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Abstract 

Gene promoter networks (GPNs) are systems-level representations of the base pair-sharing relationships 

(graph edges) among promoters (graph nodes). It has been shown in the bacterium E. coli that these networks 

can contain a fractal nucleus of strong associations suggesting a self-organizing complexity. Here I report 

results of twenty seven in silico simulations for a diffusion limited aggregation model which accounts for 

much of the fractal structure previously observed in GPNs. Parameters varied in the model included (a) the 

frequency of gene duplication events, and the extent of (b) attraction and (c) repulsion presented by the DNA-

protein binding chemistry. Both duplication and attraction had significant effects on fractal topology of the 

GPN nucleus, whereas repulsion due to DNA-protein binding chemistry did not, at least for the levels explored 

in these simulations. Since repulsion is thought to be a key feature of fractal networks, it is likely that the 

repulsion in GPNs arises from the sparseness of the promoter space. The generation of a finite random set of 

promoters leads to sparse occupancy of promoter space which itself presents a considerable repulsion away 

from the consensus motif, working against the DNA-binding protein’s efforts to organize the system of 

promoters over evolutionary time. This interplay between attractive and repulsive forces in a GPN is sufficient 

to generate a fractal topology. 

 

Keywords regulon; network; transcription factor. 

 

 

1 Introduction 

The binding of RNA polymerase is an important stage in gene expression. RNA polymerase will readily bind 

to DNA non-specifically although transcription is generally inefficient in such cases, and helper proteins such 

as -factors in bacteria and transcription factors more generally serve to specify and optimize the binding to 

particular places in the genome (Weaver, 2012; Hinckle and Chamberlin, 1972). These binding sites are 

referred to as promoters. Some transcription factors bind to numerous promoters in the genome defining a 

regulon of genes. Such global regulators are influential in committing the genome to broad-scale gene 

expression events such as in response to heat shock or nitrogen depletion.  

GRNs and GPNs are two different systems-level views of transcriptional control structure (Fig. 1). The 

GRN, or Gene Regulatory Network (e.g., Davidson and Levin, 2005), represents genes as nodes and regulatory 

interactions as directed edges or arcs. Here, a transcription factor points to the genes that it regulates within the 

network. The GPN, or Gene Promoter Network (Aldrich et al., 2010), represents transcription factor binding 
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sites (i.e., promoters) as nodes and the extent of base pair sharing between sites as weighted edges in the 

network. GPN edges are undirected and any promoter can connect to any other promoter in the network 

provided they share at least one position-specific base pair in common. Complexity is reduced by thresholding, 

removing the weak edges representing low-bp sharing.  

Prior work (Aldrich et al., 2010) with -factor GPNs in E. coli revealed a fractal nucleus of strong 

associations among the promoters of several regulons (e.g., Fig. 2). Promoter sets identified by RegulonDB 

(Gama-Castro et al., 2008) did not include a consensus motif for the regulons examined, instead the promoters 

exhibited considerable sequence variation and clustered around the non-existent consensus motif. Self-similar 

structure became evident after the removal of weak edges, particularly at the upper phase transition. The phase 

transition is the point at which the largest connected component (the largest set of nodes that remain 

interconnected) abruptly declines in size (number of nodes) as more edges are removed.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Basic structure of a GRN (gene regulatory network) and a GPN (gene promoter network). The GRN is a directed network 
in which nodes represent genes or gene products wherein some gene products (proteins) can act as regulators of other genes (in 
which case they are termed transcription factors). Regulatory relationships are denoted by arrows. In the figure, gene A regulates 
both genes B and C, while gene C regulates neither A nor B. In a GPN, nodes represent gene promoters, the cis-regulatory 
regions that bind to regulatory proteins such as transcription factors or -factors in bacteria. The network is undirected with 
weighted edges denoting the extent of base pair-sharing between promoters. The emphasis of the present study is the GPN. 
 

