH-Oct 0.8574

Taxon 
Macro func. 

group 
Func. group Func. group Func. group

Macro func. 
group 

Macro func. 
group 

 

λ 0.4771 0.2314 0 0 0 0  

           Note: Networks were constructed by Spearman partial correlation. 

 

 

6 Discussion 

The scale-free property is an important feature of complex networks. Researchers are trying to approach the 

causes and mechanisms of the property in recent years. The possible causes and mechanisms include the 

following: (1) with the addition of new vertices, the network continues to expand; (2) new vertices tend to 

connect to already better connected vertices (Barabasi and Albert, 1999; Barabasi, 2009). 

In present study, I defined the linear network and the quasi-linear network. Quasi-linear networks can be 

constructed based on other quasi-linear correlations, as point correlation, linkage correlation, etc. (Zhang, 

2007b). However, the partial correlation based on these correlation measures should be further defined, as 

temporarily defined and used for Spearman partial correlation in present study. To obtain a relatively stable 

network, all sampling plots or sites should first be homogeneous, i.e., all plots are the same in the 

environmental conditions. It should be noted that sample size (number of samples) must be larger than 

number of taxa in the community sampling in order to better use partial correlation analysis. 

It was found that network structure changed with season and location. The same taxon in the network  

would connect to different taxa as the change of season and location. A higher level of species aggregation 
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would result in a more stable network structure. Construction of the specific network for specific season and 

location is necessary. 

  Studies on between-taxon interactions may encounter problems due to the fluidity of the interacting units, 

and the fact that sub-taxa of a larger taxon may themselves interact with others both within and without the 

“parent” (Butts, 2009). To avoid mistakes, the taxa (species aggregates) must be deliberately defined. Large 

sample sets should also be taken.  

Most of the past studies stressed the importance of negative interactions, as competitive exclusion principle, 

Lotka-Volterra model, etc. Those theories have laid a foundation for theoretical framework of ecology (Bruno 

et al., 2003). However, more and more recent studies have challenged the dominance of competition 

(Feinsinger, 1987; Callaway, 1995; Bruno et al., 2003; Dormann, 2011). Some argued that mutualism is the 

basis of community process (Bengtsson et al. 1994; Palmer et al., 2003). Mutualistic networks included 

mutually beneficial interactions (positive interactions) which play a major role in the generation and 

maintenance of biodiversity on Earth (Thompson, 2005). And mutualistic interactions are always weak 

(Bascompte and Jordano, 2007). A report showed that there were 14 positive interactions in 17 interactions of 

the pollination network (Hegland et al., 2009). To explain mutualism some hypotheses have been developed. 

Neutral hypothesis argues that network patterns are generated by random interactions of pair-wise individuals 

which lead to more frequent interactions between abundant species than between rare species and more 

species interacts with each other (Dupont et al., 2003, Ollerton et al., 2003, Vazquez et al., 2007). Link 

banning hypothesis maintains that network patterns are jointly generated by species phenotype, bio-climate, 

spatial distribution and phelogeny (Jordano et al., 2003; Rezende et al., 2007; Santamara and 

Rodrguez-Girones, 2007; Stang et al., 2007). The constant connectance hypothesis reported in some previous 

studies (Pimm et al., 1991; Havens, 1992; Martinez, 1992) did not hold for the networks we investigated. 

Present study proved that the parameter λ in power law distribution of degree, p(x)=x-λ, increases as the 

decline of taxon hierarchy and λ was in average 0.8 to 0.9. Network connectance decreases with the number 

of taxa (p<0.05). The addition of 10 taxa results in the 0.07 to 0.1 decrease of connectance.  

Link-species scaling law supposed that L≈aS, on average, the number of links per species in a web is  

constant and scale invariant at roughly two, and therefore, L≈2S (Cohen et al., 1990; Martinez, 1992). 

However, the present results showed that the number of links per taxon was 0.25 for linear networks and 0.45 

for quail-linear networks.  

  To better represent the importance of a taxon (as a producer) in the network, the degree is a reasonable 

measure. In general the more the degree of a taxon, the more significant the taxon (as a producer) is. 

The present study proved that most correlations are weak, and positive interactions accounted for the most 

of the actual interactions. In my view, the sampling data for mutualistic species and predator/prey and 

parasite(parasitoid)/host species will in most cases result in positive correlations, as theoretically illustrated in 

Fig. 7. The sampling data for only a few of competitive species (in particular the species with perfect 

competition) would yield negative correlations. Dominance of negative interactions may occur in competition 

driven communities. Overall positive interactions, caused mainly by mutualism, predation/parasitism, etc., 

are thus dominant in the ecological network. The dominance of positive interactions is a natural selection for 

co-existence of species and is the outcome of ecosystem and species evolution. I suggest that the number and 

portion of positive interactions may be the most important indices for community stability and functionality. 

Mutualism is the most significant trophic relationship, seconded by predation/parasitism, competition is the 

worst for community stability. 

Similar to most studies of ecological networks, this study focused on the statistical aspect of networks. So  

far most of the studies have not yet used graph theory and optimization theory to analyze ecological networks 
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(Ferrarini, 2011; Zhang, 2011a; Zhang, 2012). Apart from statistical analysis and mechanism exploitation of 

ecological networks (Montoya and Sole, 2003; Cohen and Briand, 1984; Cohen and Newman, 1988), future 

works should also be put on these aspects: (1) construction of practical ecological networks; (2) analysis and 

application of graphic properties of networks; (3) dynamic modeling of network structure and functionality 

and mechanism exploitation of network dynamics using agent-based modeling (Zhang, 2012); (4) design and 

optimization of networks.   

 

 

Fig. 7 Positive correlations for predation/parasitism and mutualism and negative correlation for some competition.  

       Predation/Parasitism curves represent Lotka-Volterra model. Competition curves represent perfect competition. 
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