 

Aldrich et al. (2010) showed that the GPN nucleus can have several interesting features. (a) It can exhibit 

strong visual symmetry. (b) The central region of the GPN tends to be vacant suggesting some source of 

repulsion is at work. (c) A symmetric nucleus generally has a significantly fractal topology as measured by the 

box covering/network coloring method (Song et al., 2005, 2007). (d) The fractal dimension of the set of nuclei 

examined was on average d = 1.731. (e) The position of the upper phase transition occurred at the place 

expected for a random graph according to percolation theory (Erdös and Rényi, 1960). (f) Promoter 

abundances scaled as a power-law in the genome. Given these points of evidence, and since the development 

of fractal structure in networks is thought to arise in response to repulsive forces (Song et al., 2006), Aldrich et 

al. (2010) proposed the diffusion limited aggregation (DLA) model as a mechanism for the evolution of GPNs.  

In the generic 2-dimensional DLA model proposed by Witten and Sander (1981), particles diffuse randomly as 

a Brownian motion, occasionally sticking to a growing cluster. Aldrich et al. (2010) recognized this as growth 

through preferential attachment, but not to the oldest particles as in a scale-free model of network growth 

(Barabasi and Albert, 1999). Instead, particles attach preferentially to the growing arms of the cluster since the 
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arms physically obstruct access to the central region. It appears as though the center repulses any new 

additions. A fractal dimension of d = 1.7 is typical of systems arising by DLA (Liebovitch, 1998).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Full GPN and its nucleus for the -54 regulon built from predicted promoters obtained from the RegulonDB database 
(Gama-Castro et al., 2008). The original GPN (left) contained 154 nodes and the largest connected component evaluated at the 
phase transition gave a nucleus of 105 nodes (right) after removal of all edges with weights < 10 bp (i.e., m = 10). Networks were 
visualized using the program Pajek (Batagelj and Mrvar, 1998) and the Kamada-Kawai projection (Kamada and Kawai, 1989). 

 

 

Aldrich et al. (2010) conjectured that a similar DLA process might apply to GPN growth. Here promoters 

arise randomly and add preferentially to the periphery of the network (Fig. 3, DLA model), not to the central 

hub (SF model). In addition to the numerical bias that there generally are more peripheral nodes to which to 

attach, there also are biochemical aspects of the system that could contribute to the development of a fractal 

nucleus. A GPN growing by DLA could be regulated by both repulsive and attractive forces, mediated on the 

micro-scale through DNA-protein binding chemistry, and on the macro-scale by population-level fitness, 

organized around a consensus promoter. The consensus would form an attractor in promoter space because it 

represents the optimal binding chemistry for the DNA-binding protein. It is known that promoters whose 

sequence departs too far from the consensus would be weak and ineffective in its binding capacity (Hawley 

and McClure, 1983). Yet it has been observed that consensus and canonical motifs rarely participate directly in 

transcription perhaps because they bind the transcription factor or  too firmly, preventing promoter clearance 

and elongation (Hawley and McClure, 1983; Huerta and Collado-Vides, 2003; Ellinger et al., 1994). The 

resulting lowered population-level fitness would repulse additions from the GPN center. These dynamics are 

analogous to the inter-atomic attractive and repulsive forces that include the van der Waals interactions.  

Here I test the DLA model of preferential attachment through in silico simulations.  
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Fig. 3 Growth of a GPN through preferential attachment. Under the classic scale-free (SF) model of network growth, a new node 
would attach preferentially to the node with highest degree. In the diffusion limited aggregation (DLA) model, a new node 
attaches to the set of promoters that overlap in base composition. Even without consideration of DNA-binding chemistry, there is 
a greater probability of random matches to the numerous peripheral nodes in the network compared to the one central hub, which 
may even be absent. In any case, the binding chemistry of the transcription factor serves to organize promoter space around this 
motif forming an attractor in promoter space. In the figure, the dark torus marks the region of optimal promoter similarity 
assuming both attraction from the central consensus and repulsion from too close a match (strong version of DLA). 

 

 

2 Methods 

2.1 Random promoters and GPN formation 

Random promoter networks, or random grammar networks, were introduced in the first study of fractal GPNs 

(Aldrich et al., 2010). 

Nodes are formed in a random GPN by generating a set of n promoters, each through F (footprint size) 

random draws from a uniform base distribution (A, C, G, T). In the present study I emulated the footprint of 

the 54 system (data as provided by RegulonDB (Gama-Castro et al., 2008)), fractal structure reported by 

Aldrich et al. (2010). This -factor has F = 11-bp footprint with a –10 (5 bps) box and –35 (6 bps) box 

separated by a short spacer (5-6 bps). Spacer sizes were drawn from the observed distribution of sizes in the 

54 system. Each full random GPN contained 500 random promoters.  

Edges are formed as pairwise non-zero measures of similarity between promoter pair sequences i and j (Aij) 

evaluated simply as the number of base pairs shared. These weighted edge values are used to form the 

adjacency matrix, A. A network or graph G is then generated based on the matrix A. Networks were produced 

and analyzed using Python and networkx (Hagberg et al., 2008; http://networkx.lanl.gov/), though visualized 

using Pajek (Batagelj and Mrvar, 1998; http://vlado.fmf.uni-lj.si/pub/networks/pajek/).  
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2.2 Thresholding of GPNs 

Thresholding was achieved through serial m-slices (de Nooy et al. 2005). In an m-slice one removes all edges 

from a weighted graph G below a critical threshold m (where 1 < m < F = footprint size in bp). In serial 

extractions, edges were removed based on a sliding m-threshold value. At each step as m increased to F, the 

largest connected component was extracted from G and evaluated for the number of nodes and edges. The 

largest connected component is the maximal subgraph G’ containing all nodes still interconnected after 

removal of edges not meeting the threshold criterion. A largest connected component is termed a giant 

component when it contains at least half the nodes present in the full graph G. The giant component of a 

random graph fractures (or emerges) near the phase transition (Erdös and Rényi, 1960). 

2.3 Assessment of fractal structure 

I wrote Python/networkx script that implemented the renormalization procedure of Song et al. (2007) to 

evaluate the fractal dimension of the largest collected components extracted from the GPNs at the phase 

transitions. The technique is a graph coloring exercise founded on the traditional box-covering method of 

fractal measurement. In brief, for a given box length (lB), or shortest path length between nodes, each node is 

colored in a fashion such that neighbors of like color are no further away than the current box length. Then the 

network is renormalized by collapsing adjacent nodes into a single node if they share the same color. This 

enforces the graph coloring rule that no two adjacent nodes can share the same color. The value NB then gives 

the minimum number of boxes of length lB required to cover the graph of NB nodes, and is equal to the graph 

size (node count) following renormalization. Considering a range of box lengths, a plot of lB versus NB on a 

log-log scale will be linear for networks with a fractal topology. On a normalized series of graphs with 

minimum size N, the fractal dimension dB is obtained from linear regression of the log-log transformation of 

the general scaling relation:  

 

. 

 

Fractal structure of each GPN nucleus was judged relative to that expected of a random network. Box length 

(lB) and graph size (NB) scale as a power-law when the network has a fractal structure, and so the relationship 

should be well-described by a linear function under a log-log transformation of both box length and graph size 

(Song et al., 2005). By contrast, a random network is more likely to follow an exponential distribution which is 

best modeled as a linear function under a simple log transformation of one variable. Each simulation was 

comprised of 100 replicate random GPNs, each appraised using the above method for its fit to power and 

exponential models. The better model was chosen based on a comparison of the coefficients of determination 

(R2) for linear least-squares regressions. The end of a simulation yielded the fraction out of 100 random GPNs 

giving a superior fit to a power-law (fractal) model.  

In order to test the influence of the model parameters on GPN nucleus fractality, analysis of variance 

(ANOVA) was conducted on the full set of 27 simulations using Matlab (The MathWorks Inc., Natick, MA). 

The frequency of power-law GPNs was used as the dependent variable and the three-level parameters DUP, 

ATT, and REP as the main factors, testing both main effects and two-way interactions. 

2.4 In silico model 

Using the Python/networkx program, simulated GPNs were formed as random grammar networks wherein a 

‘concensus sequence’ was randomly generated and used to seed the growth of the GPN – though it was not 

allowed to formally enter the GPN. Additional promoters were added to the GPN over time by duplicating 
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existing promoters or as a purely random process. Parameters of the model were varied to explore evolutionary 

mechanisms that might yield a fractal topology including DNA binding chemistry.  

Of the standard evolutionary forces (mutation, selection, drift, and migration), all but migration were 

considered explicitly (Table 1; see also Suppl. Information). (1) Mutation was modeled as either point 

mutations or duplications of existing promoters in the growing GPN. (2) Selection was modeled as (2a) the 

attractive forces of the DNA-protein binding, and (2b) as repulsive forces potentially arising from overly tight 

binding and failed promoter clearance. Composite population fitness coefficients, w, were generated across 

these modes simply as the cross-product of the respective fitness under each of the models. Values were 

standardized to set the highest fitness within a simulation to w = 1.0 (see Suppl. Table 4). (3) Random genetic 

drift was handled implicitly through the finite size of the simulations (100 replicates of 500 promoters).  

2.4.1 Mutation: duplication rate 

A new promoter was produced by duplicating an extant promoter with probability D. Alternatively a new 

promoter was generated de novo from a uniform random base composition with probability 1-D.  

2.4.2 Attraction from DNA-protein binding 

In the model it was assumed that the  factor had a binding chemistry optimized to a single promoter sequence, 

which was generated randomly each replicate. This optimal promoter (or more loosely, the ‘consensus 

promoter’) was not allowed to enter the GPN but was allowed to influence the composition of the GPN (except 

under conditions ‘ATT-none’, see Suppl. Table 1). 

Attractive forces influencing the formation of random promoters were mediated through population-level 

fitness coefficients (Suppl. Table 1) that represented the selective advantage of a genome containing a given 

promoter based on the condition that it shares x bases with the consensus promoter motif (optimal binding 

chemistry). The no attraction model (ATT-none) assumed an absence of any chemical specificity in DNA-

protein binding and served as a control whereby the extent of bp-sharing with the consensus did not affect 

fitness. Under the weak attraction (ATT-weak) model, the fitness function w(x) was at its maximum when the 

random promoter was an exact copy of the consensus motif, and w(x) declined gradually as x declined. The 

same held for the strong attraction (ATT-strong) model except w(x) declined more rapidly as x declined, 

modeling a tighter binding chemistry. For a specific example, under ATT-weak a random promoter that shared 

8 out of 11 bases with the consensus promoter had a fitness coefficient of w = 0.727. In practice this meant that 

the random promoter had a chance P = 0.727 of entering the GPN, subject to the drawing of a pseudorandom 

number (r); in the event of r > 0.727 the promoter was rejected and another random promoter generated and 

considered for entry.  

 
Table 1 Evolutionary and cellular forces modeled through the 27 in silico simulations. Each of the main model  
parameters (DUP(D), ATT(watt), and REP(wrep-fpc)) were varied over three levels: DUP (none=0, weak=0.15,  
strong=0.30); watt (see Suppl. Table 1 for values); wrep-fpc (see Suppl. Table 2 for values). 

______________________________________________________________________________ 
Evolutionary force       Cellular force                                                    Model Parameter 

______________________________________________________________________________ 
mutation promoter duplication DUP D 

point mutation  1-D 
natural selection           attraction of DNA-protein binding                  ATT watt 

permitting efficient transcription initiation 
repulsion from failed promoter clearance REP wrep-fpc 
due to overly tight DNA-protein binding 

random genetic drift    intrinsic repulsion from consensus arising from  wrep-int 
random occupancy of diffuse promoter space 

______________________________________________________________________________ 
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Table 2 Simulation results for the 27 models of GPN evolution. Model, simulation number; DUP,  
duplication rate (none=0, weak=0.15, strong=0.30); ATT, attraction ( see Suppl. Table 1 for values);  
REP, repulsion due to failed promoter clearance (see Suppl. Table 3 for values); Exponential,  
fraction of replicate GPN nuclei that gave a better fit to the exponential (random) model; Power,  
fraction of replicate GPN nuclei that gave a better fit to the power-law (fractal) model. 

_____________________________________________________________________ 
Model DUP ATT REP Exponential Power 

                                                                                                 (random)            (fractal) 
_____________________________________________________________________ 

1 none none none 0.97 0.03 
2 none none weak 0.97 0.03 
3 none none strong 0.91 0.09 
4 none weak none 0.98 0.02 
5 none weak weak 0.97 0.03 
6 none weak strong 0.89 0.11 
7 none strong none 0.64 0.36 
8 none strong weak 0.63 0.37 
9 none strong strong 0.74 0.26 
10 weak none none 0.61 0.39 
11 weak none weak 0.61 0.39 
12 weak none strong 0.64 0.36 
13 weak weak none 0.66 0.34 
14 weak weak weak 0.70 0.30 
15 weak weak strong 0.62 0.38 
16 weak strong none 0.60 0.40 
17 weak strong weak 0.50 0.50 
18 weak strong strong 0.53 0.47 
19 strong none none 0.34 0.66 
20 strong none weak 0.34 0.66 
21 strong none strong 0.31 0.69 
22 strong weak none 0.24 0.76 
23 strong weak weak 0.33 0.67 
24 strong weak strong 0.40 0.60 
25 strong strong none 0.50 0.50 
26 strong strong weak 0.37 0.63 
27 strong strong strong 0.33 0.67 

_____________________________________________________________________ 
 

 

2.4.3 Repulsion from failed promoter clearance 

This portion of the model assumed that the optimal binding chemistry might not be optimal for transcription. A 

promoter with the consensus motif could bind  efficiently yet prevent RNA polymerase from clearing the 

promoter if binding were too tight (e.g., Ellinger et al., 1994), in which case transcriptional elongation would 

be difficult to achieve. The null model REP-none (Suppl. Table 2) assumed no such interactions. Under the 

weak repulsion (REP-weak) model, the fitness function w(x) was at its minimum (w = 0) when the random 

promoter was a perfect match to the consensus (x = 11), and w(x) increased rapidly as x declined, reaching a 

maximum (w = 1.0) for x < 9 (arbitrary choice). Similar dynamics held for the strong repulsion (REP-strong) 

model except w(x) increased more slowly as x declined (w = 1.0 for x < 7), modeling a broader region of base 

similarity in which promoter clearance was impeded. 

2.4.4 Intrinsic repulsion from the random drift of GPN formation 

Preliminary investigations of the model showed that most randomly generated promoters shared few bases 

with the ‘consensus’ promoter that had been used to seed the GPN. As the network grew and promoter space 

105



Network Biology, 2011, 1(2):99-111 

  IAEES                                                                                                                                                                        www.iaees.org     

filled in, new promoters could link to existing promoters – though not necessarily directly to the original 

‘consensus’. Thus the frequency distribution of bp-sharing in a random GPN is inherently skewed toward low 

values of sequence similarity. This native or default distribution of bp-sharing was utilized in the fitness 

function and the method of generating random sequences (see next two sections).  

2.4.5 Composite measures of the fitness functions 

Random promoters were allowed to enter the GPN provided a pseudorandom number was no greater than the 

promoter’s composite fitness function, wcomp. A promoter entering with no constraints entered under wcomp = 

1.0. The composite fitness coefficient was used to simulate the GPNs consisting of selective pressures due to 

differences in attractive forces of DNA-protein binding (watt), repulsive forces due to failed promoter clearance 

(wrep-fpc), and intrinsic repulsion (wrep-int). These probabilities were multiplied to obtain a composite measure of 

fitness.  

 

 
 

Pseudorandom numbers were used to select from this composite probability distribution x values (bp’s 

shared with the consensus motif of footprint size F). For each random promoter, the number of bases to mutate 

from the consensus was then given by m = F – x. , and pseudorandom numbers were used to select the m bases 

and replace them with one of the four possible bases. This approach reduced the run time considerably 

compared to randomly forming promoters and then rejecting them if they failed to meet the acceptance 

threshold.  

For any given simulation, each fitness value was standardized by the largest value in the distribution to set 

that value to 1.0 and allow the simulation to run faster (see Supplementary Tables).  

2.4.6 Overall workflow in the simulations 

I) Specify state conditions for the model parameters  

II) Generate random optimal consensus promoter (though don’t allow consensus to enter GPN) 

III) For n = 1 to 500  

     A) Generate a new promoter 

          a) By duplication at rate D 

          b) Or by uniform random process at rate 1-D 

             1) Randomly determine how many bp’s the new promoter will differ from the consensus 

This is calculated from the composite (model components 1-3) probability density associated with  

each state of bp-sharing (see Suppl. Table 4) 

2) Randomly mutate a consensus sequence to meet this criterion 

        B) Extract largest connected component from upper phase transition of the random GPN via m-slice 

        C) Conduct fractal analysis as specified by Song et al. (2007) 

        D) Evaluate least squares R2 fit to linear transformations assuming each of the two models:  

            a) Fractal topology, expecting a power-law with best fit from a log-log transformation 

            b) Random topology, expecting an exponential relationship with best fit from a simple log 

transformation of one variable 

         E) The count is kept as to the number of replicates out of 100 that give a best fit to one or the other 

models  

   IV) Return to #1 and change model conditions 
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3 Results 

Each of the 27 models yielded a combination of GPNs some of whose nuclei were best described as 

exponential (random) and some as power-law (fractal) (Table 2). On average the frequency of random GPNs 

within a simulation was greater (mean, 0.61; range, 0.24-0.98) compared to the frequency of fractal nuclei 

(mean, 0.42; range, 0.02-0.76). All of the simulations in which duplications were frequent (DUP = strong) 

produced at least as many fractal GPN nuclei as exponential nuclei (frequency of fractal nuclei > 0.50).  

Visual examples of simulated GPN nuclei are represented (Fig. 4) for four of the 27 models (across rows). 

Networks are shown at and near the phase transitions (across columns). Note the following: (a) Duplication 

has the effect of increasing the modularity or heterogeneity of linkages in the network; Fig. 4E has several 

dense modules of nodes whereas such substructure is less evident in the purely random Fig. 4B. (b) Attraction 

has the effect of organizing the promoter space around the consensus sequence as seen in the topological 

differences between Fig. 4H (with attraction) versus Fig. 4B and E (without attraction). (c) Repulsion has the 

effect of vacating the central portion of the GPN as seen in Fig. 4K (with repulsion) compared to the other 

figures above it (without repulsion).  

All three parameters (DUP, ATT, REP) considered independently appeared to influence the fractality of the 

GPN nuclei (Fig. 5). The influence of attraction chemistry was much stronger than that of repulsion chemistry, 

and in both cases the effect was evident mainly at the strongest, most extreme parameter level. Duplication rate 

had the largest effect on topology, even on a weak level. These results should be interpreted with the caveat 

that the range of values chosen for the parameters may have influenced the extent of the response in each case. 

Regardless, the results show the trend that increases in each parameter associate with greater fractal topology. 

Quantitative assessment of the pattern using ANOVA (Table 3) showed that duplication and attraction had 

significant effects on GPN nucleus fractality, as did their interaction. However, repulsion did not have a 

significant effect on fractal topology.  

 

 
Table 3 ANOVA results for simulations showing the influence of duplication rate and attraction and repulsion of DNA-binding 
chemistry on the extent of fractality in the nuclei of GPNs. 

___________________________________________________________________________ 
Source Sum Sq.    d.f. Mean Sq.      F Prob>F 

___________________________________________________________________________ 
duplication 1.14521     2 0.57260 115.46 0.0000 
attraction 0.06112     2 0.03056     6.16 0.0240 
repulsion 0.00170     2 0.00085     0.16 0.8458 
dupl. x attr. 0.12575     4 0.03144     6.34 0.0134 
dupl. x repul. 0.00024     4 0.00006     0.01 0.9997 
attr. x repul. 0.01139     4 0.00285     0.57 0.6894 
Error 0.03967     5  0.00496             
Total 1.38507  26 

___________________________________________________________________________ 
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Fig. 4 Examples of simulated GPN nuclei captured from phase transitions. Four of the 27 models are shown here in the four rows 
(models 1, 10, 16, and 18), while columns represent the GPN nucleus just before the phase transition (left column), roughly at the 
phase transition (center column), and after the phase transition (right column). Each graph contains n=250 nodes and e=3n, 2n, or 
n edges (left to right) extracted as an m-slice. (A-C) Purely random graphs consistent with the Erdös-Rényi model in which there 
was no promoter duplication (DUP=none), no attractive force based on DNA-binding chemistry (ATT=none), and no repulsive 
force based on DNA binding chemistry (REP=none). (D-F) Low duplication rate but no DNA-binding chemistry specified. (G-I) 
Low duplication rate and strong DNA-binding chemical specificity, but no repulsion based on DNA-binding chemistry. (J-L) 
Low duplication rate combined with high attraction and repulsion in DNA-binding chemistry. Fractal dimensions and 
coefficients of determination for fit to the fractal model follow: A, dB=2.706 (R2=0.844); B, 2.316 (0.841); C, 1.358 (0.975); D, 
2.148 (0.920); E, 1.837 (0.916); F, 1.439 (0.944); G, 1.971 (0.918); H, 1.910 (0.895); I, 1.523 (0.956); J, 2.001 (0.934); K, 1.872 
(0.950); L, 1.495 (0.967) 
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Fig. 5 Graphical representations of the results of DLA simulations with each parameter effect considered in isolation. Each figure 
shows the effects of one of the three evolutionary forces on the development of GPN nucleus topology, measured as the number 
out of 100 replicates giving a better fit to the power-law model.  

 

 

4 Discussion 

These results reject the strong version of the DLA model that includes a repulsive force deriving from DNA-

protein binding chemistry. The results are consistent with the weaker form of the model that includes 

duplication, attraction, and intrinsic repulsion arising from a sparse promoter space, which pushes against the 

attractive forces of the DNA-binding protein yielding fractal topologies. 

Gene duplication was shown to have the strongest effect on the fractal structure of the GPN nucleus. It is 

possible, though, that this is influenced by the levels selected for duplication versus the levels chosen for the 

fitness-based parameters (ATT and REP). Nevertheless, increasing the rate of duplication increased the extent 

of fractality. Gene duplication has been recognized for some time as an important factor in the evolution of 

genomes (Ohno, 1970; Zhang, 2003). Moreover, the duplication process has been implicated as the primary 

causal factor in the development of self-similarity (fractal structure) in the genome which includes a variety of 

aspects of genome organization that scale as a power-law (Luscombe et al., 2002; Koonin et al., 2006).  

Attraction also proved important in the development of a fractal GPN nucleus, even when the consensus 

(optimal chemistry) promoter was excluded from the growing GPN; in such a case the consensus-GPN system 

behaves much like an attractor in a chaotic system (Kauffman, 1993). Not only is the attractive DNA-protein 

binding chemistry critical in the process of transcription initiation (on a local scale), it is critical to the 

development of organization in promoter space (on a broader scale). Without such a force, promoter space is 

inherently random and un-ordered as represented in the top row of Fig. 4 which shows GPNs that are 

essentially equivalent to the classic Erdös-Rényi (1960) random graphs. It takes the organizing influence of the 

DNA-binding protein, the transcription factor or -factor, to organize the promoters over evolutionary time, 

drawing them closer to the optimal binding chemistry. Natural selection likely mediates these outcomes in that 

a gene with a promoter that is too different from the optimal chemistry will not be transcribed and this may 

come at a fitness cost to the organism carrying this mutant variety of promoter.  

The results indicate that repulsion arising from DNA-binding chemistry was not important in the 

development of fractal structure. It is conceivable that in some regulons a promoter motif might bind a 

transcription factor too tightly (e.g., Ellinger et al., 1994), such that optimal chemistry promoters might be 
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selected against and not appear in a realized GPN. However, the simulations run here suggest that, for the 

parameters considered, this is not as important a factor as duplication and attraction. It remains the case, 

though, that repulsion is thought to be a general feature of fractal networks (Song et al., 2006), so it is likely 

that the intrinsic repulsion discovered during these simulations is likely to play this role.  

Intrinsic repulsion is a function of random genetic drift. The random generation of promoters yields a sparse 

promoter space that, when subject to an attractive organizing force, presents a repulsive force pushing back 

against the organizing principle. If all possible promoters existed in a GPN (saturated network) with a 

promoter footprint F, these 4F promoters would yield a dense GPN with steps of only one base between 

adjacent promoters in the network. But this saturated GPN with F = 11 would consist of over four million 

promoters; real regulons and GPNs do not include all possible promoters. Instead, a random GPN of size n = 

500 promoters forms a diffuse footprint in promoter space where most promoters share only a few bases with 

one another. Simulations of one million random promoters were performed to quantify this effect using the 11-

bp footprint and spacer sizes from the RegulonDB 54 predicted promoter set. This showed that over 97% of 

the random promoters shared no more than five bases (0-5 out of 11) with the consensus motif (Suppl. Table 3). 

The result is a frequency distribution of random promoter base sharing with the consensus that is heavily 

skewed away from the consensus motif, presenting a sort of intrinsic repulsion to the GPN. Set against the 

attractive chemical forces of the DNA-binding protein, a fractal GPN emerges.  
